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Effective string theory has shown its universal power in the prediction of the spectrum
of low-lying excited states of confining strings. Here we study confining flux tubes in ZN

gauge theories. For the N = 2 theory, which corresponds to the 3d Ising gauge model,
we compute the spectrum of low-lying excitations of confining strings and show that it
agrees with the universal Nambu–Goto predictions except for an additional massive scalar
resonance. This resonance, however, turns out to be a bulk glueball mixing with the flux
tube excitations rather than a genuine string worldsheet state. In general ZN gauge
theories (dual to clock spin models), we observe a continuous phase transition for N ≥ 4,
while for N > 5 it is governed by the O(2) universality class. The critical behavior of
the string tension and mass gap is verified to be described by a dangerously irrelevant
operator. At large N the glueball spectrum is expected to approach the spectrum of U(1)
gauge theory, which is confirmed by our lattice data.
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1. Introduction

Understanding the color confinement in Quantum Chromodynamics (QCD) has been
a long-standing problem ever since early 1970s. Simply put, this puzzle can be phrased as
the question of how does a non-Abelian gauge theory, that describes colored quarks and
gluons at high energies, produce a spectrum of colorless hadrons at long distances? The
concept of confinement becomes precise, for theories like pure glue SU(Nc) Yang–Mills
model which enjoy the ZN one-form electric “center" symmetry. The order parameter for
the center symmetry is the vacuum expectation value (VEV) of Polyakov loops, which
translates into the area law for the Wilson loops ⟨W (C)⟩ ∼ e−Area(C)/ℓ2s . This implies the
existence of stable long strings of a finite tension 1 T = ℓ−2

s . This notion can be generalized
to any theory with a one-form symmetry, such as 3D ZN gauge theories, which are the
main focus of this talk. Studying the behavior of such confining strings may shed light on
our understanding of confinement.

Recently, there has been a revival of research on QCD and confinement in terms of
effective string theory. This is stimulated in part by the development of high precision
Monte-Carlo computations of confining string spectrum for different theories [3, 4]. The
spectrum of strings wrapped around a spatial circle of circumference R can be approximated
using the derivative expansion based on the effective string theory. Assuming that trans-
lational Goldstone modes are the only massless degree of freedom on the worldsheet, the
Nambu–Goto action fixes the form of the string energy levels up to subleading non-universal
corrections which start at the O(ℓ6s/R

7) order in the derivative expansion [5, 6].
On the other hand, for a while it was observed that the following expression

EGGRT(NL, NR) =

√
4π2(NL −NR)2

R2
+

R2

ℓ4s
+

4π

ℓ2s

(
NL +NR − D − 2

12

)
, (1)

(dubbed the Goddard–Goldstone–Rebbi–Thorn (GGRT) formula) provides an exception-
ally accurate approximation for the energies of many low-lying string states, even when
the strings are relatively short and the ℓs/R expansion fails. Originally this formula was
obtained by the light-cone quantization of the Nambu-Goto action [7, 8]. However, this
quantization is known to be incompatible with the spacetime Poincaré symmetry. This
puzzle has been resolved when it was realized that (1) arises as the leading order answer in
the Thermodynamic Bethe Ansatz (TBA) method of calculating the string spectrum [9–11],
which has better convergence properties than the straightforward ℓs/R expansion.

The resulting improved theoretical control provides an opportunity to search for novel
non-universal string excitations associated with the states which strongly deviate from
(1). For example, the 4d Yang-Mills confining string is found to support an extra massive
pseudo-scalar mode [10, 11]. It is natural to ask whether massive resonances are also
present on the worldsheet of ZN strings. Here we present the results for the Ising model,
which corresponds to N = 2. As we will see, a new subtlety arises for ZN strings. Namely,
bulk glueballs may mix with the genuine string excitations and mimic the presence of a

1See, e.g. [1, 2] for reviews on higher-form symmetries.
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resonance. In the Yang-Mills theory such a mixing is suppressed at large Nc. No such
suppression is present in the ZN case so we need to find a way to distinguish bulk glueballs
from genuine worldsheet states.

Another motivation for studying ZN gauge theories is to understand how the U(1)

gauge theory is recovered in the N → ∞ limit, where confinement comes out as a result of
monopole condensation [12, 13]. In particular, what is the mechanism for the confinement in
ZN gauge theories, and why deconfining transitions are only present for ZN gauge theories,
unlike in the U(1) case?

