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AdS/CFT, Wilson loops and M2-branes Arkady A. Tseytlin

1. Introduction

While the critical first-quantized string is described by an effectively Gaussian path integral,
this is not so for the membrane which has a highly non-linear 3d action

S = −T2

∫
d3σ

√
−detγαβ , γαβ = ηµν∂αXµ∂βXν . (1.1)

The theory is formally non-renormalizable, and while UV finite at 1-loop order logarithmic diver-
gences proportional to powers of curvature should be expected to appear at higher loops. While the
existence of a consistent quantum theory of bosonic membranes may be in doubt, it may happen
to be well defined for the 11d supermembrane or M2 brane theory [1–3]. The large amount of su-
persymmetry and possibly some unknown hidden symmetries may lead to its UV finiteness despite
formal power-counting nonrenormalizability.

This may be true, in particular, for the supermembrane in the maximally supersymmetric
AdS4 × S7 or AdS7 × S4 backgrounds [4–6]. M-theory in the orbifold AdS4 × S4/Zk background
should be dual to the N = 6 supersymmetric 3d Uk(N) × U−k(N) Chern-Simons-matter theory
[7, 8] (ABJM theory).

Recent work [9, 10] provided a remarkable evidence that direct semiclassical quantization of the
M2 brane in AdS4 × S7/Zk background reproduces the results of large N localization computations
[11–13] of the 1

2 -BPS Wilson loop and instanton contributions to free energy in the ABJM gauge
theory.

Expanded near a classical solution with non-degenerate induced 3d metric M2 brane action
can be quantized in a static gauge. Then the leading 1-loop result for its partition function is UV
finite and thus unambiguous [2, 9, 10, 14–16]. As the 1/N expansion of the localization results on
the gauge theory side have the form of an expansion in the inverse of the effective M2 brane tension
T2 =

√
2k
π

√
N , this suggests that matching with the 1-loop M2 brane computations [9, 10] should,

in fact, extend also to 2-loop and higher orders.
This requires the corresponding quantum M2 brane theory to be UV finite at higher loops

despite its apparent non-renormalizability. One may hope that this may happen due to high degree
of underlying supersymmetry and hidden symmetries of the M2 brane theory in AdS4 × S7 or
AdS7 × S4 backgrounds that remain to be uncovered.

The M2 brane action in 11d background is related to the type IIA string in the corresponding
10d background by a double dimensional reduction [17, 18]. Considering M2 brane world volume
of topology Σ2 × S1 and expanding 3d fields in Fourier modes in S1 coordinate one gets an effective
2d string action on Σ2 coupled to an infinite tower of massive 2d fields. Choosing a static gauge in
the M2 brane action one gets a static gauge Nambu-Goto action for the massless transverse string
modes coupled to a tower of the massive “Kaluza-Klein" 2d modes. This “effective string" 2d
action is essentially equivalent to the original M2 brane action and thus may inherit some of its
hidden symmetries. Examples of such semiclasical computations will be provided below.

Let us first recall some basic M-theory relations. The action of the 11d supergravity is

S11 =
1

2κ2
11

∫
d11x
√
−G

(
R −

1
2 · 4!

Fmnk`Fmnk` + · · ·
)
, 2κ2

11 = (2π)
8 `9

P , (1.2)
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The M2-brane tension is
T2 =

1
(2π)2 `3

P

. (1.3)

The M2 brane wrapped on the x11 circle gives the fundamental string action with the standard
tension

2π R11 T2 = T1 , T1 =
1

2πα′
. (1.4)

If we specialize to the AdS4 × S7 space supported by the 4-form flux with N̂ units of charge (which
is the near-horizon limit of the background sourced by multiple M2-branes then

ds2
11 = L2

11

(1
4

ds2
AdS4
+ ds2

S7

)
, ds2

AdS4
= dr2 + sinh2 r dΩ2

3, F4 = dC3 ∼ N̂ ε4. (1.5)

