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In this paper, we consider examples of applying the formalism of generalised renormalisation-
group equations to obtain effective potentials for the simplest alpha-attractor models. We show how
one-loop quantum corrections and RG-summed corrections affect the behaviour of the classical
potential.
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1. Introduction

The formalism of effective potentials has long been firmly established in quantum field theory
and has served as a significant boost for understanding various interactions. The pioneering work of
Coleman-Weinberg [1] became a driver for the study of the mechanisms of spontaneous symmetry
breaking and found applications in elementary particle physics, cosmology, and condensed matter
physics [2–4]. However, in spite of significant simplicity of the Coleman-Weinberg formalism, the
area of its applicability was limited only by renormalisable potentials [5].

Nevertheless, it turns out that the Bogoliubov-Parasyuk theorem [6] allows us to extend the
scope of the study of scalar models and, in general, to study scalar potentials of arbitrary kind
(even non-renormalisable) [7]. Indeed, in the case of the renormalisation-group summation, it is
also required to satisfy the convergence conditions of perturbation theory so that unitarity is not
violated. The generalised renormalisation-group equation turns out to be more complicated than
the usual renormalisation-group equations due to the absence of the usual beta function, but in the
renormalisable limit, it reproduces the Coleman-Weinberg results. Due to the application of the
generalised renormalisation group (RG), it is possible to look a little further into quantum theory,
which gives excellent opportunities for studying the effective potentials in various fields of physics
[8].

We will here attempt to apply the formalism of generalised effective potentials to cosmological
potentials, which are known as 𝛼-attractors [9–11]. These types of models have flat potentials
which exponentially quickly reach a plateau at large values of the inflation field and can be used
to investigate early time acceleration as well as dark energy dominated times [11, 12]. Originated
from supergravity, these models provide model-independent universal predictions, satisfying the
observed data from PLANCK and BICEP/Keck [13, 14]. The simplest forms of 𝛼-attractors can be
represented as

𝑉 (𝜙) = 𝑔 tanh
(

𝜙
√

6𝛼𝑀

)𝑛
= 𝑔𝑉𝑇 , (1)

(as we consider the 𝑛 = 2, 4 cases, we will refer to them as 𝑇2, 𝑇4 models, respectively) and

𝑉 (𝜙) = 𝑔

(
1 − 𝑒

−
√︃

2
3𝛼

𝜙

𝑀

)𝑛
= 𝑔𝑉𝐸 (2)

we call them 𝐸-models (we call the 𝑛 = 2, 4 cases as 𝐸2 and 𝐸4 models, respectively) [11]. Here
𝜙 is the inflation scalar field, 𝑀 = (8𝜋𝐺)−1/2 is the reduced Planck mass, 𝑔 is a scale of inflation,
and 𝛼 is a positive number. One can apply the formalism of the generalised RG to these kinds
of potentials and study the changes occurring due to all-loop quantum corrections in the leading
logarithmic approximation [7].

The first part of this work is devoted to describing the formalism of the effective potential. The
method of obtaining the generalised RG-equation is given as well as transformation of its solution to
an effective potential. In the second part, we apply the derived equations to evaluate the behaviour
of one-loop effective potentials and the result of the numerical solution of the RG equation. We
also analyse the obtained solutions from the point of view of inflationary cosmology and compare
qualitatively the predictions of different 𝑇 and 𝐸-models in their simplest forms. We compare the
predictions of the 𝑇 and 𝐸-models as in the classical case they give the same observations but can
be modified due to quantum corrections.
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2. Effective potential for general scalar model.

