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We present the results of a Lattice QCD computation of pion generalized parton distribution (GPD),
employing perturbative matching up to next-to-next-to-leading order (NNLO). The computations
are based on an ensemble of 𝑁 𝑓 = 2 + 1 highly improved staggered quarks (HISQ) with a pion
mass of 300 MeV and a lattice spacing of 0.04 fm. Centered on the zero-skewness limit, we
utilize a recently proposed Lorentz-invariant definition of GPD, which is derived from Lorentz-
invariant amplitudes. We analyze and compare these amplitudes in both Breit and non-Breit
kinematic frames at comparable momentum transfers, validating their frame-independent nature.
To obtain light-cone GPD, we integrate hybrid scheme renormalization with the large momentum
effective theory (LaMET). Moreover, we determine the first three iso-vector generalized form
factors (GFFs) of the pion using the ratio scheme renormalization and leading-twist factorization,
achieving NNLO accuracy.
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1. Introduction

Since its discovery in 1947, the pion has been the subject of intense research, recognized for
its dual identity as both a Goldstone boson linked to chiral symmetry breaking and a QCD-bound
state. Over the years, substantial efforts have been dedicated to studying its internal structure
by analyzing experimental data. Key methodologies have involved extracting form factors (FFs)
through pion-electron scattering [1] and discerning parton distribution functions (PDFs) via the
Drell-Yan process [2]. However, these approaches are limited to revealing only the one-dimensional
structure of the hadron. For a more comprehensive, three-dimensional perspective, the focus has
shifted to GPD, a concept introduced in the 1990s [3–6]. Access to GPD is typically gained through
exclusive reactions, notably deeply virtual Compton scattering (DVCS) and deeply virtual meson
production (DVMP).

Presently, a series of experiments are being conducted or planned, which can enrich our
comprehension of pion particles. Prominent among these are the JLab 12-GeV program [7],
the Apparatus for Meson and Baryon Experimental Research (AMBER) at CERN SPS [8], the
forthcoming Electron-Ion Collider (EIC) at Brookhaven National Laboratory [9], and the Electron-
Ion Collider in China (EicC) [10]. These initiatives are designed to probe the pion at various energy
levels. However, extracting GPD from experimental data is fraught with challenges, including
the chiral-odd nature of certain distributions and the complexity involved in pion production.
On the other hand, lattice QCD results, offering supplementary insights and potentially guiding
experimental efforts, are highly sought after. The advent of Large-Momentum Effective Theory
(LaMET) in 2013 [11] marked a pivotal shift, extending GPD studies beyond just the first few
Mellin moments. This spurred a flurry of lattice-based research on nucleon and meson structures
utilizing LaMET, and please refer to, e.g., Ref. [12] for a recent review.

While there are several lattice QCD studies of the nucleon GPD, pion GPD has been explored
so far by only one lattice group [13, 14]. Traditionally, calculations are conducted in the Breit frame,
requiring the momentum transfer to be symmetrically distributed between the initial and final states.
This approach incurs substantial computational costs. However, a recent breakthrough has been
achieved with the introduction of a frame-independent method for lattice GPD calculations [15].
This innovative approach holds the potential to significantly reduce computational expenses.

In this study, we present our lattice calculations of the pion GPD using the LaMET approach,
featuring a refined lattice spacing of 0.04 fm within the non-Breit frame. Additionally, we calculate
the first three iso-vector GFFs utilizing the leading-twist Operator Product Expansion (OPE). The
organization of this proceeding is as follows: In Section 2, we outline our lattice setup and describe
the methodologies employed to extract the bare matrix elements from the combined analysis of
two- and three-point correlation functions. Section 3 focuses on validating the frame-independent
approach by analyzing lattice data obtained from both Breit and non-Breit frames, which have
comparable momentum transfer values. This analysis enables us to perform calculations in an
asymmetric kinematic setting. In Section 4, we detail the renormalization process of the bare
matrix elements using the hybrid scheme and subsequently apply LaMET matching to derive the
valence GPD. Furthermore, in Section 5, we discuss the renormalization of matrix elements at
short distances using the ratio scheme, followed by the extraction of the GFF through leading-twist
factorization. Finally, Section 6 provides a summary of our findings and offers an outlook on future
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research directions.

