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1. Introduction

Construction of consistent interacting higher-spin theories is a long-standing problem. Various
no-go theorems [5] indicate that setting up self-consistent couplings of Fronsdal fields on a flat back-
ground is a non-trivial task which requires a significant revision of the principles and foundations of
relativistic field theory. On the other hand, there are well-known nonlinear Vasiliev equations on an
(A)dS background [6] and the conformal theory of interacting higher spins on a flat background [7].
Of great interest are supersymmetric generalizations of higher spins. Combining supersymmetry
with gauge symmetry of higher spins provides significant limitations on the structure of admissible
interactions. As is well known, it is a superfield language that essentially simplifies the construction
of supersymmetric theories.

In four dimensions, off-shell superfield approaches are known for theories with N ≤ 3. Most
appropriate for construction of unconstrained off-shell formulations of N = 2 supersymmetric
theories is N = 2 harmonic superspace (HSS) [8]. In a series of articles [1–4], we showed that
the HSS approach is very efficient for describing N = 2 massless Fronsdal fields [1], their cubic
interactions with a hypermultiplet [2, 3] and higher-spin N = 2 superconformal multiplets [4]. The
purpose of this short article is to summarize the results obtained, so as to help the interested reader
to get familiar with these new applications of the HSS method. We also announce a number of
results on N = 2 superconformal higher spins to be soon published.

2. ABC of harmonic superspace

The conventionalN = 2, 4𝐷 superspace is parametrized by the coordinates
(
𝑥𝛼 ¤𝛼, \𝛼𝑖, \̄ ¤𝛼𝑖 ) , 𝑖 =

1, 2. In N = 2 harmonic superspace these coordinates are supplemented by new auxiliary harmonic
variables 𝑢±

𝑖
, which parametrize an internal sphere 𝑆2 and satisfy the condition 𝑢+𝑖𝑢−

𝑖
= 1. Because

of the presence of the 𝑆2 harmonics, any harmonic superfield has an infinite number of component
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fields. One can consider the analytic basis in HSS, \±𝛼, ¤𝛼 := \𝛼, ¤𝛼𝑖𝑢±
𝑖
, 𝑥𝛼 ¤𝛼

𝐴
:= 𝑥𝛼 ¤𝛼−4𝑖\𝛼(𝑖 \̄ ¤𝛼 𝑗 )𝑢+

𝑖
𝑢−
𝑗
.

N = 2 supersymmetry with parameters 𝜖 𝛼𝑖 , 𝜖 ¤𝛼𝑖 (𝜖±𝛼 = 𝜖 𝛼𝑖𝑢±
𝑖
, 𝜖± ¤𝛼 = 𝜖 ¤𝛼𝑖𝑢±

𝑖
) is realized on the

HSS coordinates as:

𝛿𝜖 𝑥
𝛼 ¤𝛼
𝐴 = −4𝑖

(
𝜖−𝛼 \̄+ ¤𝛼 + \+𝛼𝜖− ¤𝛼) , 𝛿𝜖 \

±` = 𝜖±`, 𝛿𝜖 \̄
± ¤̀ = 𝜖± ¤̀ , 𝛿𝜖 𝑢

±
𝑖 = 0. (1)

It immediately follows from the form of these transformations that there is an invariant subspace
with half of Grassmann variables:

Z :=
(
𝑥𝛼 ¤𝛼
𝐴 , \+𝛼, \̄+ ¤𝛼, 𝑢±𝑖

)
. (2)

This is called analytic harmonic superspace, and in N = 2 theories it plays a fundamental role
similar to N = 1 chiral superspace in N = 1 theories. All N = 2 multiplets admit a nice description
by analytic superfields. For description of the matter N = 2 hypermultiplets with non-zero mass
(see below) it is also necesary to add an auxiliary coordinate 𝑥5, such that:

𝛿𝜖 𝑥
5 = 2𝑖

(
𝜖−𝛼\+𝛼 − 𝜖−¤𝛼 \̄

+ ¤𝛼) . (3)

The analogue of complex conjugation in HSS is the tilde conjugation. On complex functions, it acts
like ordinary complex conjugation. The action of tilde-conjugation on the harmonic superspace
coordinates is given by:

𝑥𝛼 ¤𝛼
𝐴

= 𝑥𝛼 ¤𝛼
𝐴 , \̃±𝛼 = \̄±¤𝛼,

˜̄\±¤𝛼 = −\±𝛼, 𝑢±𝑖 = −𝑢±𝑖 , 𝑢±
𝑖
= 𝑢±𝑖 , 𝑥5 = 𝑥5. (4)

The important ingredients of the harmonic superspace formalism are the covariant harmonic
derivatives. They are defined as follows:

D++ := 𝜕++ − 4𝑖\+𝜌 \̄+ ¤𝜌𝜕𝜌 ¤𝜌 + \+�̂�𝜕+�̂� +
[
(\+)2 − (\̄+)2] 𝜕5, (5a)

D−− := 𝜕−− − 4𝑖\−𝜌 \̄− ¤𝜌𝜕𝜌 ¤𝜌 + \−�̂�𝜕−
�̂� +

[
(\−)2 − (\̄−)2] 𝜕5, (5b)

D0 = 𝜕0 + \+�̂�𝜕−
�̂� − \−�̂�𝜕+�̂� (5c)

and satisfy 𝑆𝑈 (2) algebraic relations:

[D++,D−−] = D0, [D0,D±±] = ±2D±±. (6)

Here we used the standard notation for the partial harmonic derivatives:

𝜕++ = 𝑢+𝑖
𝜕

𝜕𝑢−𝑖
, 𝜕−− = 𝑢−𝑖

𝜕

𝜕𝑢+𝑖
, 𝜕0 = 𝑢+𝑖

𝜕

𝜕𝑢+𝑖
− 𝑢−𝑖

𝜕

𝜕𝑢−𝑖
. (7)

All known N = 2 theories have a superfield formulation in the harmonic superspace [8]. Here
we present two important examples: the ultimate N = 2 multiplet of matter - a hypermultiplet and
the simplest Maxwell gauge multiplet.