Considering Zk quotient of S7 we get [7]

ds2
S7/Zk

= ds2
CP3 +

1
k2 (dϕ + k A)2 , ϕ ≡ ϕ + 2π (1.6)

ds2
CP3 =

dwsdw̄s

1 + |w |2
−

wr w̄s

(1 + |w |2)2
dwsdw̄r, dA = i

[ δsr

1 + |w |2
−

wsw̄r

(1 + |w |2)2
]
dwr ∧ dw̄s,

and thus
R11 = g

2/3
s R11 =

L11
k
, N̂ = Nk ,

L11
`P
=

(
25π2Nk

)1/6
. (1.7)

Upon dimensional reduction we get the metric and parameters of 10d string theory

ds2
10 = L2

(1
4

ds2
AdS4
+ ds2

CP3

)
, LAdS4 =

1
2

L , (1.8)

L = g
1/3
s L11 , gs =

( L11
k `P

)3/2
. (1.9)

Expressed in terms of the dual gauge-theory parameters N and k the string coupling and the effective
dimensionless string tension are

gs ≡
√
π (

2
k
)5/4N1/4 =

√
π (2λ)5/4

N
, λ =

N
k
, (1.10)

T ≡ L2
AdS4

T1 =
L2

8πα′
= g

2/3
s

L2
11

8πα′
=

√
λ
√

2
, (1.11)

g2
s

8π T
=
λ2

N2 =
1
k2 . (1.12)

The M-theory perturbative expansion corresponds to large curvature scale or large effective M2
brane tension for fixed parameter k of the background

L ≡
L11
`P
� 1 , T2 ≡ T2L3

11 � 1 , k = fixed , (1.13)

i.e. to the large N limit with fixed k. The 10d string perturbative expansion corresponds to gs � 1
for fixed T , i.e. to the the ’t Hooft expansion in the large N , large k limit with fixed λ = N

k .
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2. Expectation value of 1
2 -BPS Wilson loop and free energy in ABJM theory from

localization

The AdS4/CFT3 duality between the U(N)k × U(N)−k ABJM theory [7] and M-theory on
AdS4 × S7/Zk provides a remarkable opportunity to shed light on the properties of quantum M2
brane theory by testing its predictions against exact results in 3d superconformal gauge theory.

In the large N limit with k fixed, the holographic dual of a Wilson loop in the fundamental
representation is expected to be an M2 brane wrapping the M-theory circle direction. This limit is
different from the standard large N ’t Hooft limit, where N and k are taken to be large with λ = N/k
fixed, and in which Wilson loops are described by fundamental strings in type IIA string theory in
AdS4 × CP3.

Our first example will be the 1
2 -BPS Wilson loop. For fixed k, the large N expansion of the

Wilson loop operator in the ABJM theory corresponds to the expansion in the large effective M2
brane tension R3T2 ∼

√
Nk, where R is the curvature radius of AdS4 × S7/Zk and T2 =

1
(2π)2`3

P

. The

analytic expression for the expectation value of the 1
2 -BPS circular Wilson loop (WL) in the ABJM

theory derived using supersymmetric localization in [13]

〈W 1
2
〉 =

1
2 sin(2πk )

Ai
[
C−

1
3

(
N − k

24 −
7

3k

)]
Ai

[
C−

1
3

(
N − k

24 −
1

3k

)] . (2.1)

Here Ai(z) is the Airy function, and C = 2/(π2k). This expression resums all of the perturbative
1/N corrections at fixed k (we ignore instanton corrections, see below).

In order to compare to the semiclassical expansion in the M2 brane world-volume theory, one
is to expand (2.1) at large N with fixed k, which gives

〈W 1
2
〉 =

1
2 sin( 2πk )

eπ
√

2N
k

[
1 −

π
(
k2 + 32

)
24
√

2 k3/2

1
√

N
+O(

1
N
)

]
. (2.2)

The WL has a dual description in terms of an M2 brane wrapped on AdS2 × S1 [22] in the M-
theory background AdS4 × S7/Zk . The exponential factor in (2.2) is reproduced by the classical
action of theM2 brane with AdS2×S1 world-volume, while the k-dependent prefactor (2 sin 2π

k )
−1 is

matched precisely by the 1-loop correction coming from the functional determinants of the quantum
fluctuations around this M2 brane solution [9].