The effective potential is defined as the constant part of the effective action, i.e., as the part
without derivatives. The direct way to find the effective potential𝑉𝑒 𝑓 𝑓 (𝜙) is to sum all one-particle
irreducible (1PI) vacuum diagrams using Feynman rules derived from the shifted action 𝑆[𝜙+𝜙] [5].
Here 𝜙 is the classical field obeying the equation of motion and 𝜙(𝑥) is the quantum field. From
the point of view of Feynman rules, this means that one must consider 1PI vacuum diagrams with
propagators containing an infinite number of inserts 𝑣2(𝜙) ≡ 𝑑2𝑉 (𝜙)

𝑑𝜙2 , which after full summation
act as a mass term depending on the field 𝜙: 𝑚2(𝜙) = 𝑔𝑣2(𝜙). Feynman’s rules for vertices can be
found from the expansion of the potential 𝑉 (𝜙 + 𝜙) in terms of the quantum field 𝜙. As a result, the
effective potential is constructed as a perturbation expansion by the coupling constant 𝑔

𝑉𝑒 𝑓 𝑓 = 𝑔

∞∑︁
𝑛=0

(−𝑔)𝑛𝑉𝑛, (3)

where 𝑉0 = 𝑉 is the initial classical potential.
We can calculate𝑉𝑛 contributions using the BPHZ renormalizaton procedure and Bogoliubov-

Parasyuk theorem [6, 15, 16]. This theorem allows one to obtain recurrence relations connecting
the leading divergences in subsequent loops. Due to the features of the R-operations, the leading
contributions are determined by one-loop diagrams. This obviously follows from the local structure
of R-operations [7]. Hence, first of all, we calculate the one-loop diagram which corresponds to𝑉1.
Thus, for convenience, we choose dimensional regularisation 𝐷 = 4− 2𝜖 , so the one-loop quantum
correction [7] is given by

𝑉1 =
1

16𝜋2
1
4
𝑣2

2
𝜖

(
𝜇2

𝑚2

) 𝜖
→ 1

16𝜋2

𝑣2
2

4

(
1
𝜖
+ log

𝜇2

𝑚2

)
, 𝑚2 = 𝑔𝑣2(𝜙). (4)

An obvious but important property for the following is that the coefficient of the singular term
∼ 1/𝜖 coincides with the coefficient of the logarithm ∼ log(𝑔𝑣2(𝜙)) which gives the contribution to
the effective potential. Consequently, this feature will allow us to obtain the whole sum of leading
logarithms if we calculate the whole sum of pole terms.

Denoting the singular part of the effective potential (coefficient of the leading pole 1/𝜖𝑛) in the
n-th order of perturbation theory by Δ𝑉𝑛, one can obtain the following recurrence relation [7]:

𝑛Δ𝑉𝑛 =
1
4

𝑛−1∑︁
𝑘=0

𝐷2Δ𝑉𝑘𝐷2Δ𝑉𝑛−1−𝑘 , 𝑛 ≥ 1, Δ𝑉0 = 𝑉0, (5)

where 𝐷2 is the second derivative by the field 𝜙. Using this recurrence equation one can compute
all Δ𝑉𝑛 algebraically.

To sum up the leading divergences, we pass to the differential equation for the sum of the
following series:

Σ(𝑧, 𝜙) =
∞∑︁
𝑛=0

(−𝑧)𝑛Δ𝑉𝑛 (𝜙), (6)

where 𝑧 = 𝑔/𝜖 . Multiplying Eq.(5) by the factor (−𝑧)𝑛 and summing over n from 𝑛 = 2 to ∞, we
obtain the differential equation for the function Σ(𝑧, 𝜙),

𝑑Σ

𝑑𝑧
= −1

4

(
𝜕2

𝜕𝜙2Σ

)2

, Σ(0, 𝜙) = 𝑉0(𝜙). (7)
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The resulting partial differential equation generalises the well-known RG-equation in the renormal-
isable case [7]. Substituting the pole term with the corresponding logarithm gives us the equation
for the effective potential

𝑉𝑒 𝑓 𝑓 (𝑔, 𝜙) = Σ(𝑧, 𝜙) |𝑧→− 𝑔

16𝜋2 log 𝑔𝑣2/𝜇2 . (8)

This equation looks simple, but it is a complex nonlinear partial differential equation (PDE) and
therefore we need to investigate it numerically. Although the equation is universal, it will look
different for different interaction models because of the explicit dependence of the solution on the
form of the initial potential.