The rest of this note is organized as follows. We sketch our methodology of lattice
simulations in section 2. Then we review the results of 3d Ising strings in section 3 based
on [14]. In section 4 we summarize some new results for ZN gauge theories. The details of
the data and analysis will be presented in a forthcoming publication [15].

2. Lattice setup

We use the Wilson lattice gauge theory action

S = β
∑
plaq

{1− ReUplaq} , Uplaq(n, µ, ν) = Uµ(n) · Uν(n+ µ̂) · U †
µ(n+ ν̂) · U †

ν (n) , (2)

where the link fields take values Uµ(n) = e
2πik
N , k ∈ Z/NZ. This is called the (vector) ZN

gauge theory. The simulation is performed using the Metropolis algorithm. We typically
make over 105 measurements for each lattice system and coupling.

We compute the low-lying spectrum of confining strings and glueballs from two point
functions of operators that represents the physical objects we are interested in, located at
different times. We use Polyakov operators that wind around the spatial dimension once
to represent confining strings, and contractable Wilson loops to represent glueballs. The
excited states are extracted by constructing a large set of operators, and using variational
methods to find out linear combinations of operators that have large overlap with the low-
lying states. Smearing and blocking methods are applied. Further details of the simulation
can be found in [3, 14, 16].

Operators are characterized by a set of quantum numbers determined by their symme-
try properties. Operators from different sectors have zero two point functions. For winding
strings, the quantum numbers include the longitudinal momentum p = 2πq/R (the trans-
verse momentum is fixed to zero in our simulations), the transverse parity P⊥, that flips the
sign of the transverse spatial coordinate, and the longitudinal parity P∥ that flips the sign
of the longitudinal coordinate2. Note that P∥ is not a good quantum number for states with
q ̸= 0. Correspondingly, we label the string states either by (P⊥P∥) or by q ̸= 0 and (P⊥).
On the other hand, glueball states are characterized by their spin J , parity P and charge
conjugation C (not present for Ising), and we label the corresponding sectors as |J |PC .

2This latter symmetry corresponds to the CP symmetry of the underlying gauge theory, because it
reverses the flux direction.
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3. 3d Ising strings

The Kramers-Wannier duality states that the 3d Z2 lattice gauge theory (LGT) has
the same partition function as the Ising model with no external magnetic field. This duality
exchanges the low temperature phase of one model to the high temperature phase of another,
and vice versa [17]. This implies that the critical behavior of the second order deconfining
transition in the Z2 gauge theory is governed by 3D Ising universality class.

We focus on the confining phase and take the continuum limit of the gauge theory by
sending β to βc = 0.7614133(22) [18], where the string tension and the mass gap are small
in the lattice unit. We find that the lowest-lying states of wound flux tubes agree with
the GGRT prediction (1), with some notable exceptions. Specifically, we observe a massive
resonance in the (++) sector with mresℓs = 3.825(50), shown in Figure 1. A similar state
shows up as a boosted massive resonance in the q = 1; (+) sector.

2 3 4 5
0

1

2

3

4

5

6

∆Eℓs

R/ℓs

Figure 1: q = 0 excited states in the (++) parity sector as a function of string length. Blue curves
are the (1, 1) and (2, 2) GGRT spectrum. The horizontal red line is the fitted mass for the massive
resonance state.

To determine whether this state is a genuine massive worldsheet resonance or a bulk
excitation (glueball), we note that a bulk excitation can have transverse momentum relative
to the string. So if this state is a glueball, in principle we should also be able to observe
a series of scattering states of a glueball and a string, with quantized relative momentum
p⊥ = 2πq⊥/l⊥, but the operators we use may have poor overlap onto them. To probe these
state we added “multitrace" operators of the following form

ϕscattering =

l⊥/a∑
n,m=1

ϕP (y + na)ϕG(y +ma)e
2πiq⊥(n−m)a

l⊥ , (3)

where ϕP represents a string state, and ϕG is a glueball. Our initial simulation, which
suggested the presence of a resonance, was performed without these operators and at fixed
l⊥ ≈ 4.8ℓs. In order to identify scattering states, recall that q⊥ ̸= 0 scattering states are
expected to exhibit a strong transverse volume dependence corresponding to the dispersion
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relation,

E =
√
m2

flux + p2⊥ +
√
m2

glue + p2⊥, p⊥ = 2πq⊥/ℓ⊥ . (4)

We present the transverse volume dependence of the (++) sector after including scat-
tering operators up to q⊥ = 4 in Figure 2.

