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1. Introduction

Chiral Perturbation Theory (ChPT) [1, 2] is a very useful tool in describing the QCD low-
energy dynamics and the role that flavour symmetries play in it. In order to fully specify the SU(2)
ChPT at leading order, two low energy constants (LECs) are needed: the chiral condensate Σ and
the pion decay constant �c , defined as follows:

Σ ≡ − lim
<D ,<3→0

〈DD〉 , (1)

�c ≡ lim
<D ,<3→0

1
"c

〈Ω| DW4W53 |c( ®? = ®0)〉 . (2)

There are two different approaches to determine these LECs: the first one consists in comparing
the effective theory predictions with experimental data (such as hadron masses); the second one is
more theoretically driven, and is based on the matching done with quantities computed in the full
theory by means, for instance, of lattice QCD simulations.

The determination of the chiral condensate from lattice QCD has been extensively pursued
in the literature [3–13]. In this talk, we present a novel computation of the flavour SU(2) chiral
condensate in # 5 = 2 + 1 QCD with staggered fermions, by using the mode number approach [14]
based on the Banks–Casher relation [15]. We also check our results with methods based on the
relationship of Σ with the pion mass "c and the topological susceptibility j. In this proceedings
we will summarize the main findings of Ref. [16], to which we refer the reader for more details.

2. Lattice setup and determination of the Lines of Constant Physics (LCPs)

We perform simulations of # 5 = 2+1 QCD on different lines of constant physics characterized
by different values of the pion masses. We use the tree-level Symanzik improved Wilson action
for the gauge sector and the rooted stout staggered discretization for the fermionic determinant (see
Ref. [16] for the simulation parameters).

According to Eq. (1), the flavour SU(2) chiral condensate is defined in the limit <; → 0 so
we want to keep the renormalized strange quark mass fixed between the different LCPs. In the
following, we explain how these LCPs are constructed. To fix the notation, we call V,<D = <3 ≡ <;

and <B the bare parameters of the simulation. The starting point is the physical LCP [17–19]:(
V (phys) , < (phys)

;
, <
(phys)
B

)
, (3)

corresponding to " (phys)
c ' 135 MeV and ' (phys) ≡ <;/<B ' 1/28.15. The other LCPs are

obtained from the physical one simply by increasing <; while keeping V and <B fixed.
When doing this, one has to pay attention not to change too much the scale: indeed, according

to arguments based on the loop expansion of the fermionic determinant, when increasing <;, one
has an effective Veff < V and a lattice spacing larger than the one corresponding to the physical LCP.
This is the reason why we checked, by setting the scale with the F0 parameter based on gradient
flow [20], that any variation of the lattice spacing is within the error bars (of order ∼ 2%) and
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this justifies the claim that, at our level of precision, the renormalized strange quark mass can be
considered fixed.

By using the strategy previously described, we determined three LCPswith<; = 4, 6, 9< (phys)
;

.
The ensembles at the physical point are the same used in Ref. [21].

3. Σ from the mode number

In this Section, the computation of Σ with the mode number approach is presented. The
low-lying part of the spectrum of the Dirac operator contains all the information about the chiral
condensate via the Banks–Casher relation:

lim
_→0

lim
<→0

lim
+→∞

d(_, <) = Σ
c
, (4)

where d(_, <) is the spectral density of the eigenvalues 8_ of /�,

d(_, <) = 1
+

∑
:

〈X(_ − _:)〉 (5)

and + is the 4-dimensional space-time volume.
On the lattice, a more convenient quantity to work with is the mode number, i.e., the integral

of the spectral density up to a certain threshold mass ":

〈a(")〉 = +
∫ "

−"
d(_, <) 3_. (6)

This quantity contains exactly the same amount of information of the spectral density, and if one is
sufficiently close to the origin, one can use the Banks–Casher relation to obtain:

〈a(")〉 = 2
c
+Σ" + >("). (7)

The mode number approach consists in evaluating the behaviour of 〈a(")〉: if one is able to find a
linearity region sufficiently near the origin (in order to neglect higher order corrections in "), then
it is possible to perform a linear fit and extract the chiral condensate according to Eq. (7).

When using staggered fermions, it is necessary to take into account the well-known taste
degeneration: indeed, in order to obtain the physical mode number 〈a(")〉, one has to divide
the staggered counterpart 〈astag(")〉 by the number of different tastes =C = 23/2 (=C = 4 in 4
dimensions). Finally, since 〈a(")〉, "/<B and Σ<B are RG-invariant quantities in the staggered
formulation, Eq. (7) can be written in the following manifestly-RG-invariant way:

〈a("/<B)〉 =
〈astag("/<B)〉

4
=

2
c
+ [Σ<B]

(
"

<B

)
+ >

(
"

<B

)
. (8)

In this case, from the linear behaviour one is able to extract Σ<B. In order to recover ΣR, we use the
value <B = 92.4(1.5) MeV in the MS renormalization scheme at ` = 2 GeV, obtained in Ref. [22]
with lattice simulations of # 5 = 2 + 1 QCD with staggered fermions.