2. Lattice calculation

2.1 Lattice setup

Our lattice calculations use the gauge ensembles provided by the HotQCD collaboration [16],
utilizing a 2+1 flavor setup with Highly Improved Staggered Quark (HISQ) action [17]. The lattice
configuration has dimensions of 𝑁𝑠 × 𝑁𝑡 = 643 × 64 and a lattice spacing of 𝑎 = 0.04 fm. The
sea quark masses are adjusted to yield a pion mass of 160 MeV. In the valence sector, we use the
Wilson-Clover action with 1 level of hypercubic (HYP) smearing [18]. For the coefficient of the
clover term, we use the tree-level tadpole improved value using the fourth root of the plaquete
resulting in 1.02868 [19]. The valence quark masses in the Wilson-Clover action are tuned to
𝑎𝑚𝑞 = −0.033, resulting in a pion mass of 300 MeV.

Central to our computational approach is the use of momentum-boosted smeared sources [20].
The quark propagators are obtained through the application of the multigrid algorithm [21] to invert
the Wilson-Dirac operator using the QUDA software suite [22–24] on GPUs. The periodic boundary
condition determines the spatial momentum defined in lattice units as 𝑃𝑧 = 2𝜋𝑛𝑧/(𝑎𝑁𝑠) with 𝑛𝑧

being an integer. In our approach, the momentum-boosted sources and sinks are constructed with a
Gaussian profile with boost momenta 𝑘𝑧 = 2𝜋𝑚𝑧/(𝑎𝑁𝑠) in the 𝑧-direction. Source construction is
done in the Coulomb gauge, and the Gaussian profile is created with the radius of 0.208 fm [19, 25].
Employing these quark propagators, we have computed both two-point and three-point hadron
correlation functions. To increase statistics per configuration, we combined multiple exact (high-
precision) and sloppy (low-precision) samples and implemented the all-mode averaging (AMA)
technique [26]. The lattice parameters used in this study are summarized in Table 1. In the limit of
zero-skewness (𝜉 = 0), there is no momentum transfer in the 𝑧-direction.

Table 1: The information about the lattice parameters used in two different kinematic frames are shown.
The symbol 𝑡𝑠 represents the source-sink separation. We present the momentum in units of 2𝜋/𝑁𝑠/𝑎,
including the final momentum (n 𝑓 ), the boost momentum along 𝑧-direction (𝑚𝑧), and the momentum transfer
(n𝑞 = n 𝑓 − n𝑖) where n𝑖 denotes the initial momentum. Additionally, we provide the total number of gauge
configurations (#cfgs) as well as the counts for both exact (#ex) and sloppy (#sl) inversion samples per
configuration.

Frame 𝑡𝑠/𝑎 n 𝑓 = (𝑛 𝑓
𝑥 , 𝑛

𝑓
𝑦 , 𝑛

𝑓
𝑧 ) 𝑚𝑧 n𝑞 = (𝑛𝑞𝑥 , 𝑛𝑞𝑦 , 𝑛𝑞𝑧 ) #cfgs (#ex, #sl)

Breit 9,12,15,18 (1, 0, 2) 2 (2, 0, 0) 115 (1, 32)

non-Breit

9,12,15,18 (0,0,0) 0 [
(0,0,0), (1,0,0)
(1,1,0), (2,0,0)
(2,1,0), (2,2,0)

]
314 (3, 96)

9,12,15,18 (0,0,1) 0 314 (3, 96)
9,12,15,18 (0,0,2) 2 314 (4, 128)

9,12,15 (0,0,3) 2 314 (4, 128)
9,12,15 (0,0,4) 3 564 (4, 128)
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2.2 Correlation functions

To obtain the bare matrix elements, it is necessary to compute two- and three-point correlation
functions. The two-point correlation function is defined as

𝐶2pt(P, 𝑡𝑠) =
∑︁

x
𝑒−𝑖P·x

〈
𝜋𝑠 (x, 𝑡𝑠)𝜋†𝑠 (0, 0)

〉
, (1)

where P denotes the spatial momentum, x and 0 represent the spatial coordinates, and 𝑡𝑠 and 0
correspond to the time coordinates. Here 𝜋

†
𝑠 and 𝜋𝑠, stands for the pion creation and annihilation

operators, respectively, and the subscript 𝑠 indicates smeared operators.
The three-point correlation function is defined as

𝐶3pt(P 𝑓 , q; 𝑡𝑠, 𝜏; 𝑧) =
∑︁
x,y

𝑒−𝑖P
𝑓 ·x𝑒𝑖q·y

〈
𝜋𝑠 (x, 𝑡𝑠)𝑂𝛾𝑡 (y, 𝜏; 𝑧)𝜋†𝑠 (0, 0)

〉
, (2)

where P 𝑓 and q denote the final momentum and momentum transfer, respectively. The initial
momentum can be expressed as P𝑖 = P 𝑓 −q. The quark bilinear operator is symbolized by 𝑂𝛾𝑡 and
is characterized by its spacetime insertion position, indicated by coordinates (y, 𝜏). This operator
is also associated with a Wilson line, which extends along the 𝑧-direction for a length of 𝑧.

