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We report on how adjoint zero modes can be used to filter out the topological structures of gauge
configurations from the UV fluctuations. We will use the Adjoint Filtering Method (AFM) which
relies on the existence of a particular Supersymmetric Zero Mode (SZM) that follows closely the
(anti)self-dual part of the action density. In contrast, it is not guaranteed that summing over the
lowest lying modes in the fundamental representation reproduces the topological density. We
present preliminary qualitative results on smooth, heated, and Monte-Carlo generated configura-
tions with non-trivial content of fractional instantons. The method is capable of distinguishing
the underlying topological structures without significantly modifying the gauge field as opposed
to smoothing techniques. The method looks promising as a tool to investigate and extend recent
studies based on semiclassical methods.
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1. Introduction

The properties of the non-peturbative vacuum of gauge theories remain to a large extent
still unknown. Promising approaches are based on semiclassical analysis, which try to identify
the dominant long range topological contributions. Progress has been made in particular for
supersymmetric gauge theories with this approach. Early attempts have been based on instanton
gas pictures and a more recent proposals relies on a factional instanton liquid model [1]. It is
important to test these approaches in a qualitative and quantitative way. Lattice simulations provide
in principle a unique way to investigate non-perturbative vacuum properties of gauge theories.
However, for this study it is essential to filter the long range contributions from the ultraviolet (UV)
quantum fluctuations.

In order to filter out this UV noise, several smoothing techniques, like the Gradient Flow (GF)
or cooling have been used. A disadvantage of these methods is the significant modification of
the underlying gauge configuration. This has motivated the search for alternative methods based
on eigenmodes of the Dirac operator. The idea of filtering gauge configurations using fermionic
zero modes seems very appealing, as they are naturally very smooth long range quantities. A
natural connection between zero modes and topology is given by the celebrated Atiyah-Singer
index theorem. For fundamental fermions, there is, however, no precise connection of the lowest
modes and the local action or topological charge density of the underlying gauge configuration. For
the Dirac operator in the adjoint representation, it was noticed in [2] that there is such a precise
connection at least for smooth configurations. Based on these findings the Adjoint Filtering Method
(AFM) has been proposed and tested for some smooth configurations [3].

In this short proceedings we collect the main ideas of the AFM. We will apply the method first
to smooth and heated configuration with a given of fractional insanton background. Then we will
move to Monte-Carlo generated configurations.

2. Adjoint Filtering Method

Fermions in the adjoint representation can be related to the gauge field by supersymmetry
transformations. In particular, in [4] the existence of a particular fermionic zero mode was pointed
out, which we will refer as the Supersymmetric Zero Mode (SZM). It is given by:

𝜓(𝑉, 𝑥) = 1
8
𝐹𝜇𝜈 [𝛾𝜇, 𝛾𝜈]𝑉, (1)

where 𝑉 is a constant four spinor. There are two SZM distinguished by their chirality 𝜓+ and 𝜓−.
Choosing 𝑉 = (1, 0, 0, 0) for example, we get the positive chirality one

𝜓+ =

©«
(𝐸3 + 𝐵3)

(𝐸1 + 𝐵1)/2 + 𝑖(𝐸2 + 𝐵2)/2
0
0

ª®®®®¬
, (2)

The connection of this zero mode to the stress energy tensor is obvious from Eq. (1), the modulus
squared of this mode trivially reproduces the self-dual part of the gauge action density, while the
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oposite chirality reproduces the anti-self dual part

|𝜓± |2 =
1
2
(𝐹𝜇𝜈 ± �̃�𝜇𝜈)2. (3)

Therefore the density of this mode provides a method to filter out the UV noise of gauge configu-
rations and obtain a filtered topological charge density. Indeed if one defines

𝑞𝜓 (𝑥) ≡ |𝜓+(𝑥) |2 − |𝜓− (𝑥) |2, 𝑞𝐴(𝑥) ≡
1

32𝜋2 𝜖𝜇𝜈𝜌𝜎tr[𝐹𝜇𝜈 �̃�𝜇𝜈], (4)

by using Eq. (3) one can see that 𝑞𝜓 (𝑥) ∝ 𝑞𝐴(𝑥).
Notice also that the first component of the SZM Eq. (2) is purely real, which makes it dis-

tinguishable from the rest of the zero modes. We implemented such a condition through the
supersymmetric operator

O± = 𝑃0𝑃±(𝛾5𝐷
𝐴
𝑜𝑣)2𝑃±𝑃0, (5)

where 𝐷𝐴
𝑜𝑣 is the Overlap operator in the adjoint representation, 𝑃± = 1

2 (1 ± 𝛾5) projects to the
different chirality sectors and 𝑃0 to the reality condition for the first component. The eigenvector
of the lowest eigenmode of O is in general an optimization of the three conditions corresponding to
the properties of the SZM:

• Zero mode of 𝐷𝐴
𝑜𝑣 . • Chirality condition. • Reality condition.