Next, let us review the localization result for the partition function Z(N, k) of the U(N)k ×
U(N)−k ABJM theory on S3. We shall assume that k > 2. As a function of N the partition function
can be represented as a sum of a perturbative part (given by a series in 1√

N
) and a non-perturbative

part involving factors like e−h(k)
√
N that are exponentially suppressed at large N , i.e.

Z = Zp(N, k) + Znp(N, k) , (2.3)

Zp(N, k) = C(k)−
1
3 eA(k)Ai

[
C(k)−

1
3
(
N − B(k)

) ]
, C(k) =

2
π2k

, B(k) =
k

24
+

1
3k

(2.4)

A(k) = −
ζ(3)
8π2

(
k2 −

16
k

)
+

k2

π2

∫ ∞

0
dx

x
ekx − 1

log(1 − e−2x), (2.5)
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Then the free energy is F ≡ − log Z = Fp + Fnp where the large N expansion of the perturbative
part follows from (2.4) (see [27] for details)

Fp = − log Zp = 1
3
√

2πk1/2N3/2 − π

24
√

2

(
k2 + 8

)
k−1/2 N1/2 + 1

4 log 32N
k − A(k) + O(N−1/2) , (2.6)

and the non-perturbative part is [12, 28]

Fnp =

∞∑
nI,nII=0

fnI,nII
(N, k) exp

[
− 2π
√

N
(
nI

√
2
k
+ nII

√
k
2

)]
. (2.7)

In the type IIA string theory regime (i.e. for large N and k with λ = N
k =fixed) these may be

interpreted as the contributions of the string world-sheet instantons (wrapping CP1 in CP3 [19])
and of the D2-brane instantons (wrapping a 3-cycle RP3 = S3/Z2 in CP3) respectively [12]. In
the M-theory regime (i.e. for large N with fixed k), the world-sheet instantons correspond to the
M2 brane instantons wrapping the 11d circle and a CP1 in CP3, i.e. S3/Zk ⊂ S7/Zk , while the D2
instantons correspond to the M2 instantons wrapping the RP3 3-cycle in the CP3 part of S7/Zk .

The corresponding term in the non-perturbative part of free energy is then (cf. (2.4),(2.7))
Fnp(N, k) = F inst(N, k) + · · ·

F inst(N, k) = −d1(k)
Ai[C(k)− 1

3 (N − B(k) + 4
k )]

Ai[C(k)− 1
3 (N − B(k))]

= F inst
1 (N, k)

[
1 + π√

2k
k2−40

12k
1√
N
+ ...

]
, (2.8)

F inst
1 (N, k) = −d1(k) e

−2π
√
N

√
2
k = −

1
sin2(2πk )

e−2π
√

2N
k . (2.9)

Here F inst
1 is the leading large N term in the 1-instanton contribution.

Below we will discuss how to reproduce (2.9) on the dual M-theory side by a quantum
M2 brane computation following [10]. There is a close analogy to how that was done in [9]
for the leading term in the Wilson loop expression in (2.2). In the instanton prefactor in the
localization result for the leading large N non-perturbative contribution to the ABJM free energy

F inst(N, k) = − 1
sin2( 2πk )

e−2π
√

2N
k + ... the exponent comes from the action of an M2 brane instanton

with S3/Zk world-volume geometry. The M2 instanton wraps the 11d circle S1 and a CP1 in CP3,
and it represents the M-theory uplift of the CP1 instanton in type IIA string theory on AdS4 × CP3

[19].

3. Wilson loop expectation value from M2-brane path integral

The world-volume action for a probe M2 brane in AdS4 × S7/Zk background background is
given by [1, 6]

SM2 = T2

∫
d3σ

√
−det g + T2

∫
C3 + fermionic terms , T2 =

1
(2π)2

1
`3
P

. (3.1)

The action (3.1) admits a simple classical solution given by the M2 brane wrapping the M-theory
circle direction and occupying the AdS2 subspace of AdS4 spanned by the coordinates t, z. The

5
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resulting membrane has the AdS2 × S1 world-volume geometry and is dual to the 1
2 -BPS Wilson

loop along the t direction at the boundary of AdS4. The value of the classical action (3.1) for this
AdS2×S1 solution is (that there is no contribution from theWess-Zumino term involving the 3-form
field in (3.1))

Scl.
M2 = T2R3 1

4
vol(AdS2)

2π
k
= −π

√
2N
k
. (3.2)

Thus e−S
cl.
M2 precisely matches the exponential in the localization prediction (2.2).

