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This short report is devoted to the study of cosmological solutions without initial singularity in
scalar-tensor theories of gravity and the legitimacy of their classical treatment. Non-singular epoch
– genesis – was constructed in a certain subclass of the Horndeski theory. Considered solution
is stable at all times, and perturbations propagate subluminally. Moreover, it was show that in
a specific range of Lagrangian parameters there is no strong coupling regime in the constructed
model at early times, i.e. the classical field theory description is applicable. For this analysis
of strong coupling problem we have used “naive” dimensional analysis. However, this analysis
may sometimes badly fail in estimating the strong coupling scale. Indeed, examining the potential
strong coupling problem at early times in a contracting cosmological model , which is conformally
related to inflation, from naive dimensional analysis in the Jordan frame one would conclude that
the quantum strong coupling energy scale can be lower than the classical energy scale, but from
the Einstein frame prospective this should not be the case. We illustrate this point by calculation
in the Jordan frame which shows cancellations of the dangerous contributions in the tree level
amplitude. Therefore, it is necessary to use more accurate analysis of the strong coupling problem
using unitarity bounds. To this end, useful unitarity relations and unitary bounds were found in a
theory that contains scalar fields with different sound speeds.
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On cosmologies with “strong gravity in the past” Yulia Ageeva

1. Introduction

In scalar-tensor theories of modified gravity there is a possibility of bouncing or genesis
cosmologies in the Jordan frame, with the effective Planck mass depending on time and tending to
zero in the asymptotic past (“strong gravity in the past”). These models have been discussed [1–3],
for example, in the framework of Horndeski theories [4–7], where it has been proposed to avoid
instabilities, i.e. avoid corresponding no-go theorems [1, 8]. As the effective Planck mass tends
to zero in the asymptotic past, one may worry that the theory is in the strong coupling regime at
early times, so the classical treatment of the background is not legitimate. One way to approach
this issue is to make use of naive dimensional analysis of the interacting theory [9]. Nevertheless,
we point out that naive dimensional analysis may sometimes badly fail in estimating the strong
coupling scale. Our example is the contracting Universe in the Jordan frame which is conformally
related to the inflationary Universe in the Einstein frame [10]. For an appropriate inflationary scalar
potential, the Einstein frame picture guarantees that the classical treatment of the background is
fully legitimate. We will illustrate that, on the other hand, the naive dimensional analysis in the
Jordan frame would show the opposite. This is the problem of the dimensional analysis: the explicit
calculations of tree level amplitude (for scalar perturbations only) in the Jordan frame show strong
cancellations yielding the consistency with the Einstein frame inflationary considerations.

In cosmological scenarios, however, one always meets several different types of perturbations:
for example, scalar and tensor modes. This motivates us to move forward and obtain some useful
generalization of common unitarity relation. Using these unitarity relations, one can derive also
the unitarity bounds. As we have mentioned above, unitarity bounds are particularly useful for
evaluating the quantum strong coupling scale in corresponding EFT (see, e.g., Ref. [11], there we
consider Horndeski bounce model).

This paper is organized as follows. We show the simple model of the Universe with genesis
in Sec. 2, where we also discuss general properties – stability and strong coupling issue. In Sec. 3
we stick to some simple model of contracting Universe and consider the strong coupling problem
firstly at the level of naive dimensional analysis and then calculate the tree level amplitude in this
case in order to accurately analyse the legitimacy of classical treatment. Finally, in Sec. 4 we briefly
discuss the generalization of untarity relations and bound in the case of theory with several scalar
fields with different sound speeds. We conclude in Sec. 5.

2. An example of cosmology with strong gravity in the past: The Universe
beginning with genesis

If one uses general relativity (GR) to describe gravity, then an important characteristic is the null
energy condition (NEC) for the matter energy-momentum tensor 𝑇𝜇𝜈 , which reads 𝑇𝜇𝜈𝑘𝜇𝑘𝜈 ≥ 0 for
every null vector 𝑘𝜇. Once the NEC holds in the cosmological context, then (assuming flat spatial
case) it follows from the Einstein equations that 𝑑𝐻/𝑑𝑡 ≤ 0, where 𝐻 is the Hubble parameter.
This implies that there is a singularity in the past of the expanding universe. Therefore, one should
either modify gravity or violate the NEC to build non-singular cosmology.