We have found that in practice for noisy configurations not only a single mode has to be
considered. Instead one needs to sum several lowest modes of the operators. As a first non-trivial
check we will start by applying the method to configurations with a given semiclassical background
and then we will move to Monte-Carlo generated ones.

3. Test configurations

The non-trivial background of the test configurations has been produced starting from config-
urations with non-trivial twist and a fractional instanton. These topological objects are of physical
interest since they are the basic contributions in a fractional instanton liquid model [1]. Smooth
fractional instantons can be obtained by using cooling techniques on a lattice with twisted boundary
conditions, as fractional instantons are the ground state in this case. By using time reversal, which
transforms instantons into anti-instantons, and gluing several of these configurations one obtains
the desired topological content on a larger lattice. Afterwards, one can introduce noise by heating
the configuration with standard heat bath steps.

3.1 Instanton/Anti-instanton pair: 𝑆𝑈 (2), 𝑉 = 16 × 83, 𝑄 = 0

An important example are instanton and anti-instanton pairs. These configurations are partic-
ularly difficult as they do not correspond to minima of the classical action. This means cooling
methods or GF will annihilate the pairs. Furthermore, the fermionic modes associated to these
configurations are lifted to quasi-zero modes. Nevertheless, we observe a gap on the spectrum of
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O− O+ 𝑃−𝐷𝑜𝑣𝑃− 𝑃+𝐷𝑜𝑣𝑃+
𝜆1 = 1.17 ∗ 10−4 𝜆1 = 1.17 ∗ 10−4 𝜆1,2 = 1.03 ∗ 10−4 𝜆1,2 = 1.03 ∗ 10−4

𝜆2 = 1.75 ∗ 10−2 𝜆2 = 1.75 ∗ 10−2 𝜆3,4 = 1.51 ∗ 10−2 𝜆3,4 = 1.51 ∗ 10−2

𝜆3 = 2.05 ∗ 10−2 𝜆3 = 2.05 ∗ 10−2 𝜆5,6 = 2.47 ∗ 10−2 𝜆5,6 = 2.47 ∗ 10−2

Table 1: Lowest eigenvalues of theO± and 𝑃±𝐷𝑜𝑣𝑃± operators for a smooth𝑉 = 16×83,𝑄 = 0 configuration.

Figure 1: AFM applied to an instanton/anti-instanton configuration with 𝑄 = 0. The two figures compare
gauge field topological density to AFM.

the Overlap and the O operator Tab. 1. Remarkably, the SZM can be identified and its density
reproduces the topological density Fig. 1.

We can go one step further and use the GF to modify the configurations inducing an annihilation
process of the pair. In this way, we can study how the AFM performs as the distance 𝑑 over the size
of the instantons 𝜌 decreases Fig. 2. We can see that the lowest eigenvalue raises with increasing
flow time and the pair gets closer together. At a certain flow time there is a level crossing of the
eigenvalues of O and what becomes the lowest mode does not represent the topological density
anymore. Therefore according to the AFM there is a clear point of annihilation and short distant
pairs are still resolved. This also shows the general shortcoming of the GF as it can even destroy
the structures one is trying to filter from the noise.
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Figure 2: Left: lowest modes of the O+ operator obtained by flowing the 𝑄 = 0 configuration. Right:
evolution of the distance over the size of the instantons 𝑑/𝜌 during flow
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3.2 Heated configuration: 𝑆𝑈 (3), 𝑉 = 402 × 62, 𝑄 = 0

In the next step we study the effect of noise on the smooth configurations. We consider a test
configuration based on 𝑆𝑈 (3) pure Yang-Mills on a 𝑉 = 402 × 62 lattice. Initially the configuration
presents two fractional instanton/anti-instanton pairs. The spectrum of the O± operator on the initial
configuration Tab. 2 shows two modes clearly gaped from the rest of the spectrum and the density
of the lowest mode for each chirality matches correctly the gauge density, Fig. 3 (left).

