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False vacuum decay around black holes Ratmir Gazizov

1. Introduction

According to experimental data and calculations within the Standard Model, the Higgs vacuum
is metastable [1] and can decay due to quantum tunneling. The standard approach to calculating the
probability of false vacuum decay in flat space-time is based on instantons – classical solutions of
field equations in Euclidean space-time [2]. The Euclidean actions of the instantons give exponential
suppression of the probability of false vacuum decay 𝑃 ∼ 𝑒−𝑆 . If decay occurs in the thermal bath
with temperature 𝑇 , the instantons are periodic in Euclidean time with period 𝛽 = 1/𝑇 . At high
temperatures, these periodic solutions become time-independent sphalerons, and the respective
probabilities take the form 𝑃 = exp(−𝐸𝑠𝑝ℎ/𝑇), where 𝐸𝑠𝑝ℎ is the sphaleron energy. In this case,
false vacuum decay proceeds via thermal activation.

It has been suggested that small black holes (BH) may increase the probability of false vacuum
decay in their vicinity [3]. This is closely related to the fact that small BHs have high temperatures
𝑇𝐻 = 𝑀2

𝑃𝑙
/8𝜋𝑀𝐵𝐻 and heat the surrounding medium. However, this conclusion is based on specific

assumptions, which were criticized in the literature [4]. Thus, a calculation from first principles is
needed [5].

In this work, we briefly describe a consistent semiclassical approach and perform numerical
calculations in the simplified case of thermal equilibrium between the black hole and its environment.

2. Formulation of the problem

We start with the functional integral for the decay probability [6, 7]:

𝑃 =

∫
𝐷𝜙 𝑓𝐷𝜙𝑖𝐷𝜙′𝑖 ⟨𝜙 𝑓 | 𝑆 |𝜙𝑖⟩ ⟨𝜙𝑖 | 𝜌̂ |𝜙′𝑖⟩ ⟨𝜙′𝑖 | 𝑆† |𝜙 𝑓 ⟩ , (1)

where 𝜙𝑖 and 𝜙′
𝑖

are the initial configurations of the scalar field 𝜙(𝑡, 𝑥), 𝜙 𝑓 is the final field
configuration corresponding to the true vacuum, 𝜌̂ is the density matrix describing the initial state
with temperature 𝑇 , and 𝑆 is the quantum evolution operator. Fields 𝜙(𝑡, 𝑥) and 𝜙′(𝑡, 𝑥) can be
united as one field on the double-bent time contour in Fig.1.

Figure 1: The contour in the complex time plane for the calculation of the decay probability.
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Performing functional integration in the saddle-point approximation, we obtain:

𝑃 ∼ 𝑒𝑖𝑆 [𝜙𝑐𝑙 ]+𝐵[𝜙𝑐𝑙 ] (2)

where 𝜙𝑐𝑙 is the classical solution on the double-bent contour with certain boundary conditions and
𝐵[𝜙𝑐𝑙] denotes the contribution of the initial density matrix in the integrand of (1).

We obtain the classical field equation from the action of the scalar field:

𝑆 =

∫ √−𝑔𝑑4𝑥

(
1
2
𝑔𝜇𝜈𝜕

𝜇𝜙𝜕𝜈𝜙 −𝑉 (𝜙)
)

(3)

where 𝑔𝜇𝜈 is the external Schwarzschild metric with the interval

𝑑𝑠2 = 𝑓 (𝑟) 𝑑𝑡2 − 𝑑𝑟2

𝑓 (𝑟) − 𝑟2𝑑Ω2, 𝑓 (𝑟) = 1 − 2𝑀
𝑟

. (4)

Hereafter, we use Planck units with 𝑀𝑃𝑙 = 1.
Assuming that the field 𝜙 is spherically symmetric, we rescale it and introduce the tortoise

coordinate 𝑥:
𝜙 =

𝜑(𝑡, 𝑥)
𝑟

, 𝑥 = 𝑟 + 2𝑀 ln (𝑟 − 2𝑀) (5)

Then the action takes the form:

𝑆 = 4𝜋
∫

𝑑𝑡𝑑𝑥

(
1
2
(𝜕𝑡𝜑)2 − 1

2
(𝜕𝑥𝜑)2 − 1

2
𝑈 (𝑥) 𝜑2 − 𝑟2 𝑓 (𝑟)𝑉

(𝜑
𝑟

))
, (6)

where 𝑈 (𝑥) = 𝑓 (𝑟) 𝑓 ′(𝑟)/𝑟 = 2𝑀𝑟−3 (1 − 2𝑀/𝑟). The field equation can be simply obtained from
this action.