Hypermultiplet is described by an unconstrained analytic superfield 𝑞+(Z). It contains a
doublet of complex scalars 𝑓 𝑖 and a pair of singlet spinors 𝜓𝛼, ^𝛼, as well as an infinite set of
auxiliary fields which comes from the harmonic 𝑆2 expansions:

𝑞+(Z) = 𝑓 𝑖𝑢+𝑖 + \+𝛼𝜓𝛼 + \̄+¤𝛼 ¯̂ ¤𝛼 + auxiliary fields. (8)
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So the off-shell hypermultiplet carries ∞B +∞F degrees of freedom. For massive hypermultiplet
(with mass equal to central charge) one must introduce dependence on 𝑥5 as 𝑞+(Z, 𝑥5) = 𝑒𝑖𝑚𝑥5

𝑞+(Z).
The free hypermultiplet action has the form1:

𝑆 𝑓 𝑟𝑒𝑒 = −
∫

𝑑Z (−4)𝑞+D++𝑞+ = −1
2

∫
𝑑Z (−4) 𝑞+𝑎D++𝑞+𝑎 . (9)

Here we introduced the notation 𝑞+𝑎 = (𝑞+, 𝑞+), 𝑞+𝑎 = 𝜖𝑎𝑏𝑞
+𝑏 = (𝑞+,−𝑞+). In the second form

we have manifest Pauli-Gürsey 𝑆𝑈 (2)𝑃𝐺 symmetry (see e.g. [8]). This form is most convenient
for construction of higher-spin cubic vertices. After eliminating an infinite number of auxiliary
fields, the action (9) is reduced to the sum of free actions for a doublet of scalars and a pair of
fermions, so on shell there survives 4𝐵 + 4𝐹 degrees of freedom. Note that both massive and
massless hypermultiplets are described uniformly.

N = 2 Maxwell supermultiplet is described by an unconstrained analytic gauge potential
𝑉++(Z) with the gauge freedom 𝛿_𝑉

++(Z) = D++_(Z). Using this freedom one can impose Wess-
Zumino gauge:

𝑉++
𝑊𝑍 = −4𝑖\+𝛽 \̄

+
¤𝛽𝐴

𝛽 ¤𝛽 + 𝑖(\̄+)2𝜙 − 𝑖(\+)2𝜙 + (\̄+)2\+𝛽𝜓𝑖
𝛽𝑢

−
𝑖 + (\+)2\̄+

¤𝛽�̄�𝑖
¤𝛽𝑢

−
𝑖 + (\+)2 (\̄+)2𝐷 (𝑖 𝑗 )𝑢−𝑖 𝑢

−
𝑗 . (10)

Here we are left with the gauge spin 1 field 𝐴𝛽 ¤𝛽 with the gauge freedom 𝛿𝐴𝛽 ¤𝛽 ∼ 𝜕𝛽 ¤𝛽𝑎, the doublet
of fermions 𝜓𝑖

𝛽
, a complex scalar 𝜙 and an auxiliary triplet of real scalar fields 𝐷 (𝑖 𝑗 ) . So off shell

there are 8B + 8F degrees of freedom. The free supersymmetric and gauge-invariant action reads:

𝑆 (𝑠=1) =

∫
𝑑4𝑥𝑑8\𝑑𝑢𝑉++𝑉−−, (11)

where 𝑉−− is a solution of zero-curvature condition:

D++𝑉−− = D−−𝑉++. (12)

In Wess-Zumino gauge, after elimination of auxiliary fields, the action is reduced to the sum of free
Maxwell action, free action for doublet of fermions and Klein-Gordon action for complex scalar.

3. N = 2 higher-spin multiplets

N = 2 higher-spin supermultiplet with highest spin 𝑠 ≥ 2 (we will denote such multiplet as
spin s supermultiplet) is described by the set of unconstrained analytic gauge potentials 2:

ℎ++𝛼(𝑠−1) ¤𝛼(𝑠−1) (Z), ℎ++𝛼(𝑠−2) ¤𝛼(𝑠−2) (Z), ℎ++𝛼(𝑠−1) ¤𝛼(𝑠−2)+(Z), ℎ++ ¤𝛼(𝑠−1)𝛼(𝑠−2)+(Z), (13)

where we used notations for symmetrized combinations of indices 𝛼(𝑠) := (𝛼1 . . . 𝛼𝑠), ¤𝛼(𝑠) :=
( ¤𝛼1 . . . ¤𝛼𝑠). These superfields are related by rigid N = 2 supersymmetry transformations:

𝛿𝜖 ℎ
++𝛼(𝑠−1) ¤𝛼(𝑠−1) = −4𝑖

[
ℎ++𝛼(𝑠−1) ( ¤𝛼(𝑠−2)+𝜖− ¤𝛼𝑠−1 ) − ℎ++ ¤𝛼(𝑠−1) (𝛼(𝑠−2)+ 𝜖−𝛼𝑠−1 ) ] ,

𝛿𝜖 ℎ
++𝛼(𝑠−2) ¤𝛼(𝑠−2) = 2𝑖

[
ℎ++(𝛼(𝑠−2)𝛼𝑠−1 ) ¤𝛼(𝑠−2)+𝜖−𝛼𝑠−1

+ ℎ++𝛼(𝑠−2) ( ¤𝛼(𝑠−2) ¤𝛼𝑠−1 )+ 𝜖−¤𝛼𝑠−1

]
,

𝛿𝜖 ℎ
++𝛼(𝑠−1) ¤𝛼(𝑠−2)+ = 0, 𝛿𝜖 ℎ

++ ¤𝛼(𝑠−1)𝛼(𝑠−2)+ = 0.