It is known since 2010 [7, 12] that the best candidate for NEC violation is the Horndeski
theories [4] (for reviews see, e.g., Refs. [13, 14]). It is sufficient for our purposes to consider a
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subclass of Horndeski Lagrangians instead of full one,

L = 𝐺2(𝜙, 𝑋) − 𝐺3(𝜙, 𝑋)□𝜙 + 𝐺4(𝜙)𝑅, (1)

𝑋 = −1
2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙,

where □𝜙 = 𝑔𝜇𝜈∇𝜇∇𝜈𝜙 and (∇𝜇∇𝜈𝜙)2 = ∇𝜇∇𝜈𝜙∇𝜇∇𝜈𝜙, and 𝑅 is the Ricci scalar. The metric
signature is (−, +, +, +). In this Section we consider this theory at large negative times and study
spatially flat backgrounds. However, in Ref. [3] we show how to construct explicit Horndeski
models with strong gravity in the past. There we introduce several Horndeski cosmologies, which
are stable at all times. We ensure that these models are free of the strong coupling problem. Such
cosmologies are complete in the sense that at late times the Universe expands in a standard way: at
large positive 𝑡, the models turn into general relativity with a conventional massless scalar field that
drives the expansion. We also make sure that the speed of the perturbations about our backgrounds
does not exceed the speed of light. That is why, these cosmologies are exotic but healthy (surely,
modulo possible pathologies at nonlinear level).

It is convenient to use the freedom of field redefinition and choose the background field 𝜙 as
𝑒−𝜙 = −

√
2𝑌0𝑡, where 𝑌0 is a constant. In this paper we stick to the unitary gauge (i.e. 𝛿𝜙 = 0), in

which the field 𝜙 has the latter form. The metric, with perturbations included, is

𝑑𝑠2 = −𝑁2𝑑𝑡2 + 𝛾𝑖 𝑗
(
𝑑𝑥𝑖 + 𝑁 𝑖𝑑𝑡

) (
𝑑𝑥 𝑗 + 𝑁 𝑗𝑑𝑡

)
,

where
𝛾𝑖 𝑗 = 𝑎

2𝑒2𝜁
(
𝑒ℎ
)
𝑖 𝑗
, (𝑒ℎ)𝑖 𝑗 = 𝛿𝑖 𝑗 + ℎ𝑖 𝑗 +

1
2
ℎ𝑖𝑘ℎ𝑘 𝑗 +

1
6
ℎ𝑖𝑘ℎ𝑘𝑙ℎ𝑙 𝑗 + · · · ,

where 𝜁 and transverse traceless matrix ℎ = [ℎ𝑖 𝑗] are scalar and tensor metric perturbations,
respectively, while the lapse and the shift functions involving perturbations are 𝛿𝑁 = 𝛼, 𝛿𝑁𝑖 = 𝜕𝑖𝛽,
which actually are not physical ones. To make contact with Ref. [1], and also for the convenience,
let us rewrite the Lagrangian (1) in terms of ADM variables [14]:

L = 𝐴2(𝑡, 𝑁) + 𝐴3(𝑡, 𝑁)𝐾 + 𝐴4(𝑡, 𝑁) (𝐾2 − 𝐾2
𝑖 𝑗) + 𝐵4(𝑡, 𝑁)𝑅 (3) , (2)

where (3)𝑅𝑖 𝑗 is the Ricci tensor made of 𝛾𝑖 𝑗 ,
√−𝑔 = 𝑁

√
𝛾, 𝐾 = 𝛾𝑖 𝑗𝐾𝑖 𝑗 , (3)𝑅 = 𝛾𝑖 𝑗 (3)𝑅𝑖 𝑗 with

𝐾𝑖 𝑗 being the extrinsic curvature. One can find all details about the connection between ADM and
covariant formalisms in, e.g., Ref. [3].