3. Generalized RG-equations vs one-loop corrections

3.1 T-model

Consider the theory with the potential (1) which corresponds to the 𝑇-model. Further, to
simplify equation (7), it is convenient to represent the function Σ in dimensionless variables
𝑥 = 𝑧/𝑀4 and 𝑦 = tanh𝑛 (𝜙/

√
6𝛼𝑀), because the loop decomposition of this function can be

represented as polynomials on tangents so that we identify

Σ(𝑧/𝑀4, tanh𝑛 (𝜙/
√

6𝛼𝑀)) ≡ 𝑆(𝑥, 𝑦).

The obtained function is in some way similar to an arbitrary function 𝐹 (tanh( 𝜙√
6𝛼𝑀

)) in the theory
of chaotic inflation [9]. However, in our case this function is restricted by the RG-equation (7) and
it contains an additional regularisation parameter 𝜇2.

Changing the variables and functions in the original equation (7), the generalised RG-equation
for such potentials can be written as for 𝑛 = 2

𝑆𝑥 = −
(𝑦 − 1)2 ((3𝑦 − 1)𝑆𝑦 + 2(𝑦 − 1)𝑦𝑆𝑦𝑦

)2
36𝛼2 , (9)

and for 𝑛 = 4

𝑆𝑥 = −
𝑦

(
4𝑦

(√
𝑦 − 1

)2
𝑆𝑦𝑦 +

(
5𝑦 − 8√𝑦 + 3

)
𝑆𝑦

)2

9𝛼2 . (10)

It can be seen that the parameter 𝛼 during the calculations affects 𝑔 and the transmutation parameter
𝜇, so 𝛼 can be used for some fine-tuning purposes (in this case, for convenience, we set it equal to
one). The initial conditions for these PDEs are set according to the fact that the effective potential
at 𝑔 = 0 must satisfy the classical potential as well as the asymptotic conditions:

𝑆(0, 𝑦) = 𝑦, 𝑆(𝑥, 0) = 1, 𝑆 (0,1) (𝑥, 0) = 0. (11)

Unfortunately, these equations cannot be solved analytically (moreover, one can notice that such a
system of PDE is stiff [17]) but one can use numerical methods to find solutions. We present our
comparisons of classical potentials, one-loop effective potentials and all-loop effective potentials on
Figures 1 and 2. One can notice that one-loop corrections distort the initial classical potential near
𝜙 = 0 causing spontaneous symmetry breaking meanwhile all-loop corrections smooth of the effect
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(a) 𝑇2-model
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(b) 𝑇4-model

Figure 1: 𝑇-models (blue line) and their one-loop corrections with 𝜇 ≪ 1 (green line) and 𝜇 ≫ 1 (purple
line) and 𝑔 ∼ 1. Here 𝑦 denotes a normalized scalar field.
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(a) 𝑇2-model
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(b) 𝑇4-model

Figure 2: 𝑇-models (blue line) and their all-loop corrections with 𝜇 ≪ 1 (green line) and 𝜇 ≫ 1 (purple
line) and 𝑔 ∼ 1 (all values are the same as on Fig.1). Here 𝑦 denotes a normalized scalar field. All-loop
potential behaviour is smoother than one-loop effective potential.

in both considered T-model cases. The plateau-like behaviour in quantum-corrected potentials is
preserved as expected [10]. It can also be seen that when the parameter 𝜇 increases with respect to
the Planck mass, an anti-de Sitter landscape arises (in the opposite case, de Sitter behaviour arises)
at 𝑉 (𝜙 = 0).