In order to find the linearity region in the mode number, the idea is to look at the normalized
spectral density <Bd(_/<B) to find a common plateau for all the ensembles used. Being the
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renormalized strange quark mass kept fixed between the different LCPs, it is possible to use the
same renormalized fit range to properly compute the chiral condensate. According to the left hand
side plot of Fig. 1, we choose as fit range"/<B ∈ [0.075, 0.15]. On the right hand side, an example
of extraction of the effective condensate Σ(0, ') from the linear fit is shown.
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Figure 1: Left: behaviour of the RG-invariant spectral density <Bd(_/<B) as a function of the RG-invariant
ratio _/<B for the lattices with the finest lattice spacing, and for all explored values of<; . The range between
the two dashed vertical lines, _/<B ∈ [0.075, 0.15], is the one chosen to perform the linear best fit of the
mode number. Right: linear best fit of the physical mode number 〈a〉 = 〈astag〉 /4 as a function of "/<B for
the finest lattice spacing for <; = 4 < (phys)

;
. Filled points are those included in the best fit, depicted as a

dashed line. Plots taken from [16].

Once the determinations of the effective chiral condensate have been obtained as a function of
the lattice spacing 0 and of the light quark mass <;, we adopt the following strategy to extract the
chiral condensate. We first perform the continuum limit for each LCPs, i.e., for each value of ' (or
<;), by assuming standard $ (02) corrections:

Σ
1/3
R (0, ') = Σ

1/3
R (') + 21(') 02 + >(02). (9)

The continuum extrapolations for <; = 4 < (phys)
;

is shown in the left hand side of Fig. 2. It is clearly
visible how the continuum scaling is pretty stable and well described by Eq. (9). The same holds
for all other LCPs.

At this point, we computed the final value of the chiral condensate by performing a chiral limit
according to the following relation [14]:

Σ
1/3
R (') = Σ

1/3
R + 22 ' + >('). (10)

The chiral limit is shown in the right hand side of Fig. 2. Again, Eq. (10) well describes the
behaviour of our data. The final result for the chiral condensate from the mode number is:

Σ
1/3
R = 277.4(5.4)stat(2.1)sys MeV (mode number), (11)

where the central value is the result of the 4-point linear fit in ' and the systematic uncertainty takes
into account the discrepancy between the central value and the result of the 4-point quadratic fit in
'.
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Figure 2: Left: continuum limit extrapolation of Σ1/3
R for <; = 4 < (phys)

;
. The solid line represents a linear

fit in 02 to the 3 finest lattice spacings, the dashed one the parabolic fit in 02 including all points. The square
point in 0 = 0 is the result from the linear fit, the triangular point the one from the parabolic fit. Finally,
the round point is the final estimation of Σ1/3

R ('), with a double error bar referring to the statistical and to
the sum of statistical and systematic uncertainties. Right: chiral limit extrapolation of Σ1/3

R at fixed <B as a
function of ' = <;/<B . For each value of ', Σ1/3

R (') is reported with the usual double error bar. The dotted
line represents the result of the best fit performed according to Eq. (10) and including only the three smallest
values of '. The straight line is the result from the same fit function, but including also ' = 9 ' (phys) . The
dashed line is the best fit result obtained by using a parabolic fit in ' in the whole range. The squared point at
' = 0 is the final result from the 3-point fit according to Eq. (10), the down-ward triangular point is the one
from a linear 4-point fit and the up-ward triangular point is the result obtained from a parabolic 4-point fit.
Finally, the round point represents the final value for the chiral condensate extracted from the mode number
with a double error bar. Plots taken from Ref. [16].

4. Σ from the pion mass and the topological susceptibility

In this Section we briefly discuss other two methods to determine the chiral condensate that
can be used to check our result from the mode number approach. The first one is based on the
well-known relation from ChPT between the pion mass "c and the light quark mass, the so-called
Gell–Mann-Oakes-Renner (GMOR) formula (for the case <D = <3 ≡ <;):

"2
c = 2

Σ

�2
c

<; = 2
(
Σ<B

�2
c

)
'. (12)

It is clear that, if one is able to compute the pion mass for each LCPs, i.e., for each value of ', then
one can perform a linear fit in ' according to Eq. (12) and extract Σ from the slope. In order to
compute Σ from the pion mass, we used the value of <B of Ref. [22] while for �c we adopted the
following result:

�c = 84.8(8.8)stat(6.1)sys MeV. (13)

obtained in Ref. [16].
The pion mass can be computed by evaluating the large time behaviour of the correlator of the

staggered interpolating operator of the physical pion and more details about the determination of
"c can be found in the main paper [16].
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We quote as final result for the chiral condensate from the pion mass the following one:

Σ
1/3
R = 258.7(30.6)stat(0.01)sys MeV (pion mass), (14)

where the systematic uncertainty, related to the discrepancy between the 3 and 4-point linear fit in
', turned out to be very small with respect to the statistical one. The chiral limit of "2

c is shown
in the left hand side plot of Fig. 3.