The equations for background are obtained by setting 𝑁 = 𝑁 (𝑡), 𝑁 𝑖 = 0, 𝛾𝑖 𝑗 = 𝑎2(𝑡)𝛿𝑖 𝑗 in (2)
and are shown in [15]. An explicit construction of genesis stage is conveniently described in the
ADM language. An example we study here is given in Ref. [1]:

𝐴2 = 𝑓 −2𝛼−2−𝛿𝑎2(𝑁), 𝐴3 = 𝑓 −2𝛼−1−𝛿𝑎3(𝑁), 𝐵4 = −𝐴4 = 𝑓 −2𝛼, (3)

where 𝛼 and 𝛿 are constant parameters satisfying

2𝛼 > 1 + 𝛿 , 𝛿 > 0 , (4)

and 𝑓 (𝑡) is some function of time, 𝑎2 and 𝑎3 are some functions of 𝑁 , which were chosen so that
the following solution to equations of motion exists at early times, 𝑡 → −∞:

𝐻 ≡ ¤𝑎
𝑁𝑎

≈ 𝜒

(−𝑡)1+𝛿 , 𝑎 ≈ 1 + 𝜒

𝛿(−𝑡) 𝛿 , 𝑁 ≈ 1 ,

3



P
o
S
(
I
C
P
P
C
R
u
b
a
k
o
v
2
0
2
3
)
0
2
6

On cosmologies with “strong gravity in the past” Yulia Ageeva

where 𝜒 is some combination of the Lagrangian parameters, see [16]. Thus, the setup (3) indeed
admits the genesis solution at early times.

Next, in the theory (1), the quadratic action for tensor and scalar perturbations reads [15]

Sℎℎ + S𝑠𝑠 =

∫
𝑁𝑑𝑡 𝑎3𝑑3𝑥

[
G𝑇

¤ℎ2
𝑖 𝑗

8𝑁2 − F𝑇

8𝑎2 ℎ𝑖 𝑗 ,𝑘ℎ𝑖 𝑗 ,𝑘 + G𝑆

¤𝜁2

𝑁2 − F𝑆

𝑎2 𝜁,𝑖𝜁,𝑖

]
,

where

G𝑇 = −2𝐴4, F𝑇 = 2𝐵4,

F𝑆 =
1
𝑎𝑁

𝑑

𝑑𝑡

( 𝑎
Θ
G2
𝑇

)
− F𝑇 , G𝑆 =

Σ

Θ2 G
2
𝑇 + 3G𝑇 ,

with Σ and Θ being some combinations of 𝐻 and Lagrangian functions 𝐴2, 𝐴3, 𝐴4, 𝐵4 and their
derivatives with respect to 𝑁 [15]. To avoid ghost and gradient instabilities, one requires that

F𝑆 ,G𝑆 , F𝑇 ,G𝑇 > 0.

We also require that the speed of perturbations does not exceed the speed of light.
Now let us briefly turn to the following obstacle, connected with the construction of the

completely healthy genesis model in Horndeski theories, known as the “no-go theorem” [1, 8].
Namely, if the background is non-singular at all times, the functions F𝑆 ,G𝑆 , F𝑇 ,G𝑇 do not vanish
at any time and, crucially, the integral∫ 𝑡

−∞
𝑎(𝑡) [F𝑇 (𝑡) + F𝑆 (𝑡)]𝑑𝑡 , (5)

is divergent at the lower limit of integration. The defining property of genesis is 𝑎(𝑡) → 1
as 𝑡 → −∞, therefore a sufficient condition for the latter property is that F𝑇 and F𝑆 are finite
as 𝑡 → −∞. The no-go theorem states that under these assumptions, there is a gradient or
ghost instability at some stage of the cosmological evolution. However, as it was suggested in
Refs. [1, 2, 17], one (working with unextended Horndeski theories) can require that the integral (5)
is convergent: ∫ 𝑡