3.2 E-model

Here we perform in the same way as above for the theory with potential (2), which corresponds
to the 𝐸-model. As before, to simplify equation (7), represent the function Σ in dimensionless

variables 𝑥 = 𝑧/𝑀4 and 𝑦 = (1 − 𝑒

√︃
2

3𝛼
𝜙

𝑀 )𝑛. Then

Σ

(
𝑧/𝑀4, (1 − 𝑒

√︃
2

3𝛼
𝜙

𝑀 )𝑛
)
≡ 𝑆(𝑥, 𝑦).

Changing the variables and functions in the original equation (7), the generalised RG-equation for
such potentials can be written as for 𝑛 = 2

5
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(a) 𝐸2-model
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Figure 3: 𝐸-models (blue line) and their one-loop corrections with 𝜇 ≪ 1 (green line) and 𝜇 ≫ 1 (purple
line) and 𝑔 ∼ 1. Here 𝑦 denotes a normalized scalar field.
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(a) 𝐸2-model
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Figure 4: 𝐸-models (blue dashed line) and their all-loop corrections with 𝜇 ≪ 1 (orange line) and 𝜇 ≫ 1
(red line) and 𝑔 ∼ 1. Here 𝑦 denotes a normalized scalar field. All-loop potential behaviour is smoother than
one-loop effective potential.

𝑆𝑥 = − 4
9𝛼2

(
2𝑦

(√
𝑦 + 1

)2
𝑆𝑦𝑦 +

(
2𝑦 + 3

√
𝑦 + 1

)
𝑆𝑦

)2
(12)

and for 𝑛 = 4:
𝑆𝑥 = − 16

9𝛼2

(
4
√
𝑦 + 1

)2
𝑦
( (

4 4
√
𝑦 + 3

)
𝑆𝑦 + 4𝑦

(
4
√
𝑦 + 1

)
𝑆𝑦𝑦

)2
, (13)

so the initial conditions are given by

𝑆(0, 𝑦) = 𝑦, 𝑆(𝑥, 0) = 0, 𝑆 (0,1) (𝑥, 0) = 0. (14)

Here lower indices denote corresponding derivative. These equations are also difficult to solve
using analytical tools due to nonlinearity of PDEs, but numerical methods are available.

The results of numerical solutions of the equations are shown in Figures 3 and 4. In the case of the
E-model, we notice the appearance of additional minima also near the zero value of the field. The
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type of the potential barrier for negative fields is also modified: if in the case of the usual E-model it
was an infinite barrier, in the case of the RG-summed effective potential it turns into a discontinuity
(this kind of behaviour of the exponential function was found in [7]). We can observe that the
behaviour of the plateau at infinity is not affected by quantum corrections. Among other things, for
a wide range of values of the dimensional transmutation parameter the slow-roll behaviour of the
inflaton field does not change.

4. Conclusion

In this paper, we have succeeded in obtaining generalised renormalisation-group equations
for a class of simplest potentials of 𝛼-attractor type often encountered in inflationary cosmology.
We showed that the plateau-type behaviour is preserved in E and T-models, but the shape of the
potentials near zero can change significantly. For example, for T-models symmetric with respect to
the scalar field sign change, we observe spontaneous symmetry breaking from a certain value of the
dimensional transmutation parameter and/or an uplifting of the potential near the zero value of the
scalar field. For asymmetric E-models, one can also observe a rise of the potential near zero and
the appearance of minima separated by a sharp rise. The infinite potential barrier for such models
is replaced by a field maximum at certain values of the dimensional transmutation parameter. In
spite of such a significant modification of the initial potential, for a wide region of values of the
parameter 𝜇 one can expect that the Hubble flow does not change much.

The RG-equation can be used to consider numerous types of potentials and with its help it is
possible, for example, to consider field theories and study effects related to spontaneous symmetry
breaking in various physical models. For instance, it would be interesting to study multi-field
non-renormalisable theories to explore hybrid inflation, which are quite interesting from the point
of view of inflationary physics [18].
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