In numerical calculations, we use the potential:

𝑉 (𝜙) = 𝑚2

2
𝜙2 − 𝑚

√
𝜆

2
𝜙3 + 𝜆

8
(1 − 𝜖) 𝜙4 (7)

plotted in (Fig. 2). We exclude parameters 𝑚 and 𝜆 from the action (6) by changing the variables
𝜙 → 𝑚𝜙/

√
𝜆, 𝑥 → 𝑚−1𝑥, 𝑡 → 𝑚−1𝑡, 𝑟 → 𝑚−1𝑟. Also, we use 𝜖 = 0.1, making thin wall

approximation marginally valid.

Figure 2: The potential 𝑉 (𝜙) in (7).
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The boundary conditions are derived from the functional integral (1) and imposed on the
Fourier coefficients:

𝜙𝑖 (𝑥) =
∫ ∞

0

𝑑𝜔
√

4𝜋𝜔

∑︁
𝐼=𝑅,𝐿

(
𝑎𝐼,𝜔 𝑓𝐼,𝜔 (𝑥)𝑒−𝑖𝜔𝑡𝑖 + 𝑏𝐼,𝜔 𝑓 ∗𝐼,𝜔 (𝑥)𝑒𝑖𝜔𝑡𝑖

)
(8)

𝑎𝐼,𝜔 = 𝑏∗𝐼,𝜔𝑒
−𝜔𝛽𝐼 (9)

𝛽𝐼 =

{
𝛽𝐻 , 𝐼 = 𝑅

𝛽𝐸 , 𝐼 = 𝐿
(10)

where letters 𝑅 and 𝐿 denote right and left waves respectively, 𝑓𝐼,𝜔 (𝑥) are the mode functions
derived from the linearized field equation, 𝛽𝐻 = 8𝜋𝑀𝐵𝐻/𝑀2

𝑃𝑙
is the Hawking temperature of the

BH, and 𝛽𝐸 is the temperature of the environment.
This is a complicated problem to obtain a solution with boundary conditions (9) in the general

case. However, if the temperature of the BH and the environment are equal, then the expression for
the decay probability is simplified. In this case, the solution on the particular contour is real, and
the boundary term 𝐵[𝜙𝑐𝑙] in (2) vanishes. The solution 𝜙𝑐𝑙 (𝑡, 𝑥) is periodic in Euclidean time with
period 𝛽 = 𝛽𝐻 = 𝛽𝐸 (Fig. 3). The decay probability is simply 𝑃 = 𝑒−𝑆𝐸 , where 𝑆𝐸 is the action of
the periodic instanton 𝜙𝑐𝑙.

Figure 3: Euclidean part of the contour.

So, we need to solve the classical field equations in Euclidean time with boundary conditions:

𝜕𝜏𝜙𝑐𝑙 (0, 𝑥) = 𝜕𝜏𝜙𝑐𝑙 (𝛽/2, 𝑥) = 0 (11)

𝜕𝑥𝜙𝑐𝑙 (𝑡,−∞) = 𝜕𝑥𝜙𝑐𝑙 (𝑡,∞) = 0 (12)

3. Numerical results

We solve the system of discretized field equations using the Newton-Raphson method.
At first, we obtain the instanton in flat space. This solution at 𝜖 ≪ 1 is compared in Fig. 4 to

the thin-wall profile (points versus solid line). The false vacuum bubble has radius 𝑚𝑟𝑏 ≃ 10.
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(a) (b)

Figure 4: (a) The instanton 𝜙(𝑡, 𝑥) in flat Euclidean space-time, (b) The profile of the some solution at 𝑡 = 0
(dots) is compared to the thin-wall result (line). Both figures are obtained using lattice 𝑁𝑡 × 𝑁𝑥 = 150× 150.

