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The lattice gauge-scalar model with the scalar field in the fundamental representation of the
gauge group has a single confinement-Higgs phase which is well-known as the Fradkin-Shenker-
Osterwalder-Seiler analytic continuity theorem: Confinement and Higgs regions are subregions of
an analytically continued single phase and there are no thermodynamics phase transitions between
them. In this talk, however, we show that we can define new type of operators which enable to
separate completely the confinement phase and the Higgs phase. In fact, they are constructed in the
gauge-invariant procedure by combining the original scalar field and the so-called color-direction
field which is obtained by change of field variables based on the gauge-covariant decomposition
of the gauge field due to Cho-Duan-Ge-Shabanov and Faddeev-Niemi. We perform the numerical
simulations for the model with SU(2) gauge group without any gauge fixing and find a new
transition line which agrees with the conventional thermodynamic transition line in the weak
gauge coupling and divides the confinement-Higgs phase into two separate phases, confinement
and the Higgs, in the strong gauge coupling. All results are obtained in the gauge-independent
way, since no gauge fixing has been imposed in the numerical simulations. Moreover, we give a
physical interpretation for the new transition from the viewpoint of the spontaneous breaking of a
global symmetry. This talk is based on the preprint [1].
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1. Introduction

It is widely believed that the lattice SU(2) gauge-scalar model with a single fundamental scalar
field has a single confinement-Higgs phase: Confinement and Higgs regions are subregions of an
analytically continued single phase and there are no thermodynamic phase transitions between them
[2–4]. However, physics to be realized in these regions are quite different despite the absence of
thermodynamic transition. See e.g., [5] for a review. Recently, Greensite and Matsuyama [6, 7]
proposed a criterion based on the global symmetry called the custodial symmetry.

We propose new gauge-invariant composite operators which enable to discriminate between
the confinement phase and the Higgs phase in the lattice SU(2) gauge-fundamental scalar model.
The new operators are constructed gauge-independently by combining the original fundamental
scalar field and the color-direction field which is obtained by change of field variables based on the
gauge-covariant decomposition of the gauge field (CDGSFN decomposition) [8–11], see [12] for
a review. This type of operator was already introduced for investigating the phase structure of the
lattice SU(2) gauge-adjoint scalar model to show the existence of the transition line which divides
the confinement phase into two parts [13].

Then we investigate the phase structure of the above model by performing the numerical
simulations without any gauge fixing. As a gauge-independent result, we find a new transition line
which separates the confinement-Higgs phase into two different phases, the confinement phase and
the Higgs phase, in the strong gauge coupling region, in addition to reproducing the conventional
thermodynamic transition line in the weak gauge coupling region. We argue that the two regions
are discriminated by the symmetric or broken realization of a global symmetry.

2. Lattice SU(2) gauge-fundamental scalar model

We introduce the lattice SU(2) gauge-scalar model with a single scalar field in the fundamental
representation of the gauge group where the radial degrees of freedom of the scalar field is fixed.
The action with the gauge coupling constant 𝛽 and the scalar coupling constant 𝛾 is given by

𝑆[𝑈, Θ̂] = 𝛽

2

∑
𝑥,𝜇>𝜈

Re tr
(
1 −𝑈𝑥,𝜇𝑈𝑥+𝜇,𝜈𝑈

†
𝑥+𝜈,𝜇𝑈

†
𝑥,𝜈

)
+ 𝛾

2

∑
𝑥,𝜇

Re tr
(
1 − Θ̂†

𝑥𝑈𝑥,𝜇Θ̂𝑥+𝜇
)
, (1)

where 𝑈𝑥,𝜇 ∈ SU(2) is a (group-valued) gauge variable on a link ⟨𝑥, 𝜇⟩, and Θ̂𝑥 ∈ SU(2) is
a (matrix-valued) scalar variable in the fundamental representation on a site 𝑥 which obeys the
unit-length (or radially fixed) condition: Θ̂†

𝑥Θ̂𝑥 = 1 = Θ̂𝑥Θ̂
†
𝑥 .