Next, let us compute the 1-loop correction to theM2 brane partition function due to the quantum
fluctuations about this classical solution. Starting with the action (3.1) one may expand it near a
classical solution to quadratic order fixing a 3d reparametrization and κ-symmetry gauge to get an
action for 8+8 physical 3d fluctuation fields. The resulting spectrum of the quantum fluctuations
around the above AdS2 × S1 solution was obtained in ref. [22]. It is natural to chose a static gauge
identifying two membrane coordinates σ1, σ2 in (3.1) with the AdS2 directions and the third σ3
with the S1 angle ϕ. After a Kaluza-Klein (Fourier) expansion of the 3d fields in the periodic
coordinate σ3, one obtains a tower of bosonic and fermionic fluctuations that can be viewed as 2d
fields propagating on the AdS2 background. Thus one gets an equivalent 2d theory with an infinite
number of fields.

The bosonic fluctuations in the two transverse directions within AdS4 give a tower of complex
scalar fields ηn (two real scalars for each n) with masses m2

ηn
= 1

4 (kn−2)(kn−4) , n ∈ Z ,while
from the fluctuations in the six CP3 directions one finds a tower of 3 complex fields ζ sn (s = 1, 2, 3)
with masses m2

ζ sn
= 1

4 kn(kn + 2). For the fermionic fluctuations, the KK reduction leads to a tower
of eight two-component spinors ϑA

n (A = 1, . . . , 8) for each value of the KK mode number n, with
masses given by mϑa

n
= kn

2 ± 1, mϑi
n
= kn

2 For n = 0, this spectrum coincides with the spectrum of
bosonic and fermionic fluctuations around the corresponding AdS2 string solution in the type IIA
superstring theory on AdS4 × CP3 [21, 29]: we get 2 scalars of m2 = 2, 6 scalars of m2 = 0, 3+3
fermions of m = ±1 and 2 fermions of m = 0.

Using the above spectrum, we can derive the 1-loop correction to the partition function of the
M2 brane theory expanded around the Euclidean AdS2 × S1 solution with circular boundary

ZM2 = Z1e−S
cl.
M2

[
1 +O

( 1
R3T2

)]
, (3.3)

where the 1-loop term Z1 is the ratio of the determinants of the fluctuation operators

Z1 =
∏
n∈Z

[
det(−∇2 + R(2)

4 + (
kn
2 + 1)2)

] 3
2
[
det(−∇2 + R(2)

4 + (
kn
2 − 1)2)

] 3
2 det(−∇2 + R(2)

4 + (
kn
2 )

2)

det
(
− ∇2 + 1

4 (kn − 2)(kn − 4)
) [

det
(
− ∇2 + 1

4 kn(kn + 2)
) ]3

(3.4)
Here R(2) = −2 is the curvature of AdS2. The n = 0 factor in (3.4) is the same as the 1-loop partition
function [21, 29] for the fluctuations near the corresponding type IIA AdS2 string worldsheet ending
on a circle at the boundary of AdS4 × CP3.

The functional determinants in (3.4) may be computed by the standard AdSd spectral zeta-
function techniques (as was done in the similar AdS2 string case in e.g. [21, 30, 31]). One can first
verify the cancellation of the logarithmically divergent part of the 1-loop free energy Γ1 = − log Z1

6
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in (3.4):
ζtot(0) =

1
2

∑
n∈Z

(
− 2 + 4

)
=

∑
n∈Z

1 = 1 + 2ζR(0) = 0 , (3.5)

where we have used the Riemann zeta-function regularization to evaluate the sum. Note that the
contribution of all massive KK modes at non-zero n levels cancels 1 coming from the n = 0 modes,
i.e. cancels the logarithmic UV divergence that was present in the similar computation in the
AdS4 × CP3 superstring regime [21].