−∞
𝑎(𝑡) [F𝑇 (𝑡) + F𝑆 (𝑡)]𝑑𝑡 < ∞ , (6)

so this implies that F𝑇 → 0, F𝑆 → 0 as 𝑡 → −∞. Therefore, the necessary condition (6) for
evading the no-go theorem (together with the genesis condition 𝑎(𝑡) → 1 as 𝑡 → −∞) means that
𝐺4(𝜙) sufficiently rapidly tends to zero as 𝑡 → −∞.1 The requirement that 𝐺4 → 0 as 𝑡 → −∞
immediately implies that the strong coupling energy scale tends to zero in the asymptotic past: 𝐺4

serves as an effective Planck mass squared.
In the setup (3), we have the following early-time asymptotics for quadratic order action

couplings
F𝑇 ∝ (−𝑡)−2𝛼, G𝑇 ∝ (−𝑡)−2𝛼 , as 𝑡 → −∞ , (7)

F𝑆 ∝ (−𝑡)−2𝛼+𝛿 , G𝑆 ∝ (−𝑡)−2𝛼+𝛿 , as 𝑡 → −∞ . (8)

1This follows from the connection between functions in ADM and covariant formalisms, i.e. in this case we have
𝐺4 = −𝐴4 = 𝐵4, see [1, 16].
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In view of (4), (7) and (8), the integral (6) is convergent indeed, but the price to pay is that F𝑇 , G𝑇 ,
F𝑆 , G𝑆 vanish in the asymptotic past, which may signalize the strong coupling problem coming
from either scalar, tensor, or mixed scalar-tensor sector.

So, to see whether the classical treatment of this stage is legitimate, we make use of the naive
dimensional analysis and find the early time asymptotics of the strong coupling energy scales dictated
by various cubic (and also quadratic) terms in the Lagrangian for perturbations. We compare these
scales with the energy scale characteristic of the classical evolution 𝐸𝑐𝑙𝑎𝑠𝑠 ∝ ¤𝐻

𝐻
∝ (−𝑡)−1 (another

classical energy scale 𝐻 is lower). Thus, if the strong coupling energy scales decrease slower than
(−𝑡)−1 as 𝑡 → −∞, the classical treatment of the background evolution is legitimate, assuming that
interactions of higher than third order do not induce lower energy scales than cubic ones.

In this paper we consider interaction terms in scalar sector only, while the analysis of other ones
(mixed and tensor) can be found in [16]. Each term in cubic action involving scalar perturbations
schematically has the following form [16]:

L
(𝑖)
𝜁 𝜁 𝜁

∝ Λ𝑖 · 𝜁3 · (𝜕𝑡 )𝑎𝑖 · (𝜕)𝑏𝑖 , (9)

where 𝑎𝑖 and 𝑏𝑖 are the numbers of temporal and spatial derivatives, respectively. There are 17
terms in cubic order action for scalars [16] and all couplings Λ1, . . . ,Λ17 have power-law behavior
at early times 𝑡 → −∞:

Λ𝑖 ∝ (−𝑡)𝑥𝑖 ,

where 𝑥𝑖 are combinations of the parameters 𝛼 and 𝛿, see [16] for details.
Next, one introduces the canonically normalized field 𝜋 instead of 𝜁 . Since 𝑎(𝑡) and 𝑁 (𝑡) tend

to constants as 𝑡 → −∞, and F𝑆 ∝ G𝑆 , we have (modulo a time-independent factor):

𝜋 =
√︁

2G𝑆𝜁 ∝ (−𝑡)−𝛼+𝛿/2𝜁 .

The fact that the coefficient here tends to zero as 𝑡 → −∞ is crucial for what follows. In terms of
the canonically normalized field 𝜋 one rewrites (9) as2

L
(𝑖)
𝜁 𝜁 𝜁

∝ Λ̂𝑖 · 𝜋3 · (𝜕𝑡 )𝑎𝑖 · (𝜕)𝑏𝑖 , (10)

where
Λ̂𝑖 = Λ𝑖G−3/2

𝑆
= Λ𝑖 (−𝑡)−

3
2 (𝛿−2𝛼) ∝ (−𝑡)𝑥𝑖− 3

2 (𝛿−2𝛼) .