For a comprehensive analysis, it is essential to initially extract the energy and the corresponding
amplitude of the particle from the two-point correlation function, which also enables us to assess
the quality of our data. The spectral decomposition of the two-point correlation function is

𝐶2pt(P, 𝑡𝑠) =
𝑁−1∑︁
𝑛=0

𝐴𝑛𝐴
∗
𝑛

[
𝑒−𝐸𝑛 (P)𝑡𝑠 + 𝑒−𝐸𝑛 (P) (𝑎𝑁𝑡−𝑡𝑠 )

]
, (3)

where 𝑁 denotes the total number of energy levels, 𝐸𝑛 and 𝐴𝑛 =
〈
Ω|𝐻̂ |𝑛

〉
are the energy and the

amplitude of the 𝑛-th energy level, and |Ω⟩ is the vacuum state.
As for the three-point correlation function, its spectral decomposition can be written as

𝐶3pt(P 𝑓 ,P𝑖; 𝑡𝑠, 𝜏; 𝑧) =
𝑁−1∑︁
𝑛,𝑚=0

𝐴
𝑓
𝑛 (𝐴𝑖

𝑚)∗𝑒−𝐸𝑛 (P 𝑓 ) (𝑡𝑠−𝜏 )𝑒−𝐸𝑚 (P𝑖 )𝜏 ×
〈
𝑛; P 𝑓 |𝑂𝛾𝑡 |𝑚; P𝑖

〉
. (4)

The matrix elements of the ground state, denoted by
〈
0; P 𝑓 |𝑂𝛾𝑡 |0; P𝑖

〉
, represent the main quantity

required for calculating GPD.

2.3 Bare matrix element

To extract the bare matrix elements, defined as 𝐹𝐵 = 2
√︃
𝐸

𝑓

0 𝐸
𝑖
0
〈
0; P 𝑓 |𝑂𝛾𝑡 |0; P𝑖

〉
/(𝐸 𝑓

0 +𝐸
𝑖
0), we

construct a ratio that capitalizes on the inherent relationship between the two-point and three-point
correlation functions.

𝑅(P 𝑓 ,P𝑖; 𝑡𝑠, 𝜏; 𝑧) ≡
2
√︃
𝐸

𝑓

0 𝐸
𝑖
0

𝐸
𝑓

0 + 𝐸 𝑖
0

𝐶3pt(P 𝑓 ,Pi; 𝑡𝑠, 𝜏; 𝑧)
𝐶2pt(P 𝑓 , 𝑡𝑠)

×
[
𝐶2pt(P𝑖 , 𝑡𝑠 − 𝜏)𝐶2pt(P 𝑓 , 𝜏)𝐶2pt(P 𝑓 , 𝑡𝑠)
𝐶2pt(P 𝑓 , 𝑡𝑠 − 𝜏)𝐶2pt(P𝑖 , 𝜏)𝐶2pt(P𝑖 , 𝑡𝑠)

]1/2

,

(5)
where 𝐸 𝑖

0 and 𝐸
𝑓

0 denote the ground state energy of the initial and final states, respectively. The
ratio asymptotically approaches the bare matrix element 𝐹𝐵 as 𝑡𝑠 tends to infinity. By implementing
Eqs. (3) - (5) and utilizing the extracted values of energy and amplitude, we are able to execute a
fitting process on the lattice data, which enables us to extract the bare matrix elements.
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3. Frame-independent approach

Prior to performing the principal data analysis, it is crucial to introduce the pioneering
frame-independent approach for calculating the GPD on the lattice [15]. In this framework, one
parametrizes the quasi-GPD (qGPD) matrix elements of the pion in terms of Lorentz-invariant
amplitudes, 𝐴𝑖 , with appropriate kinematic factors.