The vanishing of the logarithmic divergence in the free energy was actually expected, as the
M2 brane theory is 3d one, and there are no logarithmic divergences in the corresponding functional
determinants in 3d. The reduction to 2d with all KK modes included cannot produce logarithmic
divergences that were not present in the 3d formulation. The 1-loop free energy is thus finite and is
given by the sum of the bosonic and fermionic contributions

Γ1 = − log Z1 = −
1
2
ζ ′tot(0) , ζ ′tot(0) =

∑
n∈Z

ζ ′tot(0; n) (3.6)

ζ ′tot(0; n) = 2ζ ′
B
(0;

1
4
(kn − 2)(kn − 4)) + 6ζ ′

B
(0;

1
4

kn(kn + 2)) (3.7)

+ 3ζ ′
F
(0;

kn
2
+ 1) + 3ζ ′

F
(0;

kn
2
− 1) + 2ζ ′

F
(0;

kn
2
) . (3.8)

Summing up the bosonic and fermionic contributions, some remarkable simplifications occur

Γ1 =

∞∑
n=1

log
( k2n2

4
− 1

)
= 2

∞∑
n=1

log(
kn
2
) +

∞∑
n=1

log
(
1 −

4
k2n2

)
. (3.9)

Using again the Riemann zeta-function regularization (ζR(0) = − 1
2, ζ

′
R(0) = −

1
2 log(2π)) we get

∞∑
n=1

log
(
1 −

4
k2n2

)
= log

[ ∞∏
n=1

(
1 −

4
k2n2

) ]
= log

[ k
2π

sin
(2π

k
) ]
, (3.10)

where we used that sin(πx) = πx
∏∞

n=1(1 −
x2

n2 ). The final result for the 1-loop partition function
for k > 2

Z1 = e−Γ1 =
1

2 sin(2πk )
. (3.11)

This is in precise agreement with the localization result in (2.2).

4. M2 brane computation of instanton contrubution to free energy

Motivated by the expected duality between the ABJM theory and M-theory on AdS4 × S7/Zk
it is natural to expect that the perturbative part of the free energy (2.6) should be reproduced by
some higher derivative extension of the 11d supergravity action evaluated on the AdS4 × S7/Zk
background [27, 32]. Indeed, it was found in [11] that the leading N3/2 term in (2.6) is matched by
the on-shell value of the Euclidean 11d supergravity action.

More generally, we shall conjecture that the gauge theory free energy should be reproduced by
some properly defined supermembrane partition function,

F ∼ ZM2 , ZM2 =

∫
[dx dθ] e−SM2(x,θ) , (4.1)

7
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where SM2 is theM2 brane action onAdS4×S7/Zk with the dimensionless coefficient of the effective
tension (here again R is the radius of S7 or twice the radius of AdS4)

T2 ≡ R3T2 =
1
(2π)2

R3

`3
P

=

√
2k
π

√
N ,

R
`P
= (32π2Nk)1/6 . (4.2)

Then for fixed k (or fixed radius of the 11d circle) the semiclassical large T2 expansion of ZM2
should be equivalent to the large N expansion on the gauge theory side.

One may further conjecture that the perturbative part of ZM2 in the large T2 ∼
√

N limit may be
captured by an expansion near “point-like”M2 branes or, more precisely, degenerate 3-surfaces with
a topology of S1 times a point which have zero 3-volume. At the same time, the non-perturbative
e−aT2 = e−a

√
2k
π

√
N contributions may come from saddle points with non-vanishing 3-volumes,

e.g. from M2 branes wrapping the M-theory circle and a CP1 ⊂ CP3, or a 3-cycle in CP3 (and
their superpositions), ZM2 = Z (0)M2 + Z inst

M2 + .... Here the first term (coming from contributions
of “degenerate” M2 brane surfaces) when expanded at large k should represent the sum of all
perturbative tree level plus higher loop type IIA string corrections to the on-shell value of the
partition function.