Next, we numerically compute the periodic instantons with different periods 𝛽 in the presence
of a BH in thermal equilibrium with the environment. In Fig.5, the latter has radius 𝑚𝑟ℎ =

2𝑀𝑚/𝑀2
𝑃𝑙

= 12. Notably, these solutions are not realistic instantons since their period does not
match that of the BH 𝑚𝛽/2 ≠ 𝑚𝛽𝐻/2 = 8𝜋𝑀𝑚/2𝑀2

𝑃𝑙
= 75.4, but the geometry of space is curved

by the BH with mass 𝑀 . By changing the period, we approach the physical 𝑚𝛽𝐻/2 in accordance
with the formula for the Hawking radiation temperature. In this limit, the instanton smoothly
approaches a time-independent sphaleron, as is clear from Fig.6, showing dependence of the action
on 𝛽. We also note that the radius and the temperature of a BH are related by 𝑚𝑟ℎ = 𝑚𝛽𝐻/4𝜋. So
the sizes of the BH and the false vacuum bubble are comparable.

(a) 𝑚𝛽/2 = 100 (b) 𝑚𝛽/2 = 85 (c) 𝑚𝛽/2 = 80

(d) 𝑚𝛽/2 = 79.7 (e) 𝑚𝛽/2 = 79.6 (f) 𝑚𝛽/2 = 78.6

Figure 5: Periodic instantons at different 𝛽 in the presence of a BH with radius 𝑚𝑟ℎ = 2𝑀𝑚/𝑀2
𝑃𝑙

= 12,
lattice 𝑁𝑡 × 𝑁𝑥 = 150 × 300 is used.
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(a) (b)

Figure 6: Euclidean action 𝑆 as a function of period 𝛽. We consider nontrivial periodic instantons (blue)
and time-independent sphaleron (red) at 𝑚𝑟ℎ = 2𝑀𝑚/𝑀2

𝑃𝑙
= 12, and 𝑚𝛽𝐻/2 = 75.4.

We conclude that in the physical limit, periodic instantons turn into sphalerons. Dependence
of the sphaleron action on the inverse BH temperature is shown in Fig.7, where the black dots and
blue line correspond to presence and absence of a BH, respectively. In the infinity – temperature
limit 𝛽 → 0, the size of the BH approaches zero, and the BH and flat-space results coincide.
In other words, small BHs do not significantly change the probability of decay in the very hot
environment. Conversely, as the temperature approaches zero, large massive BH significantly
changes the geometry of space, affecting the sphaleron solutions. This happens at 𝑚𝛽 ≃ 10, i.e.
when the radius of the BH achieves 𝑚𝑟ℎ ≃ 0.1 × 𝑚𝑟𝑏.

Figure 7: Euclidean action 𝑆𝐸 of shalerons as a function of the inverse temperature 𝛽. Black dotted and solid
blue lines correspond to presence of BH with 𝑚𝛽𝐻 = 𝑚𝛽 = 8𝜋𝑚𝑀/𝑀2

𝑃𝑙
and to decay in flat space-time.

The gray line shows the Euclidean action of flat space instanton at zero temperature.

4. Conclusions and further research

In this talk, we considered decay of false vacuum at nonzero temperature in the presence of
a BH in thermal equilibrium with the environment. We had explicitly shown that the physical
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solutions describing this process are static sphalerons. This means that the respective transitions
proceed via thermal activation, i.e. overbarrier jumps caused by thermal fluctuations. Besides,
we saw that small BHs with 𝑚𝑟ℎ ≪ 𝑚𝑟𝑏 do not significantly change the sphaleron in the hot
environment and the respective probabilities too. On the other hand, large BH with 𝑚𝑟ℎ 3 𝑚𝑟𝑏

changes the geometry of space and, consequently, the sphaleron solutions and the decay probability.
More interesting is the nonequilibrium case, when the BH is immersed in the environment

at different temperature. Our solutions with 𝛽 ≠ 𝛽𝐻 do not describe this situation. Rather, the
physical solutions are defined on the contour in Fig.8 and satisfy sophisticated boundary conditions.
It is also of interest to consider more realistic potentials, such as 𝑉 (𝜙) = −𝜆𝜙4/4, to estimate the
probability of Higgs vacuum decay induced by BH.

Figure 8: A time contour in general case
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