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The nucleon energy-energy correlator (NEEC) was proposed in [1] as a new way to study the
nucleon structure. We present the factorization theorem that enables the measurement of the
unpolarized NEEC in lepton-nucleon collisions. We present the complete spectrum for the
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1. Introduction

Understanding nucleon structure and the formation of hadrons from partons is a key objective
in particle physics. This pursuit remains at the forefront of exploration within the Standard Model,
particularly at the forthcoming electron-ion collider (EIC) and future QCD facilities [2–4].

Conventional approach to the nucleon/nucleus tomography is to probe their transverse mo-
mentum dependent (TMD) structure functions through either the semi-inclusive deep inelastic
scattering (SIDIS) [5–10] or the jet-based studies [11–24]. However, SIDIS requires knowledge of
TMD fragmentation functions, while jets involve clustering procedures and high machine energy,
both of which complicate the analysis.

Energy-Energy Correlation (EEC) is an event shape which stands out among other event
shape observables for its simplicity and effectiveness in revealing the nucleon intrinsic transverse-
dependent dynamics [25–27] and the scales of the quark-gluon plasma [28–31].

In Ref. [27], the EEC has been adapted to the deep inelastic scattering (DIS) process in the
current fragmentation region (CFR), where the observed particles result from the fragmentation of
the parton struck by the virtual photon and the outgoing parton fragments into the detected particles.
It was shown that the EEC in this region can be used to extract the conventional TMDPDFs and the
TMDFFs. On the other hand, in the target fragmentation region (TFR), where the outgoing particles
propagate in the forward direction close to the incoming hadron beam, a variant of EEC, named
nucleon energy-energy correlator (NEEC) was proposed in [1], which supplies a unique opportunity
to reveal the intrinsic dynamics of nucleons. Notably, similar to EEC, NEEC manifests a remarkable
phase transition between the perturbative parton and the non-perturbative free hadron phase [1].
NEEC has also been shown powerful in unraveling the on-set of gluon saturation [32] predicted
by small-𝑥 physics. Furthermore, a joint measurement of NEEC in the TFR and CFR exhibits
an exquisite signature of the linearly polarized gluons inside the nucleons [33]. The derivation of
the NEEC factorization theorem and its NLL resummation were obtained in [34]. The complete
spectrum for NEEC is presented in [35]

The definition of the NEEC observable is

𝑑Σ𝑁

𝑑𝑄2𝑑𝜃
=
∑︁
𝑖

∫
𝑑𝜎(𝑥𝐵, 𝑄2, 𝑝𝑖)𝑥𝑁−1

𝐵

𝐸𝑖

𝐸𝑃

𝛿(𝜃 − 𝜃𝑖) . (1)

Here 𝑁 > 1 is a positive power, and 𝑑𝜎 is the differential cross section with Bjorken 𝑥𝐵 and virtuality
of the photon 𝑄. 𝑝𝑖 denotes the four-momentum of the particle detected by the calorimetry. The
angle 𝜃𝑖 is the polar angle of 𝑝𝑖 with respect to the nucleon beam. 𝐸𝑖 and 𝐸𝑃 are the energy of the
detected particle and the incoming nucleon, respectively. The measurement is illustrated in Fig.1.

In the TFR and the TMD region, NEEC can be systematically analyzed using the factorized
formula based on the soft-collinear effective theory (SCET) [36–41].

2. Factorization theorem

2.1 TMD region

In the TMD region, 𝜋−𝜃 ≪ 1, the NEEC can be related to the single hadron production process
𝑒 + 𝑝 → 𝑒 + 𝑎 + 𝑋 with a small transverse momentum of the observed hadron. The expression for
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Figure 1: The EEC measurement in DIS. The sphere represents the detector that reports the energy and the
angle of the final state particle.

Σ𝑁 (𝑄2, 𝜃) is given by [27]:

𝑑Σ𝑁

𝑑𝑄2𝑑𝜃
=

∫
𝑑𝑥𝐵𝑥

𝑁−1
𝐵

∑︁
𝑎

∫
𝑑2q𝑇𝑑𝑧

𝑑𝜎𝑒+𝑝→𝑒+𝑎+𝑋

𝑑𝑄2𝑑𝑥𝐵𝑑2𝑞𝑇𝑑𝑧

𝐸𝑎

𝐸𝑝

𝛿(𝜃𝑎𝑝 − 𝜃) . (2)

The factorization of the EEC can be obtained by approximating 𝐸𝑎

𝐸𝑝
as 𝑥𝐵𝑧𝑎:

𝑑Σ𝑁

𝑑𝑄2𝑑𝜃
=

∫
𝑑𝑥𝐵 𝑥𝑁𝐵 𝐻 (𝑄2, 𝜇)

∫
𝑑2𝑞𝑇

𝑑2𝑏

(2𝜋)2 exp[−𝑖𝑞𝑇 · 𝑏]𝐵 𝑓 /𝑝 (𝑏, 𝑥𝐵, 𝜇, 𝜈)

× 𝑆(𝑏, 𝜇, 𝜈)𝐽 𝑓 ,EEC(𝑏, 𝜇, 𝜈)𝛿
(
2|𝑞𝑇 |
𝑄

− 𝜃

)
, (3)

where 𝐵 𝑓 /𝑝 is the TMD beam function, 𝑆 is the soft function and 𝑏 = |b|. 𝐽 𝑓 ,EEC is the EEC
(anti-)quark jet function defined as the first moments of the fragmentation functions 𝐷𝑎/ 𝑓 :