Below we will perform a semiclassical computation in the case of the M2 brane instanton
wrapping S3/Zk , reproducing the 1

sin2 2π
k

prefactor in (2.9) from the corresponding 1-loop fluctuation

determinants. We are interested in the M2 brane configuration with S3/Zk world-volume, that is
wrapped on the 11d circle ϕ of radius R/k and on CP1 ⊂ CP3. This is the M2 uplift of the IIA
string CP1 instanton of [19]. The CP1 will be chosen as the w2 = w3 = 0 surface in CP3. We fix
the world-volume reparametrization invariance using the static gauge: we identify (w1, w̄1, ϕ) with
the 3 real world-volume coordinates ξi = (u, v, s) according to

w1 ≡ z = u + iv , w̄1 = z̄ = u − iv , ϕ = s, s ∈ (0, 2π] . (4.3)

As the C3 potential has only the AdS4 components the bosonic part of the corresponding Euclidean
M2 brane action is given by Scl = T2

∫
d3ξ
√
g , where gi j is the induced world-volume metric

(κ = (1 + u2 + v2)−1)

ds2
3 = gi jdξidξ j = R2 dz dz̄

(1 + |z |2)2
+

R2

k2

[
ds + k A(z, z̄)

]2
, A = κ(−vdu + udv) . (4.4)

This is the metric of S3/Zk (for k = 1 this is the standard Hopf metric of S3 with radius R). The
resulting classical value of the action (4) is

Scl = T2R3 vol(S3/Zk) =
1
k

T2R3 vol(S3) =
2π2

k
T2 = 2π

√
2N
k

. (4.5)

Here the effective dimensionless tension is

T2 ≡ R3T2 =
1
(2π)2

R3

`3
P

=
1
π

√
2Nk . (4.6)

This is also the same as the value of the classical action of the string world sheet wrapped on CP1

in AdS4 × CP3 [19], i.e. Scl = 2π
√

2λ.

8
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Next, we are to compute the 1-loop prefactor Z1 in the corresponding 1-instanton contribution
to the M2 brane partition function

Z inst
M2 = Z1 e−Scl + ... . (4.7)

The factor Z1 will be expressed in terms of the determinants of operators of the bosonic and
fermionic fluctuations which will be functions of the 3d coordinates (u, v, s) in the static gauge.
In this static gauge we will have 8 real bosonic fluctuations: 4 in the AdS4 directions and 4 in
the 2 complex transverse CP3 directions w2,w3. Fixing a κ-symmetry gauge, we will also have
8 fermionic fluctuations. Expanding the M2 action one finds that the fluctuations of w2 and w3
decouple and their contributions are described by

L2(φ) =
R2

2

3∑
i, j=1

gi jDi φ̄Djφ − φ̄φ −
i
2

k(φ̄∂sφ − ∂s φ̄ φ) , (4.8)

Diφ = (∂i − i Ai) φ, Di φ̄ = (∂i + i Ai) φ̄ . (4.9)

Here ∂i = (∂u, ∂v, ∂s) and Ai = (Au, Av, 0) is the 3d gauge potential in (4.4). As s is a periodic
coordinate we may interpret the corresponding 3d action

∫
d3ξ
√
g L2 as a 2d action for an infinite

tower of the Fourier modes of φ by setting φ(u, v, s) =
∑

n φn(u, v) eins. This 2d action will be
defined on CP1 with the metric gab of a 2-sphere of radius R/2. This leads to the corresponding
Lagrangian for a tower of 2d charged massive complex scalars φn on the 2-sphere coupled to abelian
gauge field potential Aa of a magnetic monopole, ∆ = −D2 + M2, Da = ∂a − iqAa . Measuring
the masses in terms of the radius L = R/2 of S2 we thus get the following bosonic spectrum: 2
towers of complex φn modes and 4 towers of ηn = η̄−n modes with

φn : m2 ≡ L2M2 = −
3
4
+

1
4
(1+nk)2 , q = 1+nk; ηn : m2 =

1
4
(nk)2 , q = nk . (4.10)