This action is invariant under the local SU(2)local gauge transformation and the global �SU(2)global

transformation. Therefore, this model has the SU(2)local × �SU(2)global symmetry:

𝑈𝑥,𝜇 ↦→ 𝑈′
𝑥,𝜇 = Ω𝑥𝑈𝑥,𝜇Ω

†
𝑥+𝜇 , Ω𝑥 ∈ SU(2)local,

Θ̂𝑥 ↦→ Θ̂′
𝑥 = Ω𝑥Θ̂𝑥Γ, Γ ∈ �SU(2)global. (2)

In our investigations, the color-direction field plays the key role. This new field was introduced
in the framework of change of field variables [12] which is originally based on the gauge-covariant
decomposition of the gauge field due to Cho-Duan-Ge-Shabanov[8–10] and Faddeev-Niemi[11].

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
3
8
3

New gauge-independent transition separating confinement-Higgs phase in the lattice gauge-fundamental
scalar model Ryu Ikeda

The color-direction field n𝑥 is a local gauge-covariant site variable defined by

n𝑥 := 𝑛𝐴𝑥𝜎
𝐴 ∈ su(2) − u(1) (𝐴 = 1, 2, 3) , n𝑥 ↦→ n′

𝑥 = Ω𝑥n𝑥Ω
†
𝑥 , (3)

where 𝜎𝐴 are the Pauli matrices. n𝑥 has the unit length n𝑥 · n𝑥 = 1.
For a given gauge field configuration {𝑈𝑥,𝜇}, we determine the color-direction field configura-

tion {n𝑥} (as the unique configuration up to the global color rotation) by minimizing the so-called
reduction functional 𝐹red [n;𝑈] under the gauge transformations:

𝐹red [{n}; {𝑈}] :=
∑
𝑥,𝜇

1
2

tr
[ (
𝐷𝜇 [𝑈]n𝑥

)† (
𝐷𝜇 [𝑈]n𝑥

) ]
=

∑
𝑥,𝜇

tr
(
1 − n𝑥𝑈𝑥,𝜇n𝑥+𝜇𝑈

†
𝑥,𝜇

)
. (4)

In this way, a set of color-direction field configurations {n𝑥} is obtained as the (implicit) functional
of the original link variables {𝑈𝑥,𝜇}, which is written symbolically as

n∗ = argmin
n

𝐹red [{n}; {𝑈}] . (5)

This construction shows the non-local nature of the color-direction field.
We proceed to investigate the phase structure of the model. First, we measured the averages of

the plaquette action density 𝑃 and the scalar action density 𝑀 defined by

𝑃 =
1

6𝑉

∑
𝑥,𝜇<𝜈

tr
(
𝑈𝑥,𝜇𝑈𝑥+𝜇,𝜈𝑈

†
𝑥+𝜈,𝜇𝑈

†
𝑥,𝜈

)
, 𝑀 =

1
4𝑉

∑
𝑥,𝜇

tr
(
Θ̂†

𝑥𝑈𝑥,𝜇Θ̂𝑥+𝜇
)
, (6)

where 𝑉 is the total number of sites on the lattice.
Moreover, it is possible to define a new gauge-invariant operator r𝑥 , which is constructed from

the original fundamental scalar field Θ̂𝑥 and the color-direction field n𝑥 . First we introduce a
local gauge-invariant scalar-color composite field r𝑥 which however transforms under the global
transformation in the covariant way:

r𝑥 := Θ̂†
𝑥n𝑥Θ̂𝑥 = r†𝑥 , r𝑥 ↦→ r′𝑥 = Γ†r𝑥Γ . (7)

Then we define the gauge-invariant scalar-color composite field density R as the spacetime
average of r𝑥 , which has the same global transformation property as r𝑥:

R :=
1
𝑉

∑
𝑥

r𝑥 =
1
𝑉

∑
𝑥

Θ̂†
𝑥n𝑥Θ̂𝑥 = R† , R ↦→ R′ = Γ†RΓ . (8)

It should be remarked thatR is not contained in the original action, in sharp contrast to the operators
𝑃 and 𝑀 . Notice that every component of the matrix R is gauge-invariant, but it is not invariant
under the global transformation. Therefore, in order to show gauge-independently the spontaneous
breaking of the global symmetry, we have only to measure one of the component of the matrix R:

R := 𝑅𝐴𝜎𝐴 =

(
𝑅3 𝑅1 − 𝑖𝑅2

𝑅1 + 𝑖𝑅2 −𝑅3

)
∈ su(2) , 𝑅𝐴 =

1
2

tr(𝜎𝐴R) (𝐴 = 1, 2, 3) . (9)

We need to take into account all the components on equal footing simultaneously to examine
the spontaneous breaking of the global symmetry correctly.
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From this viewpoint, we define the gauge-invariant norm as an order parameter by

∥R∥𝑛 :=

( 3∑
𝐴=1

|𝑅𝐴|𝑛
)1/𝑛

, (10)

which is expected to reflect the correlation between the color-direction field n𝑥 and the fundamental
scalar field Θ̂𝑥 , and detect the spontaneous breaking of the global symmetry �SU(2)global.