Now, the dimension of Λ̂𝑖 is 1 − 𝑎𝑖 − 𝑏𝑖 , so the strong coupling energy scale associated with the
term L(𝑖)

𝜁 𝜁 𝜁
is

𝐸
𝜁 𝜁 𝜁 , (𝑖)
𝑠𝑡𝑟𝑜𝑛𝑔 ∝ Λ̂

− 1
𝑎𝑖+𝑏𝑖−1

𝑖
∝ (−𝑡)−

𝑥𝑖+3𝛼−3𝛿/2
𝑎𝑖+𝑏𝑖−1 .

By requiring that 𝐸𝑐𝑙𝑎𝑠𝑠 ≪ 𝐸
𝜁 𝜁 𝜁 , (𝑖)
𝑠𝑡𝑟𝑜𝑛𝑔 , where 𝐸𝑐𝑙𝑎𝑠𝑠 is the energy scale of the classical evolution,

we find the condition for the legitimacy of the classical treatment of the early evolution,

𝑥𝑖 + 3𝛼 − 3
2
𝛿 < 𝑎𝑖 + 𝑏𝑖 − 1 , for all 𝑖 = 1, 17 .

2In [16] we comment that it is sufficient to consider the Lagrangian (10) only.
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So, each term from cubic Lagrangian provides some condition on Lagrangian parameters [16], and
the strongest constraints are

0 < 𝛿 <
1
4
, 2 − 3𝛿 > 2𝛼 > 1 + 𝛿 ,

where we also recall (4). The choice of such 𝛼 and 𝛿, satisfying these constraints, opens up the
possibility that the Universe starts up with very low quantum gravity energy scale (the effective
Planck mass asymptotically vanishes as 𝑡 → −∞), and yet its classical evolution is so slow that the
classical field theory description remains valid.

Nevertheless, in the following Section we comment the problem connected with such a dimen-
sional analysis of strong coupling issue.

3. Strong coupling problem: the necessity of accurate analysis involving unitarity
bound

In order to illustrate the mentioned issue about dimensional analysis of strong coupling regime,
in this Section we examine the early times in a contracting cosmological model with “strong gravity
in the past” (Jordan frame), which is conformally related to inflation (Einstein frame). Begin with
the action in the Jordan (bounce) frame is given by [10]

S𝑏 =

∫
𝑑4𝑥

√−𝑔
[
𝑃(𝜙, 𝑋) +

𝑀2
𝑃
𝑓 2(𝜙)
2

𝑅

]
, 𝑃(𝜙, 𝑋) = 𝜔(𝜙)𝑋 −𝑉 (𝜙), (11)

where 𝑀𝑃 = (8𝜋𝐺)−1/2 is reduced Planck mass, 𝑅 is Ricci scalar and

𝜔(𝜙) = 𝑓 2 − 6𝑀2
𝑃

(
𝑑𝑓

𝑑𝜙

)2
, 𝑉 (𝜙) = 𝑓 4(𝜙)𝑉𝐼 (𝜙) .

Here 𝑓 (𝜙) is a yet undetermined function 3, and 𝑉𝐼 (𝜙) is the scalar potential in the Einstein frame.
We do not use special notation for quantities in the Jordan frame.

By conformal transformation 𝑔𝜇𝜈 = 𝑓 −2(𝜙)𝑔𝐼 𝜇𝜈 the theory (11) is related to the following
inflationary model in the Einstein (inflation) frame:

𝑆𝐼 =
1
2

∫
𝑑4𝑥

√−𝑔𝐼
[
𝑀2

𝑃𝑅𝐼 − 𝑔𝜇𝑣𝐼 𝜕𝜇𝜙𝜕𝜈𝜙 − 2𝑉𝐼 (𝜙)
]
,

where subscript “I” refers to quantities in the Einstein frame.
We consider inflation potential that flattens out at large fields, so that the energy density

is always sub-Planckian. Viewed from the Einstein frame, the classical description of inflating
background and semiclassical treatment of cosmological perturbations are perfectly legitimate.
Inflation solution

𝑑𝜙(𝜏)
𝑑𝜏

= −
𝑀𝑃𝑉

′
𝐼√

3𝑉𝐼
, 𝐻𝐼 =

√︂
𝑉𝐼

3
1
𝑀𝑃

,

3We note, that this function 𝑓 (𝜙) is not somehow related to the function 𝑓 (𝑡) from Section 2 – this is just a coincidence
of notations.
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occurs in the slow roll regime at early times, 𝜖 ≪ 1, 𝜂 ≪ 1, where we use the standard notations
for slow roll parameters [18].

