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We study the process of massive particle production in a plane wave of massless field of high
intensity, in a toy model of two interacting scalar fields. We solve the Heisenberg equation for
quantum amplitudes, and find resonantly growing solution similar to parametric resonance. We
complement the study [1] in which only the case of small masses has been considered, extending
to the case of arbitrary masses. We present the instability threshold for the plane wave amplitude
depending on the mass. We have shown that the particle production effect is also observed outside
the low-mass approximation.
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The effects of the birth of particles in the field of waves of high intensity Ekaterina Dmitrieva

1. Introdoction

The process of particle formation in intense external fields contains interesting phenomena
[2–7], such as the creation of particles in strong electromagnetic fields [7, 8]. These processes
cannot always be described by the standard perturbation theory [9–14]. For example, phenomena
similar to parametric resonance are described in [15–19]. In order for parametric resonance to
occur, the time-fluctuating field must interact with the field associated with the forming particles.
Such conditions may be possible at the reheating stage after inflation [6, 9, 18, 20–22].

A toy model of a similar process, for which the oscillating field depends on both time and
spatial coordinate, was studied by A.Arza[1]. This model includes two scalar fields. In the work
mentioned above, it was demonstrated that the formation of massive particles is possible with a
sufficiently large amplitude of a plane wave of a massless field, so large that it is unstable. The
author considered the case of an approximation of low mass compared to the frequency of a plane
wave. In this article, we study how the result will change if we do not use this approximation and
consider the more general case of any mass.

2. Instability in two-scalar model

Consider two interacting scalar fields 𝜙 and 𝜒,

L =
1
2
(𝜕𝜇𝜙)2 + 1

2
(𝜕𝜇𝜒)2 − 1

2
𝑚2

𝜒𝜒
2 − 𝑔𝜙𝜒2, (1)

where 𝑚𝜒 is a mass of 𝜒 while 𝜙 is massless, 𝑔 is a coupling constant,

𝜙(®𝑥, 𝑡) =
√︁

2𝜌𝜙

𝜔𝑝

cos( ®𝑝 · ®𝑥 − 𝜔 ®𝑝𝑡), (2)

Here ®𝑝 and 𝜔 ®𝑝 =
√︁
®𝑝2 are spatial momentum and frequency of the plane wave, 𝜌𝜙 is its averaged

energy density.
The corresponding equations of motion (EoM) of the model (1) will be

□ 𝜙 = −𝑔𝜒2, (3)

(□ + 𝑚2
𝜒)𝜒 = −2𝑔𝜙𝜒. (4)

We are interested in the case when 𝜙 is a beam of particles with momentum ®𝑝. In this case, we
can consider 𝜙 as a classical field. We consider time scales in which 𝜙 is not significantly depleted.
This allows us to neglect the back reaction. Then we can represent 𝜙 as a monochromatic plane
wave (2). And we will write the quantum field 𝜒 using the creation and annihilation operators in
Fourier as

𝜒 =

∫
𝑑3𝑘

(2𝜋)3
1√︁
2Ω®𝑘

(
𝜒®𝑘 (𝑡)𝑒

𝑖 ®𝑘 · ®𝑥 + 𝜒®𝑘 (𝑡)
†𝑒−𝑖

®𝑘 · ®𝑥
)
, (5)

where Ω®𝑘 =

√︃
𝑘2 + 𝑚2

𝜒 and the operators 𝜒®𝑘 and 𝜒
†
®𝑘

simultaneously satisfy the commutation

relations [𝜒®𝑘 , 𝜒 ®𝑘‘] = 0, [𝜒®𝑘 , 𝜒† ®𝑘‘] = (2𝜋)3𝛿3( ®𝑘 − ®𝑘 ‘). Substituting the decomposition (5) into
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The effects of the birth of particles in the field of waves of high intensity Ekaterina Dmitrieva