The 𝑛 = 1 case is just the sum of all the components which is not invariant under any continuous
subgroup of the global group �SU(2)global, and hence can be used to show the complete spontaneous
breaking of the global symmetry �SU(2)global:

∥R∥1 = |𝑅1 | + |𝑅2 | + |𝑅3 | . (11)

The 𝑛 = 2 case is equivalent to the scalar-color composite density norm ∥R∥2 which is invariant
under both the local gauge and global transformations:

∥R∥2 =
√
(𝑅1)2 + (𝑅2)2 + (𝑅3)2 =

√
1
2

tr(R†R) , ∥R∥2 ↦→ ∥R′∥2 = ∥R∥2 . (12)

To see the meaning of ∥R∥2, we obtain the eigenvalues of R by solving the characteristic
equation for the eigenvalue problem:

0 = det(R − 𝜆1) = (𝜆 − 𝜆+)(𝜆 − 𝜆−) , 𝜆± = ±
√
R2 := ±

√
(𝑅1)2 + (𝑅2)2 + (𝑅3)2

. (13)

Therefore, the scalar-color density R can be transformed into the diagonal form and the norm ∥R∥2
consists of two eigenvalues of the scalar-color density R: 𝜆 = 𝜆± := ±

√
R2.

3. Numerical simulations

We performed the Monte Carlo simulations for 144 sets of couplings (𝛽, 𝛾) on the 84 and
164 lattice. The configuration of {𝑈𝑥,𝜇} and {Θ̂𝑥} were updated by the pseudo heat bath method
(with Kennedy-Pendleton method [14] for large 𝛽, 𝛾). For a measurement with a set of couplings
(𝛽, 𝛾), we discarded first 5000 sweeps and sampled configurations per 100 sweeps and stored 100
configurations. For each configuration {𝑈𝑥,𝜇}, we obtained the color-direction field configuration
{n𝑥} by using the iterative method with over-relaxation to solve the reduction condition.

First, we determine the transition line from the plaquette action density ⟨𝑃⟩ and the scalar
action density ⟨𝑀⟩. Fig.1 shows the measurement results of ⟨𝑃⟩ and ⟨𝑀⟩ in the 𝛽-𝛾 phase plane.
The left panel is the plots of ⟨𝑃⟩, while the right panel is the plots of ⟨𝑀⟩ as functions of 𝛾 on
various 𝛽 = const. lines. In these plots, error bars are omitted because errors are too small to be
indicated.

Fig.2 is the transition line determined from ⟨𝑃⟩ and ⟨𝑀⟩, by observing gaps in these plots.
Notice that these transition lines obtained from ⟨𝑃⟩ and ⟨𝑀⟩ agree with each other within the
errors. Then we can conclude that we reproduced gauge-independently the transition line which
was obtained in the specific gauge [15].

Next we determine the transition line from the scalar-color composite field density R. We
have proposed to measure the average ⟨∥R∥𝑛⟩ to search the new transition. The global symmetry

4
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Figure 1: Average of the plaquette action density ⟨𝑃⟩ and the scalar action density ⟨𝑀⟩ on the 164 lattice:
(Left) ⟨𝑃⟩ vs. 𝛾 on various 𝛽 = const. lines, (Right) ⟨𝑀⟩ vs. 𝛾 on various 𝛽 = const. lines.

Figure 2: Transition lines 𝛾 = 𝛾𝑐 (𝛽) determined by the action densities on the 164 lattice: (Left) 𝑃, (Right)
𝑀 .

�SU(2)global is unbroken if ⟨∥R∥𝑛⟩ → 0 as𝑉 → ∞, while the global symmetry �SU(2)global is broken
if ⟨∥R∥𝑛⟩ → const. > 0 as 𝑉 → ∞. However, even in the unbroken phase, ⟨∥R∥𝑛⟩ takes the
non-zero value ⟨∥R∥𝑛⟩ =: ⟨∥R0∥𝑛⟩ ≠ 0 when the lattice volume 𝑉 is finite.