(14)

1Integration measure in the analytic superspace is defined as 𝑑Z (−4) := 𝑑4𝑥𝑑2\+𝑑2 \̄+𝑑𝑢. Harmonic integration is
defined as

∫
𝑑𝑢 1 = 1, otherwise 0.

2Spin 1 also fits in this construction: we just have to omit all the superfields where the number of indices is formally
negative.
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The gauge potentials are defined up to a gauge freedom:

𝛿_ℎ
++𝛼(𝑠−1) ¤𝛼(𝑠−1) = D++_𝛼(𝑠−1) ¤𝛼(𝑠−1) + 4𝑖

[
_+𝛼(𝑠−1) ( ¤𝛼(𝑠−2) \̄+ ¤𝛼𝑠−1 )

+ \+(𝛼𝑠−1_̄+𝛼(𝑠−2) ) ¤𝛼(𝑠−1) ] ,
𝛿_ℎ

++𝛼(𝑠−2) ¤𝛼(𝑠−2) = D++_𝛼(𝑠−2) ¤𝛼(𝑠−2) − 2𝑖
[
_+(𝛼(𝑠−2)𝛼𝑠−1 ) ¤𝛼(𝑠−2)\+𝛼𝑠−1

+ _̄+( ¤𝛼(𝑠−2) ¤𝛼𝑠−1 )𝛼(𝑠−2) \̄+¤𝛼𝑠−1

]
,

𝛿_ℎ
++𝛼(𝑠−1) ¤𝛼(𝑠−2)+ = D++_𝛼(𝑠−1) ¤𝛼(𝑠−2)+,

𝛿_ℎ
++ ¤𝛼(𝑠−1)𝛼(𝑠−2)+ = D++_̄ ¤𝛼(𝑠−1)𝛼(𝑠−2)+.

(15)

Using this freedom, one can impose the Wess-Zumino gauge:

ℎ
++𝛼(𝑠−1) ¤𝛼(𝑠−1)
𝑊𝑍

= −4𝑖\+𝛽 \̄
+
¤𝛽Φ

(𝛽𝛼(𝑠−1) ) ( ¤𝛽 ¤𝛼(𝑠−1) ) − 4𝑖\+(𝛼 \̄+( ¤𝛼Φ𝛼(𝑠−2) ) ¤𝛼(𝑠−2) )

+ (\̄+)2\+𝛽𝜓𝛼(𝑠−1) ¤𝛼(𝑠−1)𝑖
𝛽

𝑢−𝑖 + (\+)2\̄+
¤𝛽�̄�𝛼(𝑠−1) ¤𝛼(𝑠−1)𝑖

¤𝛽 𝑢−𝑖

+ (\+)2(\̄+)2𝑉 𝛼(𝑠−1) ¤𝛼(𝑠−1) (𝑖 𝑗 )𝑢−𝑖 𝑢
−
𝑗 ,

ℎ
++𝛼(𝑠−2) ¤𝛼(𝑠−2)
𝑊𝑍

= −4𝑖\+𝛽 \̄
+
¤𝛽𝐶

(𝛽𝛼(𝑠−2) ) ( ¤𝛽 ¤𝛼(𝑠−2) ) − 4𝑖\+(𝛼 \̄+( ¤𝛼𝐶𝛼(𝑠−3) ) ¤𝛼(𝑠−3) )

+ (\̄+)2\+𝛽𝜌𝛼(𝑠−2) ¤𝛼(𝑠−2)𝑖
𝛽

𝑢−𝑖 + (\+)2\̄+
¤𝛽 �̄�𝛼(𝑠−2) ¤𝛼(𝑠−2)𝑖

¤𝛽 𝑢−𝑖

+ (\+)2(\̄+)2𝑆𝛼(𝑠−2) ¤𝛼(𝑠−2) (𝑖 𝑗 )𝑢−𝑖 𝑢
−
𝑗 ,

ℎ
++𝛼(𝑠−1) ¤𝛼(𝑠−2)+
𝑊𝑍

= (\+)2\̄+¤𝛽𝑃
𝛼(𝑠−1) ¤𝛼(𝑠−2) ¤𝛽 +

(
\̄+
)2
\+𝛽𝑇

¤𝛼(𝑠−2)𝛼(𝑠−1)𝛽

+ (\+)2(\̄+)2𝜒𝛼(𝑠−1) ¤𝛼(𝑠−2)𝑖𝑢−𝑖 ,

ℎ
++ ¤𝛼(𝑠−1)𝛼(𝑠−2)+
𝑊𝑍

=
�(

ℎ
++𝛼(𝑠−1) ¤𝛼(𝑠−2)+
𝑊𝑍

)
.

(16)

These remaining fields form the off-shell N = 2 supersymmetric spin s multiplet. The residual
gauge freedom, which preserves the WZ gauge form (16), implies the appropriate gauge freedom on
the component fields. As a result, we obtain a set of physical massless spin fields 3 (𝑠, 𝑠 − 1/2, 𝑠 −
1/2, 𝑠 − 1) and a set of auxiliary fields4:

• Fields (Φ𝛼(𝑠) ¤𝛼(𝑠) ,Φ𝛼(𝑠−2) ¤𝛼(𝑠−2) ) and (𝐶𝛼(𝑠−1) ¤𝛼(𝑠−1) , 𝐶𝛼(𝑠−3) ¤𝛼(𝑠−3) ) correspond to the
massless Fronsdal spin 𝑠 and 𝑠 − 1 fields:

𝛿Φ𝛼(𝑠) ¤𝛼(𝑠) ∼ 𝜕 (𝛼( ¤𝛼𝑎𝛼(𝑠−1) ) ¤𝛼(𝑠−1) ) , 𝛿Φ𝛼(𝑠−2) ¤𝛼(𝑠−2) ∼ 𝜕𝛽 ¤𝛽𝑎
(𝛽𝛼(𝑠−2) ) ( ¤𝛽 ¤𝛼(𝑠−2) ) ;

𝛿𝐶𝛼(𝑠−1) ¤𝛼(𝑠−1) ∼ 𝜕 (𝛼( ¤𝛼𝑏𝛼(𝑠−2) ) ¤𝛼(𝑠−2) ) , 𝛿𝐶𝛼(𝑠−3) ¤𝛼(𝑠−3) ∼ 𝜕𝛽 ¤𝛽𝑎
(𝛽𝛼(𝑠−3) ) ( ¤𝛽 ¤𝛼(𝑠−3) ) .