EoM (4) with (2) and denoting 𝐴®𝑘 = 𝜒®𝑘 + 𝜒
†
− ®𝑘

, as a result, we get,

(𝜕2
𝑡 +Ω2

®𝑘
)𝐴®𝑘 = −𝜔2

®𝑝𝛼

(√︄
Ω®𝑘

Ω®𝑘− ®𝑝
𝐴®𝑘− ®𝑝𝑒

−𝑖𝜔 ®𝑝𝑡 +
√︄

Ω®𝑘
Ω®𝑘+ ®𝑝

𝐴®𝑘+ ®𝑝𝑒
𝑖𝜔 ®𝑝𝑡

)
, (6)

where 𝛼 ≡ 𝑔
√

2𝜌𝜙

𝜔3
®𝑝

. Let’s pick out the standard oscillation part of 𝜒®𝑘 as 𝜒®𝑘 = 𝑎 ®𝑘 (𝑡)𝑒
−𝑖Ω ®𝑘 𝑡 and

𝜒
†
®𝑘
= 𝑎

†
®𝑘
(𝑡)𝑒𝑖Ω ®𝑘 𝑡 and substitute into the equation (6). The time evolution for the amplitudes 𝑎 ®𝑘 , 𝑎†®𝑘

is governed by the equation,

𝑒−𝑖Ω ®𝑘 𝑡 ( ¥𝑎 ®𝑘 − 2𝑖Ω®𝑘 ¤𝑎 ®𝑘) + 𝑒𝑖Ω− ®𝑘 𝑡 ( ¥𝑎†
− ®𝑘

+ 2𝑖Ω− ®𝑘 ¤𝑎
†
− ®𝑘
) =

= −𝜔2
®𝑝𝛼

(√︄
Ω®𝑘
Ω®𝑘+ ®𝑝

(
𝑎
†
− ®𝑘− ®𝑝

𝑒
𝑖 (Ω− ®𝑘− ®𝑝+𝜔 ®𝑝 )𝑡 + 𝑎 ®𝑘+ ®𝑝𝑒

−𝑖 (Ω ®𝑘+ ®𝑝−𝜔 ®𝑝 )𝑡
)
+ (7)

+
√︄

Ω®𝑘
Ω®𝑘− ®𝑝

(
𝑎
†
− ®𝑘+ ®𝑝

𝑒
𝑖 (Ω− ®𝑘+ ®𝑝−𝜔 ®𝑝 )𝑡 + 𝑎 ®𝑘− ®𝑝𝑒

−𝑖 (Ω ®𝑘− ®𝑝+𝜔 ®𝑝 )𝑡
))
.

The right column of equation (7) can be obtained from the left column using Hermitian conjugation
and 𝑘 → −𝑘 substitution. Since we are considering the moment when 𝑡 = 0 and there are no
particles, then the main process that we will take into account is 𝜙 → 2𝜒. Denoting

𝜎®𝑝− ®𝑘 = −𝜔2
®𝑝𝛼

√︄
Ω®𝑘

Ω ®𝑝− ®𝑘
, and 𝜎®𝑝+®𝑘 = −𝜔2

®𝑝𝛼

√︄
Ω®𝑘
Ω ®𝑝+®𝑘

, (8)

we will consider only those terms of the equation (7) that correspond to the creation of particles,
let us rewrite eq. (7) for brevity as

𝑒−𝑖Ω ®𝑘 𝑡 ( ¥𝑎 ®𝑘 − 2𝑖Ω®𝑘 ¤𝑎 ®𝑘) = 𝜎®𝑝− ®𝑘𝑎
†
®𝑝− ®𝑘

𝑒
𝑖 (Ω ®𝑝− ®𝑘−𝜔 ®𝑝 )𝑡 + 𝜎®𝑝+®𝑘𝑎

†
− ®𝑝− ®𝑘

𝑒
𝑖 (Ω− ®𝑝− ®𝑘+𝜔 ®𝑝 )𝑡 . (9)

The term with 𝑎
†
®𝑝− ®𝑘

is related to the production of 𝜒 particles with momentum ®𝑝− ®𝑘 , 𝑎†
− ®𝑝− ®𝑘

— with

momentum (− ®𝑝 − ®𝑘). At the same time, we take into account that Ω− ®𝑝− ®𝑘 = Ω ®𝑝+®𝑘 by definition.
It turns out that the resonance related to the last term, is weaker than the first one (details will be
given in [23]). Thus, we obtain the equation

𝑒−𝑖Ω ®𝑘 𝑡 ( ¥𝑎 ®𝑘 − 2𝑖Ω®𝑘 ¤𝑎 ®𝑘) = 𝜎®𝑝− ®𝑘𝑎
†
®𝑝− ®𝑘

𝑒
𝑖 (Ω ®𝑝− ®𝑘−𝜔 ®𝑝 )𝑡 . (10)