0.05 0.10 0.15 0.20 0.25
0
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Eℓs

ℓs/l⊥

Figure 2: Spectrum in the (++) sector at R = 55a = 3.80ls as a function of the inverse transverse
volume with scattering operators. The GGRT spectrum is represented by horizontal solid lines of
different colors starting from N = Ñ = 0. The energy of the absolute ground state plus the glueball
mass is shown by the lower dashed blue line. The absolute ground state plus the resonance mass is
shown by the upper dashed blue line.

We observe all four scattering states with q⊥ ̸= 0 as expected, but no new q⊥ = 0 state
in addition to the “resonant" state. The conclusion is that the resonance is in fact a q⊥ = 0

glueball, rather than a genuine massive resonance on the string.

4. 3d ZN gauge theories

The Kramers-Wannier duality can be extended to the duality between generalized ZN

clock spin model and the (vector) ZN LGT [19, 20]. It has been suggested that clock
spin models with N ≥ 5 exhibit a second order phase transition governed by the O(2)

universality class [21, 22]. Observables sensitive to the U(1) → ZN breaking typically
exhibit an intricate scaling behavior associated with a dangerously irrelevant deformation
[23]. The duality dictates then that there should be a deconfining transition in the gauge
theory, which is also governed by the O(2) universality class. However, so far relatively
little is known about the confining mechanism of the ZN LGT and how it approaches the
U(1) limit as N → ∞. We aim to fill this gap here.

4.1 (De)confinement mechanism

The confining behavior is associated with the area law for the vev of the Wilson loop,
⟨W (C)⟩. In the U(1) case the partition function can be rewritten as a Coulomb gas of
magnetic monopoles [12, 13]. The area law arises as a result of the (magnetic) Debye
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screening of the magnetic field sourced by the external current (the Wilson loop). This
behavior persists at all values of the coupling constant β, which controls the monopole
number density.

One expects the monopoles to be confined in the ZN case. One way to argue for this is
to realize the ZN theory as arising from the spontaneous symmetry breaking U(1) → ZN ,
where the monopole confinement arises as a consequence of the conventional (not the dual
one) Meissner effect.

Directly in the ZN language one observes that the non-vanishing magnetic flux through
a plaquette in the ZN model cannot be smaller than 2π/N . Hence, an individual U(1)

monopole can be approximate by a ZN gauge field configuration only up to a distance of
order lT ≃

√
N/4πa. At longer distances a spherically symmetric U(1) monopole turns into

a ZN junction of N magnetic strings carrying the minimal magnetic flux. To determine the
tension of such a string note that a magnetic string loop can be generated from the vacuum
configuration by setting all links intersecting a surface bounded by the loop to e

2πi
N . The

action of this configuration is proportional to the length l of the loop

∆Ss(l) = β[1− cos(2π/N)]l . (5)

These considerations suggest the following dynamics of ZN models at small values of
β. First, there is a "U(1) region" at the smallest values of β, 0 < β ≲ βN , such that the
typical monopole separation in the U(1) model is smaller than lT . Here one expects the
U(1) and ZN spectra to be practically indistinguishable, because in both cases the dynamics
is dominated by U(1)-like monopole configurations. At larger values of β, βN ≲ β < βc the
model is expected to exhibit ZN confinement, where instead of the monopole plasma the
Wilson line is screened by a network of ZN junctions connected by magnetic strings.

The critical value βc, where the theory deconfines can be estimated by noting that the
density of states of a large magnetic string loop grows exponentially with its length l, so
that the corresponding contribution to the partition function can be estimated as

Zstring ≈ eγl−β[1−cos( 2π
N )]l , (6)

where γ is a constant. Its specific value is not important for the argument. We then expect
that the string network disappears and the theory deconfines at

βc =
γ

1− cos(2π/N)
. (7)

This functonal form of the deconfining point agrees well with the lattice results of [24],
which can be fitted by (7) withh γ ≈ 1.5 (which also reproduces the known values of βc at
N ≤ 4). As N → ∞, the deconfining point is pushed to infinity.

To confirm the existence of the small β U(1) region we preformed lattice simulations
which determine the mass spectrum and the string tension at the fixed relatively small
β and different N . The results are presented in Table 1, which indeed indicate that at
β = 2.20 the spectrum of ZN models with N ≥ 8 is indeed very close to the U(1) spectrum.
On the other hand, the Z6 theory at β = 2.20 appears to exhibit the ZN confinement.