(17)

• Fields 𝑉 𝛼(𝑠−1) ¤𝛼(𝑠−1) (𝑖 𝑗 ) , 𝑆𝛼(𝑠−2) ¤𝛼(𝑠−2) (𝑖 𝑗 ) are real bosonic auxiliary fields, 𝑃𝛼(𝑠−1) ¤𝛼(𝑠−2) ¤̀ ,

𝑇 𝛼(𝑠−1)a ¤𝛼(𝑠−2) are complex bosonic auxiliary fields.
• Fields

(
𝜓
𝛼(𝑠−1) ¤𝛼(𝑠−1)
𝛽

, �̄�
𝛼(𝑠−2) ( ¤𝛼(𝑠−3) ¤𝛽)
¤𝛽

)
possess gauge freedom characteristic of the doublet

of massless spin 𝑠 − 1
2 Fang-Fronsdal fields:

𝛿𝜓
𝛼(𝑠−1) ¤𝛼(𝑠−1)
𝛽

∼ 𝜕
( ¤𝛼
𝛽

b𝛼(𝑠−1) ¤𝛼(𝑠−1) ) , 𝛿�̄�
𝛼(𝑠−2) ( ¤𝛼(𝑠−3) ¤𝛽)
¤𝛽 ∼ 𝜕𝛽 ¤𝛽b

(𝛼(𝑠−2)𝛽) ( ¤𝛼(𝑠−3) ¤𝛽) . (18)

3For a review of description of higher-spin fields in the spinor notation see, e.g., [9].
4Note that some auxiliary fields must be properly redefined in terms of physical ones for ensuring them to be gauge

group scalars.
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• Fields 𝜌𝛼(𝑠−1) ¤𝛼(𝑠−2)𝑖 , 𝜒𝛼(𝑠−1) ¤𝛼(𝑠−2)𝑖 are auxiliary fermionic fields.
As a result, N = 2 spin s supermultiplet involves 8(s2 + (s − 1)2)𝐵 + 8(s2 + (s − 1)2)𝐹 off-

shell degrees of freedom5. In the simplest 𝑠 = 2 case one reproduces the off-shell multiplet of the
“minimal” N = 2 Einstein supergravity.

The manifestly N = 2 supersymmetric and gauge invariant linearized action has the universal
form for any s:

𝑆 (𝑠) = (−1)𝑠+1
∫

𝑑4𝑥𝑑8\𝑑𝑢
{
𝐺++𝛼(𝑠−1) ¤𝛼(𝑠−1)𝐺−−

𝛼(𝑠−1) ¤𝛼(𝑠−1)

+ 4𝐺++𝛼(𝑠−2) ¤𝛼(𝑠−2)𝐺−−
𝛼(𝑠−2) ¤𝛼(𝑠−2)

}
,

(19)

where we have introduced N = 2 supersymmetry-covariant fields (𝛿𝜖𝐺++... = 0)

𝐺++𝛼(𝑠−1) ¤𝛼(𝑠−1) = ℎ++𝛼(𝑠−1) ¤𝛼(𝑠−1) + 4𝑖
[
ℎ++𝛼(𝑠−1) ( ¤𝛼(𝑠−2)+\̄− ¤𝛼𝑠−1 )

− ℎ++ ¤𝛼(𝑠−1) (𝛼(𝑠−2)+ \−𝛼𝑠−1 ) ] ,
𝐺++𝛼(𝑠−2) ¤𝛼(𝑠−2) = ℎ++𝛼(𝑠−2) ¤𝛼(𝑠−2) − 2𝑖

[
ℎ++𝛼(𝑠−2)𝛼𝑠−1 ) ¤𝛼(𝑠−2)+\−𝛼𝑠−1

+ ℎ++𝛼(𝑠−2) ( ¤𝛼(𝑠−2) ¤𝛼(𝑠−1) )+ \̄−¤𝛼𝑠−1

]
,

(20)

and the negatively charged potentials are related to the basic ones by the appropriate harmonic
zero-curvature conditions:

D++𝐺−−𝛼(𝑠−1) ¤𝛼(𝑠−1) = D−−𝐺++𝛼(𝑠−1) ¤𝛼(𝑠−1) ,

D++𝐺−−𝛼(𝑠−2) ¤𝛼(𝑠−2) = D−−𝐺++𝛼(𝑠−2) ¤𝛼(𝑠−2) .
(21)

Using the explicit form of the WZ gauge (16) and eliminating the auxiliary fields, one can
verify that the action (19) at the component level is reduced to the sum of the free Fronsdal actions
for the spins 𝑠 and 𝑠 − 1, as well as two Fang-Fronsdal actions for the spin 𝑠 − 1/2.

4. N = 2 supersymmetric interaction of higher spins with hypermultiplet

Using the spin s analytic gauge potentials (13), one can define the analytic differential operator:

Ĥ++
(𝑠) :=ℎ++𝛼(𝑠−1) ¤𝛼(𝑠−1)𝜕𝑠−1

𝛼(𝑠−1) ¤𝛼(𝑠−1) + ℎ++𝛼(𝑠−1) ¤𝛼(𝑠−2)+𝜕𝑠−2
𝛼(𝑠−2) ¤𝛼(𝑠−2)𝜕

−
𝛼

+ ℎ++𝛼(𝑠−2) ¤𝛼(𝑠−1)+𝜕𝑠−2
𝛼(𝑠−2) ¤𝛼(𝑠−2)𝜕

−
¤𝛼 + ℎ++𝛼(𝑠−2) ¤𝛼(𝑠−2)𝜕𝑠−2

𝛼(𝑠−2) ¤𝛼(𝑠−2)𝜕5.
(22)

It is direct to check that this operator is invariant under N = 2 supersymmetry (1), (3), (14). For
spin 𝑠, it contains 𝑠 − 1 derivative.

