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The study explored the possibility of constructing cosmological models of inflation without initial
singularity. The main focus was on the model of a closed universe, which has a constant radius
in the asymptotic past and undergoes inflation in the future, leading to a universe dominated by
a massless scalar field (’kination’). This evolution is an analog of the Genesis model with an
inflationary exit but in a closed universe. The key feature of the examined model is the absence
of the Null Energy Condition (NEC), allowing the use of the simplest quadratic subclass of the
Horndeski theory. This subclass essentially represents a scalar field with an unusual kinetic term
and General Relativity. By employing the Horndeski theory framework for a closed universe, it was
demonstrated that the model remains stable at all times, meaning there are no ghosts or gradient
instabilities. Furthermore, the spectrum of scalar perturbations was numerically determined,
which is crucial as it corresponds to observable data.
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1. Introduction

Today in gravitation in general and in the general theory of relativity, in particular, there are
still many unsolved problems related, for example, to cosmology. A strong motivation for the
development of the main number of the newest alternatives to GR are the astronomical observations
of recent years, which led to the necessity to introduce into astrophysics and cosmology, built on
the General Theory of Relativity, such models as "inflation", "dark matter" and "dark energy". The
most general scalar-tensor theory of gravitation, which does not lead to third derivatives in the
equations of motion and includes both GR and many other modifications, is the Horndeski theory,
in which it is possible to construct various cosmological models without an initial singularity, such
as Genesis or rebound.

The inflationary model of the universe solves many of the problems arising in the hot universe
model, in particular, due to the extremely high expansion rate in the inflationary stage, the problem
of large-scale homogeneity and isotropy of the universe is solved, but the inflationary model has an
initial singularity.

The purpose of this paper is to create cosmological models without an initial singularity.
Extended theories of gravity can offer a whole class of models that satisfy the properties we need:

1) the absence of tachyons, spirits and other instabilities;
2) restrictions on the propagation rates of tensor and scalar perturbations;
3) isotropic energy-dominance condition;
4) geodesic completeness;
5) flat spectrum of scalar perturbations;
6) absence of initial singularity.
In the framework of the Horndeski theories for a flat universe without an initial singularity

there are models in which geodesic incompleteness can be circumvented by adding additional terms
to the Lagrangian. On the other hand, there are models of the Genesis type, where initially the
energy is zero and then it increases, thus violating the isotropic energy dominance condition (NEC).
In a flat universe, when the NEC is satisfied, there is a geodesic incompleteness associated with the
singularity, which is called Penrose’s theorem [1] . Thus, within the standard GR with a scalar field
in the flat universe one has to sacrifice either geodesic completeness or NEC.

In the proposed model, considering almost flat closed universe in the future GR with a scalar
field, it turns out to get rid of the mentioned problems. In this case the violation of NEC does not
occur due to the fact that the energy-momentum tensor includes also curvature – now the energy
passes from curvature to the cosmological constant Λ [8]. That is why for the solution of the initial
singularity problem we can consider a closed universe.

2. Horndesky theories in closed universe

By now it is well known that various interesting cosmological solutions can be constructed in
Horndeski theories, in particular, the possibility of constructing stable solutions in the flat universe
has already been shown in [2–6] and [9–12]. We can consider apparatus developed by many authors
for stability analysis in the flat universe to the case of the closed universe [7].
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As mentioned earlier in the introduction, in order to achieve the objectives, it is necessary to
consider a closed universe with metric:

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡)𝛾𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗

where 𝛾𝑖 𝑗 is the metric of the maximally symmetric hypersurface, which can be written as
𝛾𝑖 𝑗𝑑𝑥

𝑖𝑑𝑥 𝑗 = 𝑑𝜒2 + 𝑆2
K (𝜒)𝑑Ω2 where

SK (𝜒) :=


sin(

√
K𝜒)/

√
K ( closed: K > 0)

𝜒 ( flat: K = 0)
sinh(

√
−K𝜒)/

√
−K ( open: K < 0)

Let us perform a similar flat perturbation analysis in the case of a closed universe. Substituting
the above metric into the action and varying over it, we obtain the background equations of motion
in the form:

E0 + EK = 0
P0 + PK = 0

where E0 and P0 are curvature independent (these are exactly the equations from [2] ), and EK
and PK are proportional to K and are represented as:

EK = −3G𝑇

K
𝑎2 , PK = F𝑇

K
𝑎2 , (1)

with time-dependent coefficients:

F𝑇 = 2
[
𝐺4 − 𝑋 ( ¥𝜙𝐺5𝑋 + 𝐺5𝜙)

]
, (2)

G𝑇 = 2
[
𝐺4 − 2𝑋𝐺4𝑋 − 𝑋 (𝐻 ¤𝜙𝐺5𝑋 − 𝐺5𝜙)

]
. (3)

Where we used standart notation for Horndesky theories, which you can check in [2]. Thus,
the effect of curvature on the background equations of motion is determined.