6
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Z(N) and U(1) lightest masses and string tension

group β L2
sLt aM0++ aM0−− a

√
σ

U(1) 2.20 483 0.5386(23) 0.2691(14) 0.16646(62)

Z(100) 2.20 483 0.5320(23) 0.2648(12) 0.16683(50)

Z(10) 2.20 483 0.5367(23) 0.2673(17) 0.16488(39)

Z(8) 2.20 483 0.5267(92) 0.2644(17) 0.16469(76)

Z(6) 2.20 483 0.451(9) 0.2167(18) 0.14252(51)

Table 1: The recovery of U(1) spectrum as N gets larger.

4.2 Critical behavior

Now we turn to the critical behavior of observables in ZN gauge theories. In particular,
we focus on the bulk mass gap and the string tension. The question is how to relate the
physical quantities we measure to the well-known CFT data in the O(2) CFT. One might
expect the critical exponents to be determined by the dimensions of the relevant operators,
but this model provides an example to this behavior, associated with dangerously irrelevant
operators.

Let us present an renormalization group (RG) flow argument that prescribes the critical
behavior. Consider the UV Gaussian fixed point (u = g = λN = 0) in the complex scalar
field theory,

S =

∫
d3x

[
|∂µΦ|2 + u|Φ|2 + g|Φ|4 + λN (ΦN + Φ̄N )

]
. (8)

If one tunes u = uc = 0 and inspects a family of theories with different g > 0, one finds the
critical value gc such that the theory runs into the O(2) IR fixed point. Perturbing this RG
trajectory fixed point by introducing u > 0, one triggers an RG flow which starts at the
Gaussian UV fixed point, approaches the vicinity of the O(2) fixed point and then deviates
into the Nambu–Goldstone theory,

S =

∫
d3xK(∂µθ)

2 + cλNK3 cosNθ . (9)

The latter describes the (pseudo)-Goldstone mode of the O(2) spontaneous symmetry break-
ing. Here we introduced also the leading O(2) breaking operator, which is generated if one
perturbs the Gaussian theory by turning on λN ̸= 0, with c being a dimensionless con-
stant. Interestingly, this symmetry breaking term is irrelevant both at the Gaussian and
the O(2) fixed points, but becomes relevant at the NG fixed point, providing an example
of a dangerously irrelevant behavior.

It was proposed in [23] that the confining ZN theory near criticality is described exactly
by this RG flow. The critical behavior is then governed by the charge N operator as well
as the typical length scale K in the O(2) CFT,

cλN ∼ (T − Tc)
ν|yN |, K ∼ 1/ξ ∼ (T − Tc)

ν , (10)

where ν = 0.6718(1) [25], |y5| = 1.27(1), |y6| = 2.55(6) [26]. As a consequence of the
dangerously irrelevant behavior, we obtain a very weakly coupled massive theory in the

7
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deep IR. This is supported by the lattice simulations, where M0++ ≈ 2M0−− for ZN gauge
theories.

The scaling of the mass gap and the string tension is then determined by (9),

m2 = λNK2 ∼ (T − Tc)
ν(|yN |+2), σ ∝ Km ∼ (T − Tc)

ν(
|yN |
2

+2) . (11)

For N = 5, we verified these scalings quite precisely,

aM0−−(β) = 0.94(13)(2.17961− β)1.09(5), a2σ(β) = 0.183(8)(2.17961− β)1.725(20) . (12)

For N = 6, our results are less accurate and we are not able to approach sufficiently close
to the critical point, because the mass gap is much smaller in lattice unit, and lattice
simulations suffer from severe finite volume effects. Nevertheless, we still get a qualitative
agreement (within 3σ),

aM0−−(β) = 0.26(3)(3.0068− β)1.90(12), a2σ(β) = 0.0212(21)(3.0068− β)2.00(11) (13)

5. Conclusion

In this proceeding, we summarize our simulation results of the 3d Ising string spectrum,
and introduce a method to probe scattering states of a glueball and a string, with which
we have identified the only "resonance" state we have observed is a glueball mixed with
the string, instead of a genuine massive resonance. We also explain the (De)confinement
mechanism and the critical behaviors of 3d ZN gauge theories and present simulational
evidence supporting them.
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