The most general cubic hypermultiplet coupling to spin s higher-spin consistent with analyticity
and N = 2 supersymmetry has the form:

𝑆 𝑓 𝑟𝑒𝑒 + 𝑆𝑐𝑢𝑏𝑖𝑐,𝑠 = −1
2

∫
𝑑Z (−4) 𝑞+𝑎

(
D++ + ^𝑠Ĥ++

(𝑠) (𝐽)
𝑃 (𝑠)

)
𝑞+𝑎 . (23)

Here we used the notation 𝑃(𝑠) := 1−(−1)𝑠
2 and ^𝑠 is the spin s coupling constant. The generator

𝐽 acts as 𝐽𝑞+ := 𝑖𝑞+, 𝐽𝑞+ := −𝑖𝑞+. The reason for introducing this generator is that without it

5On shell there survive 4𝐵 + 4𝐹 degrees of freedom for each N = 2 spin s.
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N = 2 higher-spin theories and harmonic superspace Nikita Zaigraev

the vertices for odd spins prove to be identically zero6. So for odd spins this interaction explicitly
breaks 𝑆𝑈 (2)𝑃𝐺 .

Under the action of gauge transformations (15), operator Ĥ++
(𝑠) transforms as:

𝛿_Ĥ++
(𝑠) = [D++, Λ̂(𝑠) ], (24)

where

Λ̂(𝑠) :=_𝛼(𝑠−1) ¤𝛼(𝑠−1)𝜕𝑠−1
𝛼(𝑠−1) ¤𝛼(𝑠−1) + _𝛼(𝑠−1) ¤𝛼(𝑠−2)+𝜕𝑠−2

𝛼(𝑠−2) ¤𝛼(𝑠−2)𝜕
−
𝛼

+ _𝛼(𝑠−2) ¤𝛼(𝑠−1)+𝜕𝑠−2
𝛼(𝑠−2) ¤𝛼(𝑠−2)𝜕

−
¤𝛼 + _𝛼(𝑠−2) ¤𝛼(𝑠−2)𝜕𝑠−2

𝛼(𝑠−2) ¤𝛼(𝑠−2)𝜕5.
(25)

One can check that the action (23) is invariant to the leading order in ^𝑠, if the gauge transfor-
mation of the hypermultiplet is:

𝛿
(𝑠)
_

𝑞+𝑎 = − ^𝑠

2

{
Λ̂

𝛼(𝑠−2) ¤𝛼(𝑠−2)
(𝑠) + 1

2
Ω

𝛼(𝑠−2) ¤𝛼(𝑠−2)
(𝑠) , 𝜕𝑠−2

𝛼(𝑠−2) ¤𝛼(𝑠−2)

}
𝐽𝑃 (𝑠)𝑞+𝑎 . (26)

Here Λ̂
𝛼(𝑠−2) ¤𝛼(𝑠−2)
(𝑠) = _𝛼(𝑠−2) ¤𝛼(𝑠−2)𝑀𝜕𝑀 , Ω𝛼(𝑠−2) ¤𝛼(𝑠−2)

(𝑠) = (−1)𝑃 (𝑀 )𝜕𝑀_𝛼(𝑠−2) ¤𝛼(𝑠−2)𝑀 , where
𝑀 := (𝛼 ¤𝛼, 𝛼+, ¤𝛼+), and 𝑃(𝑀) is defined as 𝑃(𝛼 ¤𝛼) = 0, 𝑃(𝛼+) = 𝑃( ¤𝛼+) = 1.

The cubic vertices constructed are invariant only to the leading order. The variation of the cubic
part of the action (23) under (26) in the order ∼ ^2

𝑠 includes terms which are quadratic in spinor
derivatives and so cannot be compensated by cubic vertices of such a type. The only exception is
the case of 𝑠 = 2, i.e. N = 2 Einstein supergravity. In this case, by a non-Abelian deformation of
the prepotential gauge transformation,

𝛿_Ĥ++
(𝑠=2) = [D++, Λ̂(𝑠=2) ] → 𝛿

𝑓 𝑢𝑙𝑙

_
Ĥ++

(𝑠=2) = [D++ + ^2Ĥ++
(𝑠=2) , Λ̂(𝑠=2) ], (27)

the complete invariance of the action (23) can be ensured.
Perhaps for 𝑠 ≥ 3 a non-linear gauge invariance can be achieved by introducing a new type

of cubic vertices and a new type of gauge superfield potentials. However, the meaning of such
potentials, their gauge freedom and their field contents are unclear at present and require further
study. It is not unlikely that they are nontrivially related to N = 2 gauge potentials of the half-
integer higher spins, which still remain to be constructed. By introducing an infinite tower of N = 2
higher-spin prepotentials (with both integer and half-integers spins), one could expect the complete
non-Abelian invariance. It is interesting to figure out possible parallels of these assumptions with
the relevant discussions in [10].

Note that, for a special choice of the transformation parameters7, such that [D++, Λ̂(𝑠) ] = 0,
we obtain rigid “higher-spin” supersymmetry transformations of the free hypermultiplet action
with 𝑠 − 1 derivatives8. Thus the interactions constructed have a Noether origin and so can be
viewed as gauging of the “higher-spin” rigid supersymmetries of the free hypermultiplet through

6This is an analogue of the well-known fact that it is impossible to construct a minimal interaction of spin 1 (and all
odd spins) with a real scalar field. Generator 𝐽 indicates that the fields 𝑞+ and 𝑞+ ( 𝑓 𝑖 and 𝑓 𝑖 at the component level)
have the opposite charges.