𝐹𝜇 (𝑃̄𝜇, 𝑧𝜇, 𝑞𝜇) = 1√︃
𝐸 𝑖

0𝐸
𝑓

0

(
𝑃̄𝜇𝐴1 + 𝑚2

𝜋𝑧
𝜇𝐴2 + 𝑞𝜇𝐴3

)
, (6)

where the superscript 𝜇 = (𝑡, 𝑥, 𝑦, 𝑧) represents the Lorentz indices, 𝑃̄ =
(
𝑃𝑖 + 𝑃 𝑓

)
/2 the average

of the initial and final energy momenta, 𝑞 = 𝑃 𝑓 − 𝑃𝑖 the momentum transfer and 𝑚𝜋 the mass of
the pion. Furthermore, 𝑧𝜇 denotes the separation between the quark and anti-quark fields. Based
on these frame-independent amplitudes, one can get the qGPD by performing the Fourier transform
of the Lorentz-invariant definition of (quasi) GPD

𝐻
𝜇

𝐼
(𝑃̄𝜇, 𝑧𝜇, 𝑞𝜇) = 𝐴1 +

𝑧𝜇𝑞𝜇

𝑧𝜇 𝑃̄𝜇

𝐴3. (7)

Generally, due to the ultraviolet (UV) divergence induced by the Wilson line, a separated renormal-
ization step is needed before the Fourier transform. Furthermore, by studying the behavior under
hermiticity and time-reversal transformations simultaneously, it was found that the amplitude 𝐴3
is an odd function of 𝑧𝜇𝑞𝜇 [15]. In this study, considering zero-skewness and 𝑧𝜇 = (0, 0, 0, 𝑧), it
is expected that 𝐴3 should be equal to 0. Subsequently, we will use lattice data to investigate the
frame-independence of the amplitudes and whether the value of 𝐴3 is zero.

For convenience, we will use the expression 𝑄2 = −𝑞2 to represent the momentum transfer
below. The variables 𝐹𝜇 presented on the left-hand side of Eq. (6) are the matrix elements,〈
𝑛; P 𝑓 |𝑂𝛾𝜇 |𝑚; P𝑖

〉
, which are calculable on a lattice. Combining lattice results obtained in different

kinematics, Eq. (6) enables us to deduce the Lorentz-invariant amplitudes 𝐴𝑖 . The results of 𝐴𝑖 must
be frame-independent and should agree between the Breit and non-Breit frames for comparable 𝑄2

values. Our analysis involves two sets of lattice data, both at a momentum of 𝑃𝑧 = 0.968 GeV. These
datasets exhibit similar 𝑄2 values: the dataset from the Breit frame has 𝑄2 = 0.938 GeV2, while
the dataset from the non-Breit frame has 𝑄2 = 0.952 GeV2. The results shown in Fig. 1 indicate
that both 𝐴1 and 𝐴3 amplitudes are consistent between the Breit and non-Breit frames within a
reasonable region of 𝑧. Notably, the results of 𝐴3 in both frames are compatible with zero up to
statistical fluctuations. These findings validate the correctness of the frame-independent approach.
In our case, the Lorentz-invariant (quasi) GPD 𝐻𝐼 equals the amplitude 𝐴1. Specifically, the time
component of 𝐻𝐼 directly corresponds to the bare matrix element 𝐹𝐵:

𝐻𝑡
𝐼 (𝑧, 𝑃𝑧 , 𝑄

2) = 𝐴1 =
2
√︃
𝐸 𝑖

0𝐸
𝑓

0

𝐸 𝑖
0 + 𝐸

𝑓

0

𝐹𝑡 = 𝐹𝐵. (8)

Our subsequent calculations will focus on matrix elements of the time component within the
non-Breit frame as the most computationally efficient.
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Figure 1: The results of the amplitudes 𝐴𝑖 (𝑖 = 1, 3) solved from both the Breit and non-Breit frames are
shown.

4. Valence GPD

Since we aim to get results for pion GPD within the LaMET framework, we selected the two
largest momenta available for the calculation in the non-Breit frame. For each momentum, we
analyzed six values of the momentum transfer 𝑄2. Fig. 2 illustrates the bare matrix elements results
for the largest momentum, |P 𝑓 | = 𝑃𝑧 = 1.937 GeV, depicted as a function of the Wilson-line length,
𝑧. These bare matrix elements display a decreasing trend as the length of the Wilson line increases
and also as the momentum transfer increases, as expected. Several steps are required to derive
the qGPD from the bare matrix elements, including renormalization, extrapolation, and Fourier
transform. Subsequently, we use LaMET to get the valence GPD from the quasi-GPD.