This equation can be simplified if 𝑎 ®𝑘 (𝑡) vary slower with time than 𝜒®𝑘 (𝑡) in a way that we can
neglect the second derivative in (10),

| ¥𝑎 ®𝑘 | ≪ |Ω®𝑘 ¤𝑎 ®𝑘 |, (11)

which limit is referred as rotating wave approximation (RWA) in [1]:

¤𝑎 ®𝑘 = 𝑖
𝜎®𝑝− ®𝑘
2Ω®𝑘

𝑎
†
®𝑝− ®𝑘

𝑒𝑖 𝜖 ®𝑘 𝑡 , (12)

where 𝜖𝑘 = Ω®𝑘 +Ω ®𝑝− ®𝑘 −𝜔𝑝 . We can obtain the same equation as (12) for the Hermitian conjugate
case.
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The effects of the birth of particles in the field of waves of high intensity Ekaterina Dmitrieva

2.1 Solution

The approximated solution [1] of equation (12) reads (in our notations),

𝑎 ®𝑘 (𝑡) = 𝑒𝑖 𝜖 ®𝑘 𝑡/2𝑎 ®𝑘 (0)
(
cosh(𝑠0

®𝑘
𝑡) − 𝑖

𝜖 ®𝑘
2𝑠0

®𝑘

sinh(𝑠0
®𝑘
𝑡)) + 𝑖

𝜎®𝑝− ®𝑘
2𝑠 ®𝑘Ω®𝑘

𝑎
†
®𝑝− ®𝑘

(0) sinh(𝑠0
®𝑘
𝑡)
)
, (13)

where

𝑠0
®𝑘
=

1
2

√√√√𝜎2
®𝑝− ®𝑘

Ω2
®𝑘

− 𝜖2
®𝑘
. (14)

Substituting the solution (13),(14) into the approximation (11), we obtain:

𝜖 ®𝑘 ≪ Ω®𝑘 , 𝑠0
®𝑘
≪ Ω®𝑘 . (15)

The first condition reads, Ω ®𝑝− ®𝑘 ≪ 𝜔 ®𝑝, which restricts ourselves to the cases of small 𝑚𝜒 ≪ 𝜔𝑝.
The second condition reduces to 𝛼 ≪ 1. We must pay special attention to the case when either Ω®𝑘
or Ω ®𝑝− ®𝑘 approaches to zero, because 𝑠0

®𝑘
could blow up. For example, when 𝑚𝜒 = 0,Ω ®𝑝− ®𝑘 = 0 if

®𝑘 = ®𝑝. The opposite limit 𝑚𝜒 ≫ 𝜔𝑝 is of great interest as well. For this reason it is worth solving
the equation (10) without RWA approximation. The solution of eq. (10) can be obtained by the
Bogolyubov transformations [6, 21], details will be given in [23].

𝑎 ®𝑘 (𝑡) = 𝑒𝑖 𝜖 ®𝑘 𝑡/2

[
𝑎 ®𝑘 (0)

(
cosh(𝑠 ®𝑘𝑡) − 𝑖

𝜖2
®𝑘
/4 − 𝑠2

®𝑘
−Ω®𝑘𝜖 ®𝑘

𝑠 ®𝑘 (𝜖 ®𝑘 − 2Ω®𝑘)
sinh(𝑠 ®𝑘𝑡)

)
− (16)

− 𝑎
†
®𝑝− ®𝑘

(0) · 𝑖
𝜎®𝑝− ®𝑘

𝑠 ®𝑘 (𝜖 ®𝑘 − 2Ω®𝑘)
sinh(𝑠 ®𝑘𝑡)

]
,

where

𝑠 ®𝑘 =

√√
−
𝜖2
®𝑘

4
− 2Ω2

®𝑘
+ 𝜖 ®𝑘Ω®𝑘 +

√︂
Ω2

®𝑘
𝜖2
®𝑘
+ 4Ω4

®𝑘
+ 𝜎2

®𝑝− ®𝑘
− 4𝜖 ®𝑘Ω

3
®𝑘
. (17)