7Such a set of parameters is a N = 2 supersymmetric generalization of the Killing tensor field (see, e.g., [10, 11])
and can be interpreted as a “N = 2 Killing supertensor”.

8In the 𝑠 = 2 case these transformations correspond to rigid N = 2 supersymmetry.
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N = 2 higher-spin theories and harmonic superspace Nikita Zaigraev

introducing the appropriate analytic gauge potentials. Also it is possible to reconstruct both gauge
transformations and supersymmetry transformations of the N = 2 higher-spin potentials. All these
reasonings will be helpful while constructing N = 2 superconformal higher-spin gauge potentials
in the next section.

5. N = 2 superconformal higher-spin multiplets

N = 2 superconformal transformations non-trivially act on harmonics [8] (in contrast to N = 2
supersymmetry, see (1)). So we extend the set of indices 𝑀 by harmonic indices ⇒ 𝑀 :=
(𝛼 ¤𝛼, 𝛼+, ¤𝛼+, ++), 𝑃(++) = 0. Free off-shell action of massless hypermultiplet (9) is invariant
under N = 2 superconformal transformations (here it is useful to employ a passive form of
transformations):

𝛿𝑠𝑐𝑞
+
𝑎 = −Λ̂𝑞+𝑎 −

1
2
Ω𝑞+𝑎, Λ̂ = _𝑀𝜕𝑀 , Ω = (−1)𝑀𝜕𝑀_𝑀 (28)

with special rigid parameters:

_𝛼 ¤𝛼
𝑠𝑐 = 𝑎𝛼 ¤𝛼 − 4𝑖

(
𝜖 𝛼𝑖 \̄+ ¤𝛼 + \+𝛼𝜖 ¤𝛼𝑖 ) 𝑢−

𝑖
+ 𝑥 ¤𝛼𝜌𝑘𝜌 ¤𝜌𝑥 ¤𝜌𝛼 + 𝑏𝑥𝛼 ¤𝛼

−4𝑖\+𝛼 \̄+ ¤𝛼_ (𝑖 𝑗 )𝑢−
𝑖
𝑢−
𝑗
− 4𝑖

(
𝑥𝛼 ¤𝜌[𝑖¤𝜌 \̄

+ ¤𝛼 + \+𝛼[𝑖𝜌𝑥
𝜌 ¤𝛼

)
𝑢−
𝑖
,

_𝛼+
𝑠𝑐 = 𝜖 𝛼𝑖𝑢+

𝑖
+ 1

2\
+𝛼 (𝑏 + 𝑖𝛾) + 𝑥𝛼

¤𝛽𝑘𝛽 ¤𝛽\
+𝛽 + 𝑥𝛼 ¤𝛼[𝑖¤𝛼𝑢

+
𝑖

+\+𝛼
(
_ (𝑖 𝑗 )𝑢+

𝑖
𝑢−
𝑗
+ 4𝑖\+𝜌[𝑖𝜌𝑢−𝑖

)
,

_̄ ¤𝛼+
𝑠𝑐 = 𝜖 ¤𝛼𝑖𝑢+

𝑖
+ 1

2 \̄
+ ¤𝛼 (𝑏 − 𝑖𝛾) + 𝑥 ¤𝛼𝛽𝑘𝛽 ¤𝛽 \̄

+ ¤𝛽 + 𝑥𝛼 ¤𝛼[𝑖𝛼𝑢
+
𝑖

+\̄+ ¤𝛼
(
_ (𝑖 𝑗 )𝑢+

𝑖
𝑢−
𝑗
− 4𝑖\̄+ ¤𝜌[𝑖¤𝜌𝑢

−
𝑖

)
,

_++𝑠𝑐 = _𝑖 𝑗𝑢+
𝑖
𝑢+
𝑗
+ 4𝑖\+𝛼 \̄+ ¤𝛼𝑘𝛼 ¤𝛼 + 4𝑖

(
\+𝛼[𝑖𝛼 + [𝑖¤𝛼 \̄

+ ¤𝛼) 𝑢+
𝑖
.

(29)

These parameters satisfy the system of equations [D++, Λ̂] = _++D0.
Following the discussion in the end of previous section, one can determine N = 2 higher-spin

superconformal gauge potentials by requiring superconformal invariance of general cubic vertex9.
The analyticity and superconformal invariance taken together imply the following general form of
cubic interaction:

𝑆 𝑓 𝑟𝑒𝑒 + 𝑆𝑠𝑐−𝑐𝑢𝑏𝑖𝑐,𝑠 = −1
2

∫
𝑑Z (−4) 𝑞+𝑎

(
D++ + Ĥ++

(𝑠) (𝐽)
𝑃 (𝑠)

)
𝑞+𝑎, (30)

where we introduced the analytic differential operator of degree 𝑠 − 1 with the odd number of
superspace derivatives

Ĥ++
(𝑠) := ℎ++𝑀1...𝑀𝑠−1𝜕𝑀𝑠−1 . . . 𝜕𝑀1 + ℎ++𝑀1...𝑀𝑠−3𝜕𝑀𝑠−3 . . . 𝜕𝑀1 + . . . . (31)

9An alternative approach to determining the structure of N -extended superconformal higher-spin gauge prepotentials
(of Mezincescu type) uses the method of supercurrent multiplets and starts from the Fayet-Sohnius on shell hypermultiplets
[12]. Our approach, like in the non-conformal case [1] - [3], uses the analytic gauge vielbein-type potentials covariantizing
the D++ derivative, and the off-shell 𝑞+ hypermultiplets as most generalN = 2 matter multiplets. An interesting task is to
learn how N = 2 Kuzenko-Raptakis prepotentials emerge from our analytic potentials in a special harmonic-independent
gauge.
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N = 2 higher-spin theories and harmonic superspace Nikita Zaigraev

Various parts of the operator can be viewed as corresponding to the spins s, s − 2, . . . . This
operator generalizes the non-conformal operator Ĥ++

(𝑠) given in (22) in three aspects. First of all,
it contains all possible types of indices since the derivative 𝜕𝛼 ¤𝛼 is non-trivially transformed under
the superconformal group (29). Secondly, because of the presence of a weight factor in (28), terms
with fewer derivatives are necessarily present. Thirdly, no the irreducibility conditions with respect
to the Lorentz indices are imposed in advance on the potentials, as distinct from a symmetrization
in the non-conformal case (13).