2.1 Scalar perturbations

.
To analyze the stability and obtain the spectrum, a quadratic action for scalar perturbations in

the presence of curvature is needed. Similarly to [2] can be obtained [7]:

𝑆
(2)
𝑆

=

∫
𝑑𝑡𝑑3𝑥

√
𝛾𝑎3

{
−3G𝑇

¤𝜁2 − F𝑇

𝑎2 𝜁D
2𝜁

+ Σ𝛿𝑛2 − 2Θ𝛿𝑛
D2𝜒

𝑎2 + 2G𝑇
¤𝜁D

2𝜒

𝑎2 + 6Θ𝛿𝑛 ¤𝜁

− 2G𝑇𝛿𝑛
D2𝜁

𝑎2 − 3F𝑇 𝜁
2 K
𝑎2 − 6G𝑇𝛿𝑛𝜁

K
𝑎2

− G𝑇

2𝑎4

[
(D2𝜒)2 − (D𝑖D 𝑗 𝜒)2]} , (4)
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where D𝑖 is the covariant derivative related to the metric 𝛾𝑖 𝑗 , and

Θ = Θ0 + ΘK , Σ = Σ0 + ΣK , (5)

the flat and curve parts are again emphasized, here Θ0 and Σ0 are exactly the same as in flat case
and

ΘK := − ¤𝜙𝑋𝐺5𝑋
K
𝑎2 (6)

ΣK := 6(𝑋𝐺4𝑋 + 2𝑋2𝐺4𝑋𝑋 − 𝑋𝐺5𝜙 − 𝑋2𝐺5𝜙𝑋

+ 2𝐻 ¤𝜙𝑋𝐺5𝑋 + 𝐻 ¤𝜙𝑋2𝐺5𝑋𝑋)
K
𝑎2 . (7)

We can cut ties and get the action in the following form:

𝑆
(2)
𝜁

=

∫
𝑑𝑡𝑑3𝑥

√
𝛾𝑎3

[
G𝑆

¤𝜁2 + 𝜁
F𝑆

𝑎2 (D
2 + 3K)𝜁

]
, (8)

where

G𝑆 :=
D2 + 3K

D2 − (G𝑇Σ/Θ2)K
G𝑇

(
G𝑇Σ

Θ2 + 3
)
, (9)

F𝑆 :=
1
𝑎

𝑑

𝑑𝑡

[
D2 + 3K

D2 − (G𝑇Σ/Θ2)K

(
𝑎G2

𝑇

Θ

)]
− F𝑇 + D2 + 3K

D2 − (G𝑇Σ/Θ2)K

(G3
𝑇

Θ2
K
𝑎2

)
. (10)

In the following, a special case of this action will be used to build a specific model.

3. Model building without initial singularity

Let us proceed to the construction of the model without initial singularity. We will consider
a special case of the Horndeski theory, in which the only nonzero functions in the action are L2

and L4. To make the proposed model similar to the GR model with the inflaton field, we choose
L4 = 𝑅. We obtain the model of gravitation with an arbitrary scalar field. Further we will work in
it.

𝑆 =

∫
𝑑4𝑥

√−𝑔 (𝐹 (𝜋, 𝑋) + 𝑅) (11)

3.1 Scale factor

The first step is to choose a scale factor that corresponds to evolution without an initial
singularity. As such a scale factor a has been chosen (Fig. 1):

𝑎 =
e𝑥 + 1

1 + e𝑥−1 +
(
1 + 𝑥2

) 1
6 1

1 + e−𝑥+1 (12)

Let us discuss what this choice of scale factor corresponds to. In the infinite past, the closed
universe was of finite size, after which a period of inflation with exponential expansion began,
which passed into a period of hot stage. Note that in this example the characteristic sizes and times
are extremely small, below these parameters will be added to the model.
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Figure 1: Dependencies 𝑎(𝑡), 𝐻 (𝑡) ¤𝐻 (𝑡)

3.2 Null Energy Condition

Among the various energy-dominance conditions, or energy conditions, the Null Energy Con-
dition (NEC) plays a special role. This condition means that the energy-momentum tensor 𝑇𝜇𝜈
satisfies the relation:

𝑇𝜇𝜈𝑛
𝜇𝑛𝜈 > 0

for any isotropic (light-like) vector 𝑛𝜇, i.e., such a vector that 𝑔𝜇𝑣𝑛𝜇𝑛𝑣 = 0.
By virtue of Einstein’s equations, this condition can be rewritten as:

𝐺𝜇𝜈𝑛
𝜇𝑛𝜈𝑛𝜈 > 0

For the constructed metric, we can find the Einstein tensor:

𝐺𝜇𝜈 =

©­­­­­­«

3(𝑒+𝑒𝑥 )2(
𝑒+𝑒1+𝑥+𝑒𝑥 (1+𝑥2)1/6)2 0 0 0

0 −1 0 0
0 0 − sin(𝜒)2 0
0 0 0 − sin(𝜒)2 sin(𝜏)2

ª®®®®®®¬
(13)

It is easy to check that such Einstein tensor satisfies the NEC condition.