2.2 Conditions of instability

It can be seen from solution (16) that 𝑠 must be real, otherwise the solutions will disappear.
This means that modes that demonstrate parametric resonance must satisfy the condition

𝑠2
®𝑘
> 0. (18)

Now we will move on to dimensionless expressions: ®𝜅 = ®𝑘/𝜔 ®𝑝, 𝜇 = 𝑚𝜒/𝜔 ®𝑝, ®𝑣 = ®𝑝/𝜔 ®𝑝 and
𝛽 ®𝜅 =

√︁
𝜅2 + 𝜇2. Also 𝜂 ®𝜅 = 𝑠 ®𝑘/𝜔 ®𝑝, which in terms of dimensionless parameters will have the form:

𝜂 ®𝜅 =

(
− 1

4
(𝛽 ®𝜅 + 𝛽®𝑣− ®𝑘 − 1)2 − 2𝛽2

®𝜅 + (𝛽 ®𝜅 + 𝛽®𝑣− ®𝜅 − 1)𝛽 ®𝑘+ (19)

+

√︄
𝛽2
®𝜅 (𝛽 ®𝜅 + 𝛽®𝑣− ®𝜅 − 1)2 + 4𝛽4

®𝜅 − 4(𝛽 ®𝜅 + 𝛽®𝑣− ®𝜅 − 1)𝛽3
®𝜅 +

𝛽 ®𝜅𝛼2

𝛽®𝑣− ®𝜅

) 1
2

.
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The effects of the birth of particles in the field of waves of high intensity Ekaterina Dmitrieva

Figure 1: 𝜂 ®𝜅 as a 𝜇 function for 𝛼 = 1 and
𝜅 = 0.1, 0.2, 0.5.

Figure 2: 𝜂 ®𝜅 as a 𝜇 function for 𝛼 = 10 and
𝜅 = 0.1, 0.2, 0.5.

Figure 3: Dependence 𝜂 ®𝜅 (𝜇) for 𝛼 = 0.1 and
𝜅 = 0.1 for approximation and without it.

Figure 4: Dependence 𝜂 ®𝜅 (𝜅) for 𝛼 = 1, 𝜇 =√
𝛼/2, 𝜃 = 0, 0.2, 0.5.

Here we have defined 𝜃 as is the angle between ®𝑘 and ®𝑝. Consider the case 𝑣 = 1, then the
plots of 𝜂 ®𝜅 for 𝜃 = 0 and various values of 𝜅 and 𝛼 are shown in figures 1, 2.

The instability boundary corresponds to the equation 𝜂2
®𝜅 = 0, therefore, we solve it and find the

instability limits for 𝜅 using numerical calculations. For fixed values of 𝛼 and 𝜇 =
√
𝛼/2, a solution

can be found analytically. The result of such calculations is shown in the figure 4.
With a fixed 𝜅, we can express the dependence of 𝛼 on 𝜇 from equation 𝜂2

®𝜅 = 0:

𝛼(𝜇) = 1
4

√︄
𝛽®𝑣− ®𝜅
𝛽 ®𝜅

(𝛽 ®𝜅 + 𝛽®𝑣− ®𝜅 − 1)2(−3𝛽 ®𝜅 + 𝛽®𝑣− ®𝜅 − 1)2. (20)

This dependence for various 𝜅 and 𝜃 = 0 is shown in the figure 5. This graph can be considered as
a stability boundary, and we also see that the greater 𝜇 we are interested in, the greater 𝛼 we need
to take. The dependence 𝜂 ®𝜅 (𝜅) for 𝜇 =

√
𝛼/2 and fixed 𝜃 is shown in the figures 9, 8, 7. From these

graphs, we can see that for 𝛼 ≪ 1, the result completely coincides with the approximated result [1].

5
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Figure 5: Dependence 𝛼(𝜇) at fixed 𝜅 =

0.1, 0.2, 0.5 at 𝜃 = 0. The larger 𝜇, the larger
𝛼 is required to start the process. 𝛼 ∼ 𝜌𝜙 for
large masses, a large 𝜌𝜙 is required.

Figure 6: Dependence of Γ

𝜔4
®𝑝

on 𝜇 for the

values 𝛼 + 𝜖, 𝜇 − 𝜖 shown in figure 5.