The second approach is based on the quark mass dependence of the topological susceptibility
j from ChPT. We first recall the definition of j as the two-point function of the topological charge
density operator @(G):

@(G) = 1
32c2 Y`adfTr

{
�`a (G)�df (G)

}
(15)

j =
1
+

∫
34G〈@(G)@(0)〉 = 〈&

2〉
+

, & =

∫
34G@(G) (16)

where �`a denotes the gauge field strength tensor and & is the topological charge.
From ChPT one has:

j =
1
2
Σ<; =

1
2
[Σ<B] ', (17)

and, in a similar way to the pion mass approach, one can evaluate the functional dependence of j
on ' and extract Σ from the slope of a linear best fit.

We use a fermionic definition based on Spectral Projectors [14, 21, 23] to compute the topolog-
ical susceptibility for each LCP. Here we report only the final result and refer the reader to Ref. [16]
for the details:

Σ
1/3
R = 309.6(22.1)stat(0.2)sys MeV (topological susceptibility), (18)

where the central value and the statistical error are the ones obtained from the 4-point linear fit,
while the very small systematic one comes from the comparison between the results of the 3-point
and the 4-point fits.

5. Discussion of the results and conclusions

We have addressed the computation of the flavour SU(2) chiral condensate from a staggered
discretization of # 5 = 2 + 1 QCD. The main novelty is the application of the Giusti–Lüscher
method (introduced in Ref. [14] for Wilson fermions) based on the Banks–Casher relation to the
staggered case. We also checked our result from the mode number approach with other ones based
on the relation, coming from ChPT, of the chiral condensate with the pion mass and the topological
susceptibility.

We report all our determinations of the chiral condensate:

Σ
1/3
R = 277.4(5.4)stat(2.1)sys MeV (from 〈a〉), (19)

Σ
1/3
R = 258.7(30.6)stat(0.01)sys MeV (from "c), (20)

Σ
1/3
R = 309.6(22.1)stat(0.2)sys MeV (from j). (21)
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Figure 3: Left: extrapolation towards the chiral limit of "2
c at fixed <B as a function of ' = <;/<B . The

straight line is the result of a linear fit where the chiral limit of "2
c is left as a free parameter. The dotted line,

nearly indistinguishable from the solid one, is the best fit with respect to the same function but excluding the
heavier pion mass. The filled point at ' = 0 is the chiral limit result including the whole range. In both cases,
we find such fit parameter to be compatible with zero within errors. Right: extrapolation towards the chiral
limit of the continuum results for the topological susceptibility j at fixed <B as a function of '. The solid
line is the result of a linear fit with the chiral limit left as a free parameter including the whole range. The
dotted line refers to the best fit result obtained with the same function but excluding the point at ' = 9' (phys) .
We find such fit parameter to be compatible with zero within errors. We adopt always the same convention
for the double error bar. Plots taken from Ref. [16].

They are all compatible among themselves and it is worth noticing that the one based on the mode
number has a much better precision.

At this point, it is reasonable to perform a global fit of these quantities as function of the
' ≡ <;/<B constraining them to give the same result for ΣR. Here we just claim that such a
kind of fit has a reasonable chi-squared and gives the following result, which we take as our final
determination for ΣR:

Σ
1/3
R = 265.7(4.2)stat(0.5)sys MeV, (global fit). (22)

The central value and the statistical uncertainty come from the 4-point linear best fit in ' where the
chiral limits of "c and j are left as free parameters. The systematic uncertainty, which is small
if compared to the statistical one, takes into account the discrepancy between the previous fit and
the one made with 4 points where "c (' = 0) and j(' = 0) are fixed to zero. We adopted this
criterium because the difference between 3 and 4-point fits was always negligible.

Since the three different computations of Σ1/3
R come from the same ensembles of gauge config-

urations, they are surely correlated. However, we expect that these correlations are not so significant
because the observables involved are very different and affected by systematics of different orders
of magnitude. Furthermore, since the estimation of the chiral condensate coming from the mode
number is muchmore precise than the other ones, we expect the final result beingmainly driven from
it. As final comment, we notice that the final result is perfectly in agreement with the world-average
value of Σ1/3

R , obtained from # 5 = 2 + 1 QCD, quoted in the latest FLAG review: Σ1/3
FLAG = 272(5)

MeV [24].
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