Choosing appropriate function 𝑓 (𝜙) defining the conformal transformation one can obtain
contracting Universe in the Jordan frame. We choose such 𝑓 (𝜙), so that 𝑓 → 0 as 𝑡 → −∞. So,
the Jordan frame Hubble parameter

𝐻 = 𝑓
𝑑

𝑑𝜏
ln(𝑎𝐼 𝑓 −1) = − 𝑓 · 𝛼

𝑀𝑃

√︂
𝑉𝐼

3
, (12)

vanishes in the asymptotic past. The Jordan frame effective Planck mass 𝑀 (𝑒 𝑓 𝑓 )
𝑃

= 𝑓 𝑀𝑃 also tends
to zero as 𝑡 → −∞, so we meet “strong gravity in the past” again.

From now on we work in the Jordan frame. In order to proceed the dimensional analysis firstly,
we need to consider quadratic and cubic order action for perturbations. We consider only scalar
perturbations of the metric. The full metric in the Jordan frame cosmic time is [19]

𝑑𝑠2 = −[(1 + 𝛼)2 − 𝑎−2e−2𝜁 (𝜕𝜓)2]𝑑𝑡2 + 2𝜕𝑖𝜓𝑑𝑡𝑑𝑥𝑖 + 𝑎2e2𝜁 𝑑x2 ,

where 𝛼 and 𝜓 are perturbations of the lapse and shift. We work in unitary gauge. Upon solving
the constraints, one arrives at the unconstrained action written in terms of 𝜁 :

S (2)
𝜁 𝜁

=

∫
𝑑𝑡𝑑3𝑥𝑎3G𝑆

[
¤𝜁2 − 1

𝑎2 𝜁,𝑖𝜁,𝑖

]
,

where the coupling is given by [18]

G𝑆 =
1
2

¤𝜙2

𝐻2
𝐼

=
𝑓 2

2𝐻2
𝐼

(
𝑑𝜙

𝑑𝜏

)2
,

while in the slow roll case one has

G𝑆 = 𝑓 2 ·
𝑀4

𝑃
(𝑉 ′

𝐼
)2

2𝑉2
𝐼

.

The terms in the cubic action for scalars [19–21], are

S (3)
𝜁 𝜁 𝜁

=

∫
𝑑𝑡𝑑3𝑥 𝑎3

{
C1𝜁 ¤𝜁2 + 1

𝑎2 C2𝜁 (𝜕𝜁)2 + C4 ¤𝜁 (𝜕𝑖𝜁) (𝜕𝑖X) + C5𝜕
2𝜁 (𝜕X)2

}
, (13)

where 𝜕2 = 𝜕𝑖𝜕𝑖 and 𝜕2X = ¤𝜁 . The coefficients are straightforwardly calculated. To the leading
order in the slow roll parameters we have

C1 = 𝑓 2 ·
𝑀6

𝑃
(𝑉 ′

𝐼
)2

4𝑉4
𝐼

(
4𝑉𝐼𝑉 ′′

𝐼 − 3(𝑉 ′
𝐼 )2) , C2 = 𝑓 2 ·

𝑀6
𝑃
(𝑉 ′

𝐼
)2

4𝑉4
𝐼

(
5(𝑉 ′

𝐼 )2 − 4𝑉𝐼𝑉 ′′
𝐼

)
, (14a)

C4 = 𝑓 2𝑀
6
𝑃
(𝑉 ′

𝐼
)4

16𝑉6
𝐼

(
𝑀2

𝑃 (𝑉 ′
𝐼 )2 − 8𝑉2

𝐼

)
, C5 = 𝑓 2𝑀

8
𝑃
(𝑉 ′

𝐼
)6

32𝑉6
𝐼

. (14b)