Figure 7: Dependence 𝜂 ®𝜅 (𝜅) for
𝛼 = 0.001, 𝜇 =

√
𝛼/2 and fixed

𝜃 = 0.1, 0.05, 0.1..

Figure 8: Dependence 𝜂 ®𝜅 (𝜅) for
𝛼 = 0.01, 𝜇 =

√
𝛼/2 and fixed

𝜃 = 0.1, 0.05, 0.1.

Figure 9: Dependence 𝜂 ®𝜅 (𝜅) for
𝛼 = 0.1, 𝜇 =

√
𝛼/2 and fixed

𝜃 = 0.1, 0.05, 0.1.

3. Decay rate

In general, to use the assumption of asymptotic states, it is required that the mass of the
particles formed be below than the mass of the decaying particles. But in our case, the beam has
a very high energy density, and the final particles are not in asymptotic states, since they continue
to interact with the decaying field. Therefore, to find decay rate Γ, we use theory that is used in
post-inflationary cosmology [24],[25, 26]. Thus, we define the decay rate for process 𝜙𝑖 → 𝜙 𝑗 + 𝜙𝑘

as [1],[25]:

Γ =

∫
𝑑3𝑝 𝑗

(2𝜋)3

∫
𝑑3𝑝𝑘

(2𝜋)3
𝑑 |𝑆 𝑓 𝑖 |2

𝑑𝑡
. (21)

Scattering matrix 𝑆 𝑓 𝑖 of the transition between the states |𝑖⟩ and | 𝑓 ⟩ [1]:

𝑆 𝑓 𝑖 =

∫ 𝑇

0
𝑑𝑡

∫
𝑑3𝑥⟨ 𝑓 |𝐻𝐼 |𝑖⟩, (22)

where 𝐻𝐼 = 𝑔𝜙𝜒2, 𝑇 - transition time from the initial state |𝑖⟩ which contains one 𝜙 particle with
momentum ®𝑝 to the final state | 𝑓 ⟩ consisting of two 𝜒 particles with momenta ®𝑘 and ®𝑞 respectively.

6
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We consider the case of the absence of 𝜒 particles at the initial moment of time and take into
account that the back reaction has not yet been observed at the final moment of time. Therefore, we
take the time interval equal to 𝑇 = 1

2𝑠®𝑘
, since it is quite short. During this time, the 𝜙 will not be

significantly depleted, and other processes have not yet begun. We will move on to dimensionless
parameters and as a result we will get

Γ =
𝜔4

®𝑝𝛼

16(2𝜋)5

∫ 𝜋

0

∫ 𝜅+

𝜅−

sinh(𝜃)𝜅2𝑑𝜅𝑑𝜃

𝛽 ®𝑘𝛽®𝑣− ®𝜅

(
16𝐶2

1𝜂
2(sinh(2) − 4𝜂®𝑣− ®𝜅 sinh(1)) +

(1 − 𝐶2
2 + 𝐶2

1 )
2

4𝜂®𝑣− ®𝜅
+

(23)

+𝜂®𝑣− ®𝜅 (1 − (𝐶2
2 − 𝐶2

1 )
2(cosh(1) + (1))) + 2𝜂3

®𝑣− ®𝜅 sinh(2) (1 + 𝐶2
2 − 𝐶2

1 )
)

where 𝐶1 =

𝜖 2
®𝑘

4 −𝜂2
®𝜅−𝛽®𝜅 𝜖 ®𝑘

𝜂®𝜅 (𝜖 ®𝜅−2𝛽®𝜅 ) and 𝐶2 =
𝜎®𝑣− ®𝜅

𝜂®𝜅 (𝜖 ®𝜅−2𝛽®𝜅 ) .
The result of integrating formula (23) is shown in Figure 6. The boundaries of integration are

𝜅− = 0.1 and 𝜅+ = 0.9. When drawing this graph, we take the values of 𝜇 and 𝛼 at the boundary
of instability (20), which is shown in Figure 5 and deviate from them by the value of 𝜖 as follows
𝛼 + 𝜖, 𝜇 − 𝜖 . As a result, we can conclude that the Γ value becomes greater the closer we get to the
boundary of instability.