0 5 10 15 20 25 30

z/a

0.0

0.2

0.4

0.6

0.8

1.0

F
B

(z
,P

z
,Q

2
)

Pz = 1.937 GeV

Q2 = 0.000 GeV2

Q2 = 0.231 GeV2

Q2 = 0.455 GeV2

Q2 = 0.887 GeV2

Q2 = 1.095 GeV2

Q2 = 1.690 GeV2

Figure 2: The bare matrix element results of the largest momentum |P 𝑓 | = 𝑃𝑧 = 1.937 GeV are shown.
The various symbols represent outcomes corresponding to distinct momenta transfer 𝑄2.

4.1 Hybrid-scheme renormalization

The renormalization is crucial for removing the UV divergences from the Wilson line.
Commonly employed renormalization methods include Regularization-Independent Momentum-
subtraction (RI-MOM) [27–30] and various ratio schemes [31–35]. However, these methods adhere
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to a factorization relation with the light-cone correlation only at short distances. At long distances,
they introduce non-perturbative effects [36], which will impact the qGPD through the Fourier trans-
form of the matrix elements, thereby affecting the LaMET matching results in 𝑥-space. To overcome
this issue, a hybrid-scheme renormalization has been developed [36], which can eliminate linear
divergence at long distances without introducing additional non-perturbative effects.

It is important to note that the insertion operator is multiplicative, allowing the relation between
the bare and renormalized matrix elements to be expressed as [37–39]

𝐹𝐵 (𝑧, 𝑎) = 𝑍 (𝑎)𝑒−𝛿𝑚(𝑎) |𝑧 |𝑒−𝑚̄0 |𝑧 |𝐹𝑅 (𝑧, 𝑎), (9)

where the superscripts 𝐵 and 𝑅 denote the bare and renormalized quantities, respectively, 𝑍 (𝑎)
includes the logarithmic divergence which is 𝑧-independent, the term with 𝛿𝑚(𝑎) accounts for the
linear divergence, and the term with 𝑚̄0 is introduced to handle the renormalon ambiguity induced
by the scheme-dependence of 𝛿𝑚 and match the lattice scheme to MS scheme [40].

The hybrid scheme renormalization is defined by merging the ratio scheme for short distances
with the explicit subtraction of self-energy divergences in the Wilson line for long distances.

𝐹𝑅 (𝑧, 𝑧𝑆; 𝑃𝑧 , 𝑄
2) =


𝐹𝐵 (𝑧, 𝑃𝑧 , 𝑄

2)
𝐹𝐵 (𝑧, 0, 0) , 𝑧 ≤ 𝑧𝑆;

𝐹𝐵 (𝑧, 𝑃𝑧 , 𝑄
2)

𝐹𝐵 (𝑧𝑆 , 0, 0)
𝑒 (𝛿𝑚+𝑚̄0 ) |𝑧−𝑧𝑆 | , 𝑧 > 𝑧𝑆 ,

(10)

The segment position is denoted as 𝑧𝑆 . In order to further mitigate the correlations and enhance
the signal quality, a double ratio is employed through 𝐹𝑅 (𝑧, 𝑧𝑆; 𝑃𝑧 , 𝑄

2)/𝐹𝑅 (0, 𝑧𝑆; 𝑃𝑧 , 𝑄
2), which

needs to be corrected in the final results. At short distances, all the divergences can be canceled
by the ratio. However, for long distances, before performing the renormalization, we need first to
determine the values of 𝛿𝑚 and 𝑚̄0. To estimate 𝛿𝑚, we could use lattice QCD results on the static
quark-antiquark potential and the free energy of a static quark at non-zero temperatures [41], which
results in 𝑎𝛿𝑚 = 0.1508(12) for 𝑎 = 0.04 fm lattice [40]. The 𝑚̄0 value can be obtained using
the bare matrix elements with zero momentum and zero momentum transfer. By comparing lattice
computations with the corresponding OPE expressions for such a ratio

𝑒 (𝛿𝑚+𝑚̄0 )Δ𝑧 𝐹
𝐵 (𝑧 + Δ𝑧)
𝐹𝐵 (𝑧) =

𝐶0(𝛼s(𝜇), 𝜇2(𝑧 + Δ𝑧)2)
𝐶0(𝛼s(𝜇), 𝜇2𝑧2)

, (11)

we can obtain the value of 𝑚̄0. For this analysis, we set the parameters to Δ𝑧/𝑎 = 1 and 𝜇 = 2
GeV. Our study employs Wilson coefficients 𝐶0 computed up to NNLO [34, 42]. Furthermore, we
incorporate leading-renormalon resummation (LRR) [43, 44] into the coefficients to improve the
perturbative convergence.