Using these expressions, we now proceed with the naive dimensional analysis of the strong coupling
problem. The classical energy scale is of order of the Hubble parameter (12),

|𝐸 (𝑐𝑙𝑎𝑠𝑠) | = |𝐻 | ∼ 𝑓
√
𝑉𝐼

𝑀𝑃

. (15)
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Next, we introduce canonically normalized field

𝜁𝑐 =
√︁

2G𝑆𝜁 ,

so the cubic action still has the form (13) with the replacement C̃𝑖 = (2G𝑆)−3/2C𝑖 , so that

C̃1 =
1
𝑓
·
(−3(𝑉 ′

𝐼
)2 + 4𝑉𝐼𝑉 ′′

𝐼
)

4𝑉𝐼𝑉 ′
𝐼

, C̃2 =
1
𝑓
·
(5(𝑉 ′

𝐼
)2 − 4𝑉𝐼𝑉 ′′

𝐼
)

4𝑉𝐼𝑉 ′
𝐼

,

C̃4 ∼ 1
𝑓
·
𝑉 ′
𝐼

𝑉𝐼
, C̃5 ∼ 1

𝑓
· 𝑀2

𝑃

(
𝑉 ′
𝐼

𝑉𝐼

)3
.

All operators in the resulting cubic Lagrangian are dimension-5, so one immediately finds naive
estimates for the associated strong coupling scales, 𝐸 (𝑛𝑎𝑖𝑣𝑒)

𝑖
∼ |C̃𝑖 |−1. Naively, the most relevant

of these scales are the lowest ones, which are associated with the largest C𝑖 .
For asymptotically flat inflaton potential, one typically has 𝜂 ≫ 𝜖 , i.e. 𝑉𝐼𝑉 ′′

𝐼
≫ (𝑉 ′

𝐼
)2, so the

largest couplings in (14) are C1 and C2, see [18] for details. The two naive strong coupling scales
are of the same order:

𝐸 (𝑛𝑎𝑖𝑣𝑒) ∼ 𝑓
𝑉 ′
𝐼

𝑉 ′′
𝐼

. (16)

Thus, depending on the shape of the inflaton potential, classical energy scale (15) may exceed strong
coupling energy scale (16).

We conclude that naive dimensional analysis in the Jordan frame suggests that there is a quantum
strong coupling energy scale which, for appropriate inflaton potential, is below the classical scale.
If not for the Einstein frame considerations, one would be tempted to dismiss such a model.

To end up with dimensional analysis, we notice that the third and fourth terms in the integrand
in (13) per se do not imply strong coupling, even naively. Thus, we do not have to consider the
terms with couplings C4 and C5 in our analysis of the amplitudes.

Now, turn to more accurate analysis of strong coupling. Making use of the first and second
terms in the cubic action (13), with C1,2 replaced by C̃1,2 and 𝜁 by canonically normalized 𝜁𝑐, it is
straightforward to calculate 2 → 2 scattering amplitude. Before giving the result, we note that if
we set, for the sake of argument, C̃2 = 0, then our naive expectation would be confirmed; indeed,
the corresponding matrix element

𝑀C̃1 ; C̃2=0 = −𝐸
2

𝑓 2 ·
(9𝑥2 − 5)

(
3(𝑉 ′

𝐼
)2 − 4𝑉𝐼𝑉 ′′

𝐼

)2
64(𝑥2 − 1)𝑉2

𝐼
(𝑉 ′

𝐼
)2

, 𝑥 ≡ cos𝜃 ,

so the partial wave amplitudes (PWA)

𝑎 (𝑙) =
1

32𝜋

∫
𝑑𝑥 𝑃𝑙 (𝑥) 𝑀C̃1 ; C̃2=0 ,

where 𝑃𝑙 is the Legendre polynomials, would hit the unitarity bound |𝑎 (𝑙) | = 1/2 at 𝐸 ∼ 𝐸 (𝑛𝑎𝑖𝑣𝑒)