4. Standing wave

Let’s replace the running wave with a standing wave. If eight running waves overlap each other
in a rectangular area, then a standing wave is formed under condition (25) [27]:

𝜙𝑠 (𝜉, 𝑡) = 8
√︁

2𝜌𝜙

𝜔
cos(𝑝𝑥𝜉𝑥) cos(𝑝𝑦𝜉𝑦) cos(𝑝𝑧𝜉𝑧) cos(𝜔𝑡), (24)

where 𝜔 is the frequency of the waves that form a standing wave. The condition for the formation
of a standing wave

𝑝𝑥 =
𝜋𝑛1
𝑎

, 𝑝𝑦 =
𝜋𝑛2
𝑏

, 𝑝𝑧 =
𝜋𝑛3
𝑐

; 𝑛1, 𝑛2, 𝑛3 = 1, 2, 3, ..., (25)

where a, b and c are the sizes of the area in which the standing wave is formed. Similarly to the
case of a running wave, for a standing wave we write 𝜒 as

𝜒 =

∫
𝑑3𝑘

(2𝜋)3
1√︁
2Ω®𝑘

(
𝜒®𝑘 (𝑡)𝑒

𝑖 ®𝑘 · ®𝜉 + 𝜒®𝑘 (𝑡)
†𝑒−𝑖

®𝑘 · ®𝜉
)
. (26)

Consider the right-hand side of of the equation (4), where we replaced 𝜙 with 𝜙𝑠 and after doing
the same steps as for the running wave after the transformation we get

−2𝑔𝜙𝑠𝜒 = −2𝑔
∫

𝑑3𝑘

(2𝜋)3

√︁
2𝜌𝜙

2𝜔
√︁

2Ω®𝑘

(
𝜒®𝑘 (𝑡)𝑒

𝑖 ®𝑘 · ®𝜉 + 𝜒®𝑘 (𝑡)
†𝑒−𝑖

®𝑘 · ®𝜉
)
(𝑒𝑖𝜔𝑡 + 𝑒−𝑖𝜔𝑡 )

×
(
𝑒𝑖 (𝑝𝑥 𝜉𝑥+𝑝𝑦 𝜉𝑦+𝑝𝑧 𝜉𝑧 ) + 𝑒𝑖 (𝑝𝑥 𝜉𝑥−𝑝𝑦 𝜉𝑦+𝑝𝑧 𝜉𝑧 ) + 𝑒𝑖 (−𝑝𝑥 𝜉𝑥+𝑝𝑦 𝜉𝑦+𝑝𝑧 𝜉𝑧 ) + 𝑒𝑖 (−𝑝𝑥 𝜉𝑥−𝑝𝑦 𝜉𝑦+𝑝𝑧 𝜉𝑧 )

+𝑒𝑖 (𝑝𝑥 𝜉𝑥+𝑝𝑦 𝜉𝑦−𝑝𝑧 𝜉𝑧 ) + 𝑒𝑖 (𝑝𝑥 𝜉𝑥−𝑝𝑦 𝜉𝑦−𝑝𝑧 𝜉𝑧 ) + 𝑒𝑖 (−𝑝𝑥 𝜉𝑥+𝑝𝑦 𝜉𝑦−𝑝𝑧 𝜉𝑧 ) + 𝑒𝑖 (−𝑝𝑥 𝜉𝑥−𝑝𝑦 𝜉𝑦−𝑝𝑧 𝜉𝑧 )
)
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Here we will introduce the designation ®𝜉 = (𝜉𝑥 , 𝜉𝑦 , 𝜉𝑧), ®𝑝1 = (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧), ®𝑝2 = (−𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧),
®𝑝3 = (𝑝𝑥 ,−𝑝𝑦 , 𝑝𝑧), ®𝑝4 = (−𝑝𝑥 ,−𝑝𝑦 , 𝑝𝑧) and we will denote 𝐴𝑘 = 𝜒𝑘 + 𝜒

†
−𝑘 and take into account

that the left part is the same as for the running wave, we get:

(𝜕2
𝑡 +Ω2

®𝑘
)𝐴®𝑘 = −𝛼𝜔2

4∑︁
𝑗=1

∫
𝑑3𝑘

(2𝜋)3

[
𝑒−𝑖𝜔𝑡

( 𝐴®𝑘− ®𝑝 𝑗√︃
2Ω®𝑘− ®𝑝 𝑗

+
𝐴®𝑘+ ®𝑝 𝑗√︃
2Ω®𝑘+ ®𝑝 𝑗

)
+ (27)