The detailed structure of the quadratic fermionic Lagrangian in the type IIA string limit [20]
shows that it is equivalent to the sum of 2d fermionic terms ψ̄Dψ where D is the standard 2d Dirac
operator on the 2-sphere of radius L = R/2 in the monopole background with a particular mass term
D = i D̂ + M1σ3 + M2, D̂ = σaeaa (∂a +

i
2ωaσ3 − iqAa). The explicit values of the dimensionless

mass parameters are m1 ≡ LM1 = −
1
4 (u − u′), m2 ≡ LM2 = −

1
4 −

3
4uu′, u, u′ ∈ {1,−1},

where u, u′ represent 4 independent sign factors arising from 10-d Gamma matrices in a suitable
representation. Thus one finds 8 fermionic modes organized as 2d fermionic fields with 4 choices
of mass parameters m1 = (−

1
2,

1
2, 0, 0), m2 = (

1
2,

1
2,−1,−1). In addition, the values of the charges

are q = (1,−1, 0, 0) [20]. Similarly, from from M2 brane action we find that the Lagrangian for
the tower of the 2d fermionic modes originating from the quadratic fermionic part of the M2 brane
action can be represented by a collection of 4 2d fermionic fields with the Dirac-like operators
where the parameters depend on k as

m1 = −
1
4
(u − u′) −

1
2

nk, m2 = −
1
4
−

3
4

uu′, q = −2m1 . (4.11)

For a massless scalar field of charge q on S2 in the field of a monopole the spectrum of the
corresponding Laplace operator was found in [33]. Its eigenvalues and degeneracies are given by

λ` = `(` + 1) −
q2

4
, ` −

|q |
2
= 0, 1, 2, . . . , degλ` = 2` + 1 . (4.12)

9
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Inclusion of mass term in the operator can be done by the obvious shift λ` → λ` + m2, m ≡ LM .
Then the formal expression for the corresponding determinant may be written as

log det
[
L2(−D2+M2)

]
=

∞∑
`=
|q |
2

(2`+1) log
[
`(`+1)−

q2

4
+m2

]
=

∞∑
`=
|q |+1

2

2` log
[
`2−

1
4
−

q2

4
+m2

]
.

(4.13)
The massless Dirac operator iD̂ has eigenspinors with the following eigenvalues (normalized again

to the radius L of the sphere) and degeneracies [34] λ` = ±
√
`2 −

q2

4 , `−
|q |
2 = 0, 1, 2, . . . , degλ` =

2`. For the minimal value ` = |q |2 (assuming |q | ≥ 1), we get |q | zero modes with definite chirality.
In the case of the massive operator iD̂+M1σ3 +M2 this spectrum leads to the following expression
for the determinant (here ma = LMa)

log det
[
L(iD̂+M1σ3+M2)

]
= |q | log

��sign(q)m1+m2
��+ ∞∑
`=
|q |
2 +1

2` log
(
`2−

q2

4
+m2

1−m2
2

)
. (4.14)

That the eigenvalues of all other modes contain the effective mass-squared parameter m2
1 − m2

2
(cf. (4.13)) follows from the direct evaluation of the determinant in (4.14) or can be seen from
“squaring” the first-order operator.

The determinant of an elliptic 2nd order operator ∆ can be expressed in terms of the spectral
ζ-function ζ∆(z) =

∑
` λ
−z
`
, λ` , 0, as

log det∆ = −ζ∆(0) log(Λ2L2) + (log det∆)fin , (log det∆)fin = −ζ
′
∆
(0) , (4.15)

where Λ is a 2d UV cutoff. One finds

(log det∆)fin = −4 ζ ′(−1, p) +
∫ µ

0
dx

[
ψ(p +

√
x) + ψ(p −

√
x)

]
≡ sp(µ). (4.16)

and similar expression in the fermionic case. Let us sum up the log det contributions of all 2d
fluctuation fields. The corresponding 1-loop correction is

Γ = ΓB − ΓF =
1
2

∞∑
n=−∞

∑
i

(−1)Fi log det′∆i = −ζtot(0) log(ΛL) −
1
2
ζ ′tot(0) . (4.17)

We find that the coefficient ζtot(0) =
∑∞

n=−∞ ζtot, n(0) =
∑∞

n=−∞ 2 = 2 + 4ζR(0) = 0. Thus, as in
the 1-loop correction in the case of the M2 brane wrapped on AdS2 × S1 discussed above, the UV
divergences coming from the tower of n , 0 modes effectively cancel the non-zero contribution of
the n = 0 string modes so that the full M2 brane 1-loop correction is UV finite.