[22]. The same situation would occur if we set C̃1 = 0. However, there are strong cancellations.
Indeed, the matrix elements in 𝑠-, 𝑡- and 𝑢-channels are, respectively

𝑀𝑠 = −𝐸
2

4
(3C̃1 + C̃2)2 , 𝑀𝑡 =

𝐸2

2(1 − 𝑥)

[
C̃1 + C̃2(2 − 𝑥)

]2
, 𝑀𝑢 =

𝐸2

2(1 + 𝑥)

[
C̃1 + C̃2(2 + 𝑥)

]2
,

8
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and the resulting matrix element is

𝑀 = 𝑀𝑠 + 𝑀𝑡 + 𝑀𝑢 =
𝐸2

𝑓 2 ·
(41𝑥2 − 45) (𝑉 ′

𝐼
)2 − 40(𝑥2 − 1)𝑉𝐼𝑉 ′′

𝐼

16(𝑥2 − 1)𝑉2
𝐼

.

We see that the strong coupling scale is actually given by 𝐸 (𝑠𝑡𝑟𝑜𝑛𝑔) ∼ 𝑓 ·
(
𝑉𝐼

𝑉 ′′
𝐼

)1/2
∼ 𝑓 · 𝑀𝑃

𝜂1/2 .
As anticipated, this scale is much higher than the classical energy scale (15) for 𝑉𝐼 ≪ 𝑀4

𝑃
. Our

calculation of the amplitude confirms the absence of the strong coupling problem in Jordan frame.

4. The generalisation of unitarity relations and unitarity bound

Motivated with the discussion from the previous Section about the necessity of more accurate
analysis of strong coupling as well as the fact that one always meets different types of perturbations in
cosmoogical context, in this Section we show the unitarity relation for 2 → 2 scattering processes in
theories with scalar fields 𝜙𝑖 whose sound speeds 𝑢𝑖 are different and the generalization of unitarity
bound. All details about calculations one can find in Ref. [23]. In the set up with

𝑆 =
∑︁
𝑖

𝑆𝜙𝑖
, 𝑆𝜙𝑖

=

∫
𝑑4𝑥

(
1
2
¤𝜙𝑖2 −

1
2
𝑢2
𝑖 ( ®∇𝜙𝑖)2

)
,

the generalized PWA unitarity relation are as follows

− 𝑖
2

(
𝑎𝑙,𝛼𝛽 − 𝑎∗𝑙,𝛽𝛼

)
=
∑︁
𝛾

𝑔𝛾𝑎𝑙,𝛼𝛾𝑎
∗
𝑙,𝛽𝛾 ,

where

𝑔𝛾 =
2

𝑢5𝛾𝑢6𝛾 (𝑢5𝛾 + 𝑢6𝛾)
distinguishable , 𝑔𝛾 =

1
2𝑢3

𝛾

identical ,

where we write down the cases of distinguishable and identical particles in the two-particle inter-
mediate state. Upon redefining

𝑎𝑙,𝛼𝛽 =
𝑎̃𝑙,𝛼𝛽
√
𝑔𝛼𝑔𝛽

,

the most stringent tree level unitarity bound is obtained for the largest eigenvalue of the tree level
matrix 𝑎̃ (𝑙) (which is real and symmetric) and this bound reads

|maximum eigenvalue of 𝑎̃ (𝑙) | ≤ 1
2
.

So, the latter inequality is particularly relevant when it comes to perturbative unitarity and the
estimate of the strong coupling scale, see, e.g. [22].

5. Conclusion

In this paper we briefly discuss the different approaches for the analysis of strong coupling
issue. We illustrates the main point: naive dimensional analysis may grossly underestimate the
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quantum strong coupling energy scale. There may be less trivial situations where this property
holds, e.g., due to kinematical or dynamical symmetries. Then, motivated by scalar-tensor gravities,
we consider a theory which contains massless scalar fields with different sound speeds and show
the unitarity relations for partial wave amplitudes of 2 → 2 scattering as well as unitarity bounds in
the most general case. As it was mentioned, these bounds can be used for accurate estimating the
strong coupling scale of a pertinent effective field theory (EFT).
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