From now on, to avoid identical terms, we assume that the indices of the fields are ordered
according to the rule 𝑀 = (𝛼 ¤𝛼, 𝛼+, ¤𝛼+, ++), i.e. 𝑀1 ≥ 𝑀2 · · · ≥ 𝑀𝑠−1 and prepotentials satisfy the
permutation condition ℎ++𝑀1...𝑀𝑛𝑀𝑘 ...𝑀𝑟 = (−1)𝑃 (𝑀𝑘 )𝑃 (𝑀𝑛 )ℎ++𝑀1...𝑀𝑘𝑀𝑛...𝑀𝑟 .

For lucidity, we give the explicit form of the superconformal transformation law of higher-spin
prepotentials, which ensures the superconformal invariance of the cubic vertex:

𝛿𝑠𝑐Ĥ
++
(𝑠) = [Ĥ++

(𝑠) , Λ̂] +
1
2
[Ĥ++

(𝑠) ,Ω] . (32)

Here we assume the appropriate integration by parts which brings the right side of (32) to the form
(31). All the peculiarities listed above are in conjunction with this formula.

The gauge freedom of action (30) is realized by the transformations:

𝛿
(𝑠,𝑘 )
_

𝑞+𝑎 = − ^𝑠

2

{
Λ̂𝑀1...𝑀𝑘−2 + 1

2
Ω𝑀1...𝑀𝑘−2 , 𝜕𝑀𝑘−2 . . . 𝜕𝑀1

}
𝐴𝐺𝐵

(𝐽)𝑃 (𝑠)𝑞+𝑎, (33a)

𝛿
(𝑠,𝑘 )
_
Ĥ++

(𝑠) =
1
2
[
D++,

{
Λ̂𝑀1...𝑀𝑘−2 , 𝜕𝑀𝑘−2 . . . 𝜕𝑀1

}
𝐴𝐺𝐵

]
, (33b)

where in (33b) we performed the appropriate integration by parts. We also define operators
Λ̂𝑀1...𝑀𝑘−2 := _𝑀1...𝑀𝑘−2𝑁𝜕𝑁 , Ω𝑀1...𝑀𝑘−2 := (−1)𝑃 (𝑁 )𝜕𝑁_𝑁𝑀1...𝑀𝑘−2 . The 𝑘-th parameter takes
the values 𝑠, 𝑠 − 2. . . . . The different values of 𝑘 correspond to the gauge freedom for different spin
contributions appearing in the operator (31). Anti-graduate bracket is defined as {𝐹1, 𝐹2}𝐴𝐺𝐵 :=
[𝐹1, 𝐹2] for fermionic objects, {𝐵1, 𝐵2}𝐴𝐺𝐵 := {𝐵1, 𝐵2} for bosonic and {𝐵, 𝐹}𝐴𝐺𝐵 := {𝐵, 𝐹} for
bosonic and fermionic ones.

If we require 𝑞+𝑎𝛿 (𝑠,𝑘 )
_
Ĥ++

(𝑠) (𝐽)
𝑃 (𝑠)𝑞+𝑎 = 0, we obtain the conditions on “superconformal higher-

spin” rigid symmetries of the free hypermultiplet (in the 𝑠 = 2 case these symmetry transformations
are just N = 2 superconformal transformations). The corresponding parameters _... which solve
this equation can be treated as N = 2 spin 𝑠 “superconformal Killing supertensor”.

Using the gauge freedom (33b), one can impose WZ gauge10:

ℎ
++𝛼(𝑠−1) ¤𝛼(𝑠−1)
𝑊𝑍

= −4𝑖\+𝜌 \̄
+
¤𝜌Φ

(𝜌𝛼(𝑠−1) ) ( ¤𝜌 ¤𝛼(𝑠−1) ) − (\̄+)2\+𝜌𝜓
(𝜌𝛼(𝑠−1) ) ¤𝛼(𝑠−1)𝑖𝑢−𝑖

− (\+)2\̄+¤𝜌�̄�
𝛼(𝑠−1) ( ¤𝛼(𝑠−1) ¤𝜌)𝑖𝑢−𝑖 + (\+)2(\̄+)2𝑉 𝛼(𝑠−1) ¤𝛼(𝑠−1)𝑖 𝑗𝑢−𝑖 𝑢

−
𝑗 ,

ℎ
++𝛼(𝑠−1) ¤𝛼(𝑠−2)+
𝑊𝑍

= (\+)2\̄+¤a𝑃
𝛼(𝑠−1) ( ¤𝛼(𝑠−2) ¤a) + (\̄+)2\+a𝑇

(𝛼(𝑠−1)a) ¤𝛼(𝑠−2)

+ (\+)4𝜒𝛼(𝑠−1) ¤𝛼(𝑠−2)𝑖𝑢−𝑖 ,

ℎ
++𝛼(𝑠−2) ¤𝛼(𝑠−1)+
𝑊𝑍

=
�

ℎ
++𝛼(𝑠−1) ¤𝛼(𝑠−2)+
𝑊𝑍

,

ℎ
(+4)𝛼(𝑠−2) ¤𝛼(𝑠−2)
𝑊𝑍

= (\+)2(\̄+)2𝐷𝛼(𝑠−2) ¤𝛼(𝑠−2) .