3.3 Checking stability conditions

In [9-12], conditions on the propagation velocities of scalar and tensor perturbations were
obtained, from which it follows that:

GT ≥ FT > 𝜖 > 0, GS ≥ FS > 𝜖 > 0. (14)

.
For our model, it is convenient to put GT = FT = 1, then 𝑐2

T = 1.

5
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In the framework of the Lagrangian under consideration, the coefficients GT , FT are greatly
simplified. Based on the action for a closed universe, we can obtain:

G𝑐𝑙
S = G 𝑓 𝑙𝑎𝑡

S =
Σ

𝐻2 + 3, (15)

and
F 𝑐𝑙
S = F 𝑓 𝑙𝑎𝑡

S + 𝜅

Θ2𝑎2 = −
¤𝐻

𝐻2𝑎2 + 𝜅

Θ2𝑎2 (16)

Thus, only FS depends on the curvature in our case.
Furthermore, it is convenient to take GS = FS , which will correspond to a constant rate of

propagation of scalar perturbations, that is, 𝑐2
𝑆
= 1. It is easy to sure that the constructed coefficients

satisfy conditions (14).

3.4 Reconstruction of the Lagrangian of the theory

Now, knowing the coefficients in the quadratic Lagrangians for the tensor and scalar perturba-
tions, we can reconstruct the Lagrangian of the model. Here we use, first, the equations of motion,
and second, the coefficients found above.

For this purpose it is convenient to take the following ansatz for the scalar field:

𝐹 (𝜋, 𝑋) = 𝑓0 + 𝑓1𝑋 + 𝑓2𝑋
2 (17)

𝐹𝑋 = 𝑓1(𝑡) + 2 𝑓2(𝑡), 𝐹𝑋𝑋 = 2 𝑓2(𝑡)
Now we have 3 equations for 3 unknown functions 𝑓0, 𝑓1, 𝑓2, respectively, the exact expressions

for these functions have been found. The Lagrangian of the theory is now completely known.

3.5 Analysis of scalar perturbations and spectrum

Now it is necessary to analyze the proposed model for consistency with the observed data. It
is known that in the inflation model the spectrum of scalar perturbations is flat. Let us verify in this
section that the spectrum is also flat in the proposed model.

First, we find the equations of motion for the quadratic action of scalar perturbations:

𝑆𝑠 =

∫
d𝑡 d3𝑥𝑎3

[
GS ¤𝛼2 − FS

(𝑘𝛼)2

𝑎2

]
(18)

coresponding EOM:

𝛼′′(𝑡) + 𝛼(𝑡)𝑤(𝑡) = 0 (19)

where

𝐵 =
(𝑎3GS)′
𝑎3GS

(20)

and

𝑤(𝑡) = 𝑘2

𝑎2 −
(
𝐵

2

)2
− 𝐵′

2
(21)
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4. Scalar pertrubation spectrum

We now have the equations of motion for scalar perturbations in a flat universe, which we
can solve numerically. We have written a program that calculates the scalar perturbation spectrum
numerically for arbitrary equations of motion.

This method has been tested on the inflation theory, which gives a flat spectrum. Using our
method, it is indeed possible to obtain the desired dependence of the spectrum on the impulse, i.e.,
a flat spectrum at a given choice of the scale factor:

𝑎(𝑡) = 𝑒𝐻𝑡 (22)

Next, we did the same procedure for the scale factor in the form (12) and obtained, as expected,
a flat spectrum. In our case, we assumed 25 e-foldings to speed up the numerical count, but this
parameter can be changed.

5. Conclusion

So far, a model of inflation without initial singularity in the closed universe, passing to the stage
dominated by a massless scadjar field ("kination"), satisfying all the above conditions, has been
constructed. Moreover, the parameters responsible for the sizes of the universe in the periods before
and after inflation were added, and what is especially important - a flat spectrum was obtained,
as in the inflation theory. To obtain the spectrum, we numerically solved the equations of motion
for scalar perturbations in a large momentum range. The constructed method of spectrum analysis
seems to be possible to apply to a wide class of cosmological theories to find a constraint on their
parameters, which is one of the vectors for future work. Further analysis of the constructed model
is planned in the near future. First of all, it is necessary to analyze more finely the features of
the spectrum of scalar and tensor perturbations, due to which additional constraints on the model
parameters will be placed from the observed data.
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