Fig. 3 displays the results of 𝑚̄0 obtained with NLO+LRR and NNLO+LRR perturbative
coefficients. Theoretically, the parameter 𝑚̄0 should be a constant. It is observed that the NNLO
results for 𝑚0 show milder 𝑧-dependence compared to the NLO results. In the following, we adopt
the 𝑚̄0 values at 𝑧 = 0.12 fm in the hybrid-scheme renormalization.

In Fig. 4, we present our results for renormalized matrix elements, denoted by red square
symbols, as a function of 𝜆 = 𝑧𝑃𝑧 . Due to the weakening of signal quality and the effect of
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Figure 3: The results of 𝑚̄0 obtained with NLO+LRR (denoted as the open symbols) and NNLO+LRR
(denoted as the filled symbols) Wilson coefficients are shown.

finite volume, we can only calculate the renormalized matrix element up to some maximal value
of 𝜆. This will lead to unphysical oscillations in the qGPD results. To address this problem, we
extrapolate the data from a certain cutoff point to a sufficiently large distance. The extrapolation
employs an exponential decay model, expressed as 𝐴𝑒−𝑚eff 𝑧/𝜆𝑑 , where 𝐴, 𝑚eff , and 𝑑 are the fit
parameters. The extrapolated results, indicated by purple circle symbols in Fig. 4, exhibit desirable
decay behavior at long distances and start to approach zero from a sufficiently large distance.

0 2 4 6 8 10 12

λ

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

F
R

(z
,P

z
,Q

2
)

Q2 = 1.589 GeV2 Original
Extrapolated

Figure 4: The renormalized matrix elements (indicated by red square symbols), along with their extrapolated
results (denoted as purple circle symbols), are presented.

4.2 From quasi-GPD to light-cone GPD

The qGPD is obtained by applying the Fourier transform to the extrapolated results after
renormalization.

𝑓 (𝑥, 𝑝𝑧 , 𝑄2) =
∫

d𝜆
2𝜋

𝑒𝑖𝑥𝜆𝐹𝑅 (𝑧, 𝑝𝑧 , 𝑄2). (12)

We employ the LaMET approach for the perturbative matching of qGPD to the valence GPD in the
light-cone framework.

𝑓 (𝑥, 𝑄2) =
∫ ∞

−∞

d𝑦
|𝑦 | C

−1
(
𝑥

𝑦
,

𝜇

𝑦𝑃𝑧

, |𝑦 |𝜆𝑆
)
𝑓 (𝑦, 𝑃𝑧 , 𝑄

2) + O
(
Λ2

QCD

(𝑥𝑃𝑧)2 ,
Λ2

QCD

[(1 − 𝑥)𝑃𝑧]2

)
, (13)
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where 𝜆𝑆 = 𝑧𝑆𝑃𝑧 with 𝑧𝑆 = 0.12 fm, and C−1 represents the inverse of the matching coefficient.
Fig. 5 displays the valence GPD results of the largest momentum as a function of Bjorken-𝑥 across
all momentum transfer values. The GPD decreases with the momentum transfer increases, and its
𝑥-dependence becomes weaker with increasing value of 𝑄2, except for very small values of 𝑥.

0.0 0.2 0.4 0.6 0.8 1.0

x

0

1

2

3

4

f
(x
,Q

2
)

NNLO+LRR, Pz = 1.937 GeV

Q2 = 0.000 GeV2

Q2 = 0.231 GeV2

Q2 = 0.455 GeV2

Q2 = 0.887 GeV2

Q2 = 1.095 GeV2

Q2 = 1.690 GeV2

Figure 5: The results of the valence GPD for 𝑃𝑧 = 1.937 GeV are shown, spanning a range of varying
momentum transfer 𝑄2.