Let r0,𝑥 be the random field variable on the surface 𝑆2 which has the same global transformation
property as r𝑥: r0,𝑥 ↦→ Γ†r0,𝑥Γ. Then we introduce another gauge-invariant field density R0:

R0 :=
1
𝑉

∑
𝑥

r0,𝑥 = R†
0 , R0 ↦→ Γ†R0Γ . (14)

We can estimate the volume dependence as ⟨∥R0∥𝑛⟩ ∝ 1√
𝑉

which yields ⟨∥R0∥𝑛⟩ → 0 as 𝑉 → ∞.

In order to detect the spontaneous breaking of the global symmetry �SU(2)global in the finite volume
𝑉 , therefore, we redefine the average of the gauge-invariant operator norm ⟨∥R∥𝑛⟩sub by

⟨∥R∥𝑛⟩sub := ⟨∥R∥𝑛⟩ − ⟨∥R0∥𝑛⟩ . (15)

⟨∥R∥𝑛⟩sub is the well-defined order parameter: ⟨∥R∥𝑛⟩sub = 0 in the �SU(2)global unbroken phase,
and ⟨∥R∥𝑛⟩sub ≠ 0 in the �SU(2)global broken phase.

5
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Figure 3: Average of the 1-norm ⟨∥R∥1⟩sub and 2-norm ⟨∥R∥2⟩sub of the scalar-color composite field density
R on the 164 lattice: (Upper) ⟨∥R∥1⟩sub vs. 𝛾 on various 𝛽 = const. lines, (Lower) ⟨∥R∥2⟩sub vs. 𝛾 on
various 𝛽 = const. lines.

Figure 4: Transition lines 𝛾 = 𝛾𝑐 (𝛽) determined by the norms of the scalar-color composite field density on
the 164 lattice: (Left) ∥R∥1, (Right) ∥R∥2.
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Then we measured the redefined 1-norm ⟨∥R∥1⟩sub and 2-norm ⟨∥R∥2⟩sub. To determine the
transition line, we observed the position at which the value of ⟨∥R∥𝑛⟩sub as a function of the 𝛽

changes from zero ⟨∥R∥𝑛⟩sub = 0 to a non-zero value ⟨∥R∥𝑛⟩sub > 0.
Fig.3 gives the measurement results of ⟨∥R∥1⟩sub and ⟨∥R∥2⟩sub in the 𝛽-𝛾 phase plane. The

upper panels are the plots of ⟨∥R∥1⟩sub, while the lower panels are the plots of ⟨∥R∥2⟩sub as
functions of 𝛾 on various 𝛽 = const. lines.

Fig.4 is the transition line determined from ⟨∥R∥1⟩sub and ⟨∥R∥2⟩sub, by observing the results
of Fig.3. It is remarkable that these new transition lines divide the single Higgs-confinement
region into two separated regions: the confinement region and the Higgs region. Notice that these
transition lines obtained from ⟨∥R∥1⟩sub and ⟨∥R∥2⟩sub in the gauge-independent manner, agree
with each other within the errors. 1

4. New phase structure

According to our numerical simulations, the phase diagram is divided into Confinement phase
(I) 𝛾 < 𝛾𝑐 (𝛽) (⟨∥R∥2⟩sub = 0) and Higgs phase (II) 𝛾 > 𝛾𝑐 (𝛽) (⟨∥R∥2⟩sub ≠ 0) as shown
schematically in Fig.5.

Figure 5: The schematic phase diagram: (I) confinement phase and (II) Higgs phase. The red area describes
the possible locations of the new transition line due to finite volume effects.

First, we discuss that Confinement phase (I) and Higgs phase (II) can be respectively charac-
terized by the absence or presence of spontaneous breaking of the global symmetry �SU(2)global.