O− O+
𝜆1 = 4.79 ∗ 10−5 𝜆1 = 4.79 ∗ 10−5

𝜆2 = 4.95 ∗ 10−5 𝜆2 = 4.95 ∗ 10−5

𝜆3 = 2.16 ∗ 10−2 𝜆3 = 2.16 ∗ 10−2

𝜆4 = 2.16 ∗ 10−2 𝜆4 = 2.16 ∗ 10−2

O− O+
𝜆1 = 3.32 ∗ 10−2 𝜆1 = 3.38 ∗ 10−2

𝜆2 = 3.6 ∗ 10−2 𝜆2 = 3.56 ∗ 10−2

𝜆3 = 8.5 ∗ 10−2 𝜆3 = 9.26 ∗ 10−2

𝜆4 = 8.7 ∗ 10−2 𝜆4 = 9.5 ∗ 10−2

Table 2: Lowest eigenvalues of O± before and after applying heat bath.

After several heat bath steps the structures can not be identified from the gauge field density,
Fig. 3 (middle). The spectrum of the O operator shows a smaller gap between the lowest modes and
the next states, Tab. 2. The lowest mode only captures one of the fractional instantons. However,
the sum of the lowest two modes on each sector correctly reproduces the underlying gauge density
before heating , Fig. 3 (right).

Figure 3: Left plot: SZM zero mode density on smooth configuration before heating. Middle plot:
Topological density of the heated configuration. Right plot: Density of the SZM of the heated configuration.

4. Monte-Carlo configurations

For Monte-Carlo configurations we chose a𝑉 = 32×43 lattice with twisted boundary conditions,
standard 𝑆𝑈 (2) Yang-Mills Wilson action at 𝛽 = 2.44. It turned out that a small GF (flow time
𝜏 = 0.5) before applying the AFM leads to significant improvements. A detailed analysis of the
optimal flow time will be presented in a future publication. We will first comment on the tuning of
the parameters and then show some qualitative results.
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The mass parameter of the Dirac-Wilson kernel in the overlap operator needs to be tuned
properly such that doublers are driven towards 𝜆𝑜𝑣 = 2 while the physical zero modes are mapped
close to the origin. The improvement of the small initial GF smoothing is clearly seen from the
spectrum of the Dirac-Wilson operator since one obtains a much better separation between the
doublers and the rest of the spectrum, Fig. 4.

Figure 4: Lowest part of the spectrum of the DW operator at flow time 𝜏 = 0, 0.5 for 50 configurations.

The next parameter that enters in the computation of the AFM is the number of the lowest
modes of the O operator one needs to sum. This is in principle configuration dependent as it depends
on the number of instantons of each configuration. However, as we saw in the noisy configuration,
we expect that a gap in the spectrum appears and we hope a cut can be chosen consistently for all
configurations of a given ensemble. From Fig. 5 we can see that GF increases the gap to the lowest
part of the spectrum. For now we will optimize the cut manually such that the AFM reproduces
better the topological density from the GF.

Figure 5: Lowest part of the spectrum of the O operator at flow time 𝜏 = 0.5 for 100 configurations.

Finally we show some characteristic examples for topological charge densities obtained with
the AFM. On a significant subset of the configurations, the AFM and the GF produced compatible
topological charge densities. We display in Fig. 6 some specific configurations which capture two
different scenarios for the cases with incompatible densities:

• Figure 6 right: The AFM captures well the topological density at small flow times. An
instanton/anti-instanton pair is annihilated in the GF. This shows how the AFM is better at
not modifying the underlying gauge configuration.
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Figure 6: Example configurations comparing the topological density obtained from the AFM at 𝜏 = 0.5
with the topological density from the gauge field obtained at different flow times.

• Figure 6 right: The AFM misses one structure. The index theorem of 𝐷𝑜𝑣 for this configu-
ration is not fulfilled, possibly due to lattice artifacts and the small size of the spatial

5. Conclusion

Our analysis shows that the AFM is capable of filtering the underlying semiclassical content
from lattice configurations. Compared to low modes in the fundamental representation, the adjoint
representation has the important advantage to reproduce the topological density with only a single
lowest eigenmode on smooth configurations. We have tested that the method works well even when
only quasi-zero modes are present. We have also shown how the method can filter the noise of
several heat bath steps. We noticed that more than one mode is needed in this case to reconstruct
the topological charge density. Nevertheless, the required number of modes is still small.

We have applied the method to configurations generated in Monte-Carlo simulations. We
obtained promising results for certain configurations where the AFM matched perfectly the results
from the GF. However, for some other configurations the method misses some structures and the
index theorem is not fulfilled. We believe that the coarseness of the lattice and specifically the very
small size of the box are playing a mayor role. The current setup leads to small size instantons
on a coarse lattice, which makes it more difficult to distinguish large scale fluctuations from the
UV noise. We are currently investigating whether the results are improved towards the continuum
limit [5]. A promising aspect of the method is that it reproduces also pairs of instantons and
anti-instantons, which tend to be annihilated by the Gradient flow.
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