(34)

10For the 𝑠 = 3 case we have derived this result directly, by exploring the gauge freedom (33b). The WZ gauge for
general 𝑠 was conjectured as a natural generalization of the spin 3 WZ gauge.
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N = 2 higher-spin theories and harmonic superspace Nikita Zaigraev

From (33b) it also follows, that all other potentials are purely gauge degrees of freedom. In the gauge
that we have fixed, they are set to zero. In principle, it is possible to initially fix the gauge in which
these fields are zero, but in this case the superconformal group will be implemented non-linearly.
This situation is typical for the conformal theory of higher spins, see, e.g., [13].

The N = 2 superconformal higher-spin multiplet displays a number of new features in compar-
ison to the non-conformal case. First of all, there are no auxiliary fields in the multiplet for 𝑠 ≥ 3
– all fields prove to be the gauge fields. Secondly, the physical degrees of freedom for each spin
in the multiplet are described by one irreducible field and their gauge transformation laws have a
slightly different form11:

• Bosonic fields Φ𝛼(𝑠) ¤𝛼(𝑠) , 𝑉 𝛼(𝑠−1) ¤𝛼(𝑠−1)𝑖 𝑗 , 𝑃 (𝛼(𝑠−1) ¤𝛼(𝑠−1) ) , 𝐷𝛼(𝑠−2) ¤𝛼(𝑠−2) are conformal
Fradkin-Tseytlin fields [14] with gauge freedom of the form:

𝛿Φ𝛼(𝑠) ¤𝛼(𝑠) ∼ 𝜕 (𝛼( ¤𝛼𝑎𝛼(𝑠−1) ) ¤𝛼(𝑠−1) ) , 𝛿𝑉 𝛼(𝑠−1) ¤𝛼(𝑠−1)𝑖 𝑗 ∼ 𝜕 (𝛼( ¤𝛼𝑣𝛼(𝑠−2) ) ¤𝛼(𝑠−2) ) (𝑖 𝑗 ) , . . . . (35)

• Complex field 𝑇 𝛼(𝑠) ¤𝛼(𝑠−2) have the gauge freedom:

𝛿𝑇 𝛼(𝑠) ¤𝛼(𝑠−2) ∼ 𝜕 (𝛼( ¤𝛼𝑡𝛼(𝑠−1) ) ¤𝛼(𝑠−3) ) . (36)

This is more general type of conformal field, see, e.g., [15]. In the simplest non-trivial 𝑠 = 3
case this field is equivalent to the traceless hook gauge field 𝑇𝑎[𝑏𝑐] with the algebraic symmetries
corresponding to the simplest hook Young diagram , see, e.g., [16].

• Fields 𝜓𝛼(𝑠) ¤𝛼(𝑠−1)𝑖 and 𝜒𝛼(𝑠−1) ¤𝛼(𝑠−2)𝑖 are conformal fermionic gauge fields:

𝛿𝜓𝛼(𝑠) ¤𝛼(𝑠−1)𝑖 ∼ 𝜕 (𝛼( ¤𝛼b𝛼(𝑠−1) ) ¤𝛼(𝑠−2) )𝑖 , 𝛿𝜒𝛼(𝑠−1) ¤𝛼(𝑠−2)𝑖 ∼ 𝜕𝛼 ¤𝛼Z 𝛼(𝑠−2) ) ¤𝛼(𝑠−3) )𝑖 . (37)

Finally, the N = 2 superconformal spin s multiplet is encompassed by 8(2s − 1)B + 8(2s − 1)F off-
shell degrees of freedom. The simplest 𝑠 = 1, 2 multiplets (in contrast to 𝑠 ≥ 3) contain auxiliary
fields and comprise N = 2 Maxwell and conformal supergravity (Weyl) gauge multiplets.

The action (30) with gauge transformations (33) is consistent in the first order in ^𝑠. In the
conformal case one can construct a fully consistent coupling of an infinite tower of higher-spin
potentials to the hypermultiplet by applying to a non-abelian deformation of gauge freedom. Also,
the action constructed in this way can be consistently lifted to an arbitrary background of N = 2
superconformal gravity. More detailed discussion of these issues will be presented in [4].

6. Conclusion

In conclusion, we have found that the principle of Grassmann harmonic analyticity plays a key
role both in the off-shell formulation of N = 2 non-conformal multiplets of higher spins and N = 2
superconformal higher-spins. All the fundamental gauge potentials are analytic superfields, which,
being combined with N = 2 supersymmetry and conformal supersymmetry , significantly limits the
possible form of the interaction Lagrangians, as the example of a cubic vertex with a hypermultiplet
demonstrates. This opens up a wide range of new tasks. Let us mention some:

11Some fields require proper redefinitions to avoid contributions of other fields in the relevant transformation laws
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• Massive N = 2 higher spins

Surprisingly, the problem of constructing supersymmetric massive theories of higher spins is
more difficult compared to massless theories [17]. The off-shell 4𝐷,N = 1 superfield theory
of massive higher spins has been elaborated quite recently [18]. The formulations of such
theories look rather cumbersome. One would expect that N = 2 theory of massive higher
spins in HSS would have more elegant formulation.

• Induced actions

The vertices (23) and (30) can be used to construct effective theories after calculation of the
functional integral over hypermultiplets (see, e.g., [19] for a general discussion of higher-spin
effective actions). This would provide a way of building consistent theories of (superconfor-
mal) N = 2 higher spins.

• Component reduction

The non-conformal vertex (23) is completely self-consistent for 𝑠 = 2. The infinite tower of
N = 2 superconformal higher spins interacting with the hypermultiplet is also completely
self-consistent, as discussed above. The constructed vertices are cubic in superfields. An
interesting task is the component reduction of such theories and exploration of the mechanism
of eliminating the hypermultiplet auxiliary fields, leading to nonlinearities at the component
level (see recent [20] for the related discussion).
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