Notice that R is a Hermitian matrix. Therefore, R can be diagonalized by a unitary matrix
and can be expressed using the real-valued eigenvalues 𝜆± defined in (13) as

R =

(
𝑅3 𝑅1 + 𝑖𝑅2

𝑅1 − 𝑖𝑅2 −𝑅3

)
= Γ∗

(
𝜆+ 0
0 𝜆−

)
Γ†
∗ , Γ∗ ∈ �SU(2)global , (16)

where Γ∗ represents a certain matrix of �SU(2)global which realizes the diagonalization. To obtain
the non-vanishing average avoiding the cancellations between 𝜆+ and 𝜆−, we use only 𝜆+ > 0.

1Incidentally, it should be mentioned that the new transition line dividing the confinement phase in the case of the
adjoint scalar field has been found quite recently in [13], by performing gauge-independent numerical simulations in the
similar way.
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In Higgs phase (II) (⟨∥R∥2⟩sub ≠ 0), a specific rotation matrix Γ∗ ∈ �SU(2)global is chosen to
realize the diagonalization of the matrix R with non-zero eigenvalue 𝜆 = 𝜆± ≠ 0. Therefore, Higgs
phase (II) is an ordered phase with the spontaneously broken global symmetry �SU(2)global.

In Confinement phase (I) (⟨∥R∥2⟩sub = 0), any specific rotation matrix Γ∗ is not needed. There-
fore, Confinement phase (I) is a disordered phase with the unbroken global symmetry �SU(2)global.

Notice that the above argument has nothing to do with the local gauge symmetry SU(2)local for
R. The local symmetry SU(2)local is unbroken in both phases. Therefore, Confinement phase (I)
is the phase where both the local gauge symmetry SU(2)local and the global symmetry �SU(2)global
are unbroken, while Higgs phase (II) is the phase where the local gauge symmetry SU(2)local is
unbroken but the global symmetry �SU(2)global is spontaneously broken.

Next, we discuss how the respective phase is characterized from the physical point of view.
(i) First, we consider Confinement phase (I) 𝛾 < 𝛾𝑐 (𝛽) (⟨∥R∥2⟩sub = 0). In this phase,

confinement would occur due to vacuum condensations of appropriate topological defects, e.g.,
magnetic monopoles for non-Abelian gauge theory [16] and the gauge fields become massive due
to self-interactions among themselves. Confinement phase (I) is regarded as a disordered phase
where the color-direction field n𝑥 takes the isotropic configuration in color space. This phase is
characterized by ⟨∥R∥2⟩sub = 0 which means the very small correlation between the color-direction
field n𝑥 and the fundamental scalar field Θ̂𝑥 .

(ii) Next, we consider Higgs phase (II) 𝛾 > 𝛾𝑐 (𝛽) (⟨∥R∥2⟩sub ≠ 0). In this phase, the gauge
fields become massive due to the absence of massless gauge mode. According to the conventional
BEH mechanism, this phenomenon is understood as a consequence of the spontaneous symmetry
breaking SU(2) → {1}. Note that the gauge-independent description of the BEH mechanism [17]
provides the interpretation without introducing the spontaneous gauge symmetry breaking. Higgs
phase (II) is regarded as an ordered phase where the color-direction field n𝑥 takes the anisotropic
configuration in color space together with the fundamental scalar field Θ̂𝑥 which tends to align to
an arbitrary but a specific direction. This phase is characterized by ⟨∥R∥2⟩sub ≠ 0 which means the
strong correlation between the color-direction field n𝑥 and the fundamental scalar field Θ̂𝑥 .

5. Conclusion

We re-examined the phase structure of the lattice SU(2) gauge-scalar model with the funda-
mental scalar field by introducing the new type of gauge-invariant operators. This model has a
single confinement-Higgs phase composed of analytically continued confinement and Higgs sub-
regions, and there are no thermodynamic phase transitions between the two regions [2, 3]. We
constructed gauge-invariant composite operators composed of the fundamental scalar field and the
color-direction field constructed from the gauge field which can be obtained from change of field
variables [12] based on the gauge-covariant decomposition of the gauge field due to Cho-Duan-
Ge-Shabanov [8–10] and Faddeev-Niemi [11]. We performed the gauge-fixing-free numerical
simulations and found a new gauge-independent transition line which divides a single confinement-
Higgs phase into the confinement phase and the Higgs phase in the strong gauge coupling region,
while it reproduces the conventional thermodynamic transition line in the weak gauge coupling
region. We provided a possible physical understanding of the resulting separated phases as a
symmetric and spontaneously broken realization of a global symmetry �SU(2)global.
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