For the sum of the finite parts we get (using again that ζR(0) = − 1
2, ζ

′
R(0) = −

1
2 log(2π)):

Γ = 4
∞∑
n=1

log nk
2 + 2

∞∑
n=1

log
(
1 − 4

n2k2

)
= 4 log k

2 ζR(0) − 4ζ ′R(0) + 2 log
( k
2π

sin
2π
k

)
= 2 log

(
2 sin

2π
k

)
. (4.18)
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We conclude that the 1-loop instanton prefactor in (4.7) is

Z1 = γ e−Γ = γ
1

4 sin2(2πk )
, (4.19)

where we introduced a numerical (k-independent) factor γ to account for the contribution of the 0-
modes that we omitted above and also of possible degeneracy of the instanton saddle contributions.
In the large k limit this reduces to Z1 = γ

k2

16π2 + ... =
2γ
π

T
g2

s
+ ..., i.e. to the expression found in

[20]. Here we get it directly as a limit of the UV finite M2 brane contribution, without need to fix
the form of the overall factor by some indirect considerations as was done in [20] using an analogy
with the string Wilson loop case computation in [21].

To determine the value of γ let us note first that we are to add a factor of 2 due to the equal
instanton and anti-instanton contributions. We also need a further factor of 2 that was argued in [20]
to represent the contribution of the 0-modes of the string fluctuations. It would be very interesting
to derive this result systematically by introducing the collective coordinates for the bosonic and
fermionic 0-modes and computing the volume of the corresponding supercoset. Thus using that
γ = 4 we precisely match the 1-instanton prefactor in the localization result in (2.9).

5. Conclusion

We presented new remarkable tests of the AdS4/CFT3 duality between ABJM theory with large
rank of the gauge group N and finite level k and M-theory on AdS4 × S7/Zk . In the Wilson loop
case the prefactor in the localization result is reproduced by expanding near the AdS2×S1 M2 brane
solution [9].

We also reproduced the leading (at large N and fixed k > 2) instanton prefactor in the
localization result for the non-perturbative part of the ABJM free energy on S3 in (2.9) from a
quantum 1-loop correction to the classical action factor of the M2 brane S3/Zk instanton [10]. This
generalizes to finite k the analysis of the string CP1 ⊂ CP3 instanton contribution in type IIA string
theory [19, 20]. One subtle issue that would be interesting to clarify further is the factor 2 associated
with the zero mode contribution that originates from the string-level fluctuations.

There are several possible extensions. Onemay consider the leading perturbative 1√
N
correction

to the prefactor in (2.9),(2.8)

F inst(N, k) = −
1

sin2(2πk )

[
1 +

1
√

N
h1(k) + ...

]
e−2π

√
2N
k + ... , h1(k) = π√

2k
k2−40

12k , (5.1)

and try to reproduce the coefficient h1(k) from the 2-loop M2 brane correction, which should come
with a factor of the inverse of the effective M2 brane tension in (4.2), i.e. T2

−1 = π√
2k

1√
N
.

As was suggested in [9], a similar 2-loop computation in the case of the AdS2 × S1 M2 brane
surface should reproduce the coefficient of the 1√

N
correction to the prefactor of the Wilson loop

expectation value in (2.2).1 Such a 2-loop calculation would require the use of the quartic bosonic

1Note that the string theory values of the coefficients of these 1√
N

corrections in (5.1) and (2.2) are sensitive to the
precise form of the relation between the string theory parameters in (4.2) and gauge theory parameters N, k, i.e. to the
shift N → N − 1

24 (k − k−1) suggested in [38].
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and fermionic terms in the corresponding supermembrane action [6]. It would be important to check
if the 2-loop M2 brane contribution is, in fact, UV finite, despite the apparent non-renormalizability
of the membrane action.
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