The 𝑃𝑧- and 𝑥-dependence of the valence GPD are illustrated in Fig. 6. The left panel
presents the distributions for two similar momentum transfer values 𝑄2 = 0.229, 0.231 GeV2, from
𝑃𝑧 = 1.45, 1.94 GeV, respectively. Among the qGPD results, represented as bands filled with
lines, considerable discrepancies are observed between results with similar 𝑄2 values but different
𝑃𝑧 values. Notably, the perturbative matching results, denoted as the bands filled with colors,
effectively correct these differences. This not only underscores the validity of the results but also
highlights the efficacy of the LaMET approach. In the right panel, the distributions are shown for
five distinct 𝑥 values as a function of the momentum transfer. We see that for small values of 𝑥, the
pion GPD shows significant 𝑄2 dependence. However, for large values of 𝑥, the 𝑄2-dependence of
the GPD becomes mild. This means that valance quarks at large values of 𝑥 have a very narrow
distribution in the transverse size.

5. Generalized Form Factor

We use leading twist OPE to obtain GFF. Since this involves only small values of 𝑧 we
renormalize the matrix elements with the ratio scheme and then combine the lattice data with the
leading-twist OPE approximation by such a formula

𝐹𝑅 (𝑧, 𝑃𝑧 , 𝑄
2) =

∑︁
𝑛=0

(−𝑖𝑧𝑃𝑧)𝑛
𝑛!

𝐶𝑛 (𝜇2𝑧2)
𝐶0(𝜇2𝑧2)

⟨𝑥𝑛⟩ + O(Λ2
QCD𝑧

2), (14)

where the Wilson coefficients are calculated up to NNLO and ⟨𝑥𝑛⟩ denotes the Mellin moments
with 𝑛 ∈ [0, 2, 4], defined as

⟨𝑥𝑛⟩ =
∫ 1

−1
𝑥𝑛 𝑓 (𝑥, 𝜉 = 0, 𝑄2)d𝑥 = 𝐴𝑛+1, 𝜉=0(𝑄2), (15)
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Figure 6: The valence GPD obtained with NNLO+LRR matching are shown. Left: 𝑃𝑧-dependence
is displayed by comparing the results of two datasets with similar momentum transfer before and after
perturbative matching. The quasi-GPD results are presented by bands filled with lines, while the light-cone
GPD results are depicted using bands filled with colors. Right: To explore the 𝑄2-dependence, we select
five distinct values of Bjorken-𝑥 and display the distributions as a function of 𝑄2.

where 𝐴𝑛+1, 𝜉=0(𝑄2) denotes the generalized form factor (GFF). We show the results of the first
three iso-vector GFFs results obtained within scale 𝜇 = 2 GeV in Fig. 7. The results demonstrate
a power law decay behavior as the momentum transfer increases. It is essential to emphasize that
the first GFF, denoted as 𝐴1,0, corresponds to the electromagnetic form factor (EMFF). And our
findings align well with the EMFF results reported by the ETM collaboration [45], represented as
the blue line in the figure. Regarding the results for 𝐴3,0, our results also exhibit consistency with
other lattice studies [13, 46–48] within a 1-𝜎 margin of error. Notably, we initially investigate the
variation of the pion’s fifth GFF, 𝐴5,0, with respect to 𝑄2.
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Figure 7: From left to right, the results of the first three iso-vector GFFs, namely 𝐴1,0, 𝐴3,0 and 𝐴5,0, as a
function of 𝑄2 are shown.

6. Conclusion and Outlook

Based on the Lorentz-covariant parameterization of the matrix elements, we extracted ampli-
tudes from both the Breit and non-Breit frames at similar momentum transfer values, confirming
their frame-independent property. This verification allows us to perform lattice GPD calculations
without frame restriction. Focusing on the large momentum cases within the asymmetric frame, we
obtained valence GPD results with hybrid-scheme renormalization and the LaMET framework. We
incorporated Wilson coefficients up to NNLO in conjunction with LRR. We studied the dependent
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behavior of valence GPD results from various perspectives. Additionally, by concentrating on short
distances, we utilized the ratio-scheme renormalized data to derive the first three iso-vector GFFs,
applying the leading-twist factorization formula with matching coefficients up to NNLO.

Regarding future work on valance GPD, we intend to integrate DGLAP evolution to deepen
our understanding of scale variation behavior. For the GFF, we aim to extend acquiring additional
moments and more accurate results.
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