+𝑒𝑖𝜔𝑡
( 𝐴®𝑘− ®𝑝 𝑗√︃

2Ω®𝑘− ®𝑝 𝑗

+
𝐴®𝑘+ ®𝑝 𝑗√︃
2Ω®𝑘+ ®𝑝 𝑗

)]
Based on the result obtained, it can be concluded that when considering a standing wave, the
mechanism and amplitude of the process remain the same as for a running wave, but additional
terms appear in the equations. Denote 𝜒𝑘 = 𝑎𝑘𝑒

−𝑖Ω𝑘 𝑡 , and as a result, we get group of equations
for 𝑎𝑘 : [

¥𝑎𝑘 + 𝑖 ¤𝑎𝑘 (𝜖𝑎 𝑗−𝑘 − 2Ω𝑘) + 𝑎𝑘 (−
𝜖2
𝑝 𝑗−𝑘

4
+ 𝜖𝑝 𝑗−𝑘Ω𝑘)

]
= 𝜎𝑝 𝑗−𝑘𝑎

†
𝑝 𝑗−𝑘 , (28)

where 𝜎 ®𝑝 𝑗− ®𝑘 = −𝜔2𝛼

√︂
Ω ®𝑘

Ω ®𝑘− ®𝑝𝑗

, 𝜖 ®𝑝 𝑗− ®𝑘 = Ω®𝑘 +Ω ®𝑝 𝑗− ®𝑘 − 𝜔.

As a consequence, we get 4 equations for different momenta, but the condition (25) is imposed
on them, and also all momenta have the same modulus value. For each of these four equations, we
can find the appropriate solution:

𝑎
𝑗

®𝑘
(𝑡) = 𝑒

𝑖 𝜖 ®𝑝𝑗− ®𝑘 𝑡/2
[
𝑎 ®𝑘 (0) (cosh(𝑠 ®𝑝 𝑗− ®𝑘𝑡) − 𝑖

𝜖 2
®𝑝𝑗− ®𝑘
4 − 𝑠2

®𝑝 𝑗− ®𝑘
−Ω®𝑘𝜖 ®𝑝 𝑗− ®𝑘

𝑠 ®𝑝 𝑗− ®𝑘 (𝜖 ®𝑝 𝑗− ®𝑘 − 2Ω®𝑘)
sinh(𝑠 ®𝑝 𝑗− ®𝑘𝑡))−

−𝑖
𝜎 ®𝑝 𝑗− ®𝑘

𝑠 ®𝑝 𝑗− ®𝑘 (𝜖 ®𝑝 𝑗− ®𝑘 − 2Ω®𝑘)
𝑎
†
®𝑝 𝑗− ®𝑘

(0) sinh(𝑠 ®𝑝 𝑗− ®𝑘𝑡)
]
,

𝑗 = 1, .., 4.
As a result, we conclude that particles can be generated by four traveling waves and momenta

𝑝 𝑗 of different directions, which were formed from the initial standing wave. These waves can be
studied independently, and the process of particle generation is described in the same way as for a
traveling wave.

5. Conclusion

In this article, we examined a toy model with the interaction of 𝑔𝜙𝜒2 and studied the decay of
a plane wave of a massless field into massive particles 𝜙 → 2𝜒 in this model. We have found under
what conditions parametric resonance is possible (see Fig. 5). We have indicated that the decay
occurs at a field amplitude above the threshold value not only in the case of low mass (𝑚𝜒 ≪ 𝜔𝑝)
considered in [1], but for arbitrary masses. In the case of large masses (𝑚𝜒 ≫ 𝜔𝑝), the required
threshold amplitude of the field 𝜙 is significantly larger compared to the case of small masses. We
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also extended the obtained result to the case of a standing wave of initial massless scalar field, which
can be further generalized to the case of scalar millicharges production standing electromagnetic
wave. The obtained result can be used to study nonperturbative effects that can be included in
collider physics, astrophysics and cosmology [12, 13].

Acknowledgements. The authors thank Maxim Fitkevich and Dmitry Kirpichnikov for valuable
discussions. The work is supported by RSF grant 21-72-10151
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