𝐽 𝑓 ,EEC ≡
∑︁
𝑎

∫ 1

0
𝑑𝑧 𝑧𝐷 𝑓 /𝑎 (𝑧, 𝑏) . (4)

2.2 Target Fragmentation Region

The expression for Σ𝑁 (𝑄2, 𝜃) can be written as:

𝑑Σ𝑁

𝑑𝑄2𝑑𝜃
=

𝛼2

𝑄4

∫
𝑑𝑥𝐵𝑥

𝑁−1
𝐵 𝐿𝜇𝜈

∫
𝑑4𝑥𝑒𝑖𝑞 ·𝑥 ⟨𝑃 | 𝑗 𝜇†(𝑥) Ê (𝜃) 𝑗 𝜈 (0) |𝑃⟩ , (5)

with 𝐿𝜇𝜈 the lepton tensor the same as DIS. The inserted normalized asymptotic energy flow
operator Ê (𝜃) measures the energy deposited in the detector at a given angle 𝜃 [42–45] normalized
to the energy 𝐸𝑃 of the incoming proton

Ê (𝜃) |𝑋⟩ ≡
∑︁
𝑖∈𝑋

𝐸𝑖

𝐸𝑃

𝛿(𝜃 − 𝜃𝑖) |𝑋⟩ . (6)

The contribution of the energy flow operator in the soft region will be power suppressed by the
factor 𝐸𝑖

𝐸𝑃
.

We further match the hadron tensor in Eq. (5) to the SCET matrix as

3
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∫
𝑑4𝑥𝑒𝑖𝑞 ·𝑥 ⟨𝑃 | 𝑗†𝜇 (𝑥) Ê (𝜃) 𝑗 𝜈 (0) |𝑃⟩ =

∫
𝑑4𝑥𝑒𝑖𝑞 ·𝑥

(
𝐶

𝜇𝜈
𝑞 (𝑥)⟨𝑃 | 𝜒̄𝑛 (𝑥−)

𝛾+

2
Ê (𝜃)𝜒𝑛 (0) |𝑃⟩

+𝐶𝜇𝜈
𝑔 (𝑥)⟨𝑃 |B⊥(𝑥−)Ê (𝜃)B⊥(0) |𝑃⟩

)
, (7)

which contains only the gauge invariant collinear quark and gluon fields 𝜒 andB⊥, respectively [46].
In addition, we have the soft Wilson lines𝑌 andY in the fundamental and the adjoint representation,
respectively. Here we have used the fact that the soft Wilson lines decouple the interaction between
the collinear and the soft sectors [Ê, 𝑌 ] = [Ê,Y] = 0, since Ê (𝜃) and𝑌 (Y) act on different sectors.
We have also used the identity 𝑌†𝑌 = Y†Y = 1.

By recognizing that when the collinear operator Ê (𝜃) is replaced with the identity operator 1 =∑
𝑋 |𝑋⟩⟨𝑋 |, we recover the hadron tensor in the standard inclusive DIS cross section. Meanwhile,

Eq. (5) reduce to the inclusive DIS cross section and the hard coefficients remain unaffected whether
using the collinear operator Ê (𝜃) or the identity operator in the collinear function. We can establish
that the hard tensors 𝐶𝜇𝜈

𝑞 and 𝐶
𝜇𝜈
𝑔 are equivalent to the hard tensors in inclusive DIS.

Immediately, the factorization of the observable can be obtained:

𝑑Σ𝑁

𝑑𝑄2𝑑𝜃
=

∑︁
𝑖=𝑞,𝑔

∫
𝑑𝑥𝐵𝑥

𝑁−1
𝐵

∫
𝑑𝑧

𝑧
𝑓𝜆𝜎̂𝜆,𝑖

(
𝑥𝐵

𝑧
, 𝑄2

)
𝑓𝑖,EEC(𝑧, 𝑃+𝜃) . (8)

where 𝑓𝑞,EEC is the quarks NEEC

𝑓𝑞,EEC(𝑧, 𝜃) ≡
∫

𝑑𝑦−

4𝜋
𝑒−𝑖𝑧𝑃

+ 𝑦−
2 ⟨𝑃 | 𝜒̄𝑛

( 𝑦−
2
𝑛𝜇

) 𝛾+
2
Ê (𝜃)𝜒𝑛 (0) |𝑃⟩ , (9)

and 𝑓𝑔,EEC is the gluon NEEC

𝑓𝑔,EEC(𝑧, 𝜃) =
∫

𝑑𝑦−

4𝜋
𝑒−𝑖𝑧𝑃

+ 𝑦−
2 𝑃+⟨𝑃 |B⊥

( 𝑦−
2
𝑛𝜇

)
Ê (𝜃)B⊥(0) |𝑃⟩ . (10)

𝜎̂𝜆,𝑖 is the partonic DIS cross section. The corresponding flux is given by 𝑓𝑇 = 1−𝑦+ 𝑦2

2 , 𝑓𝐿 = 2−2𝑦.
We notice that in the TFR, the soft radiations are fully encompassed in the measurement, and

therefore the soft modes do not lead to any logarithmic enhancement contributions. This is different
from the TMD region measurement, where the soft contribution leads to the enhanced contribution
which eventually gives rise to the perturbative Sudakov factor that suppresses the distribution in the
TMD region exponentially.

When 𝜃𝑃+ ≫ ΛQCD, the NEEC can be matched onto the collinear PDFs, with all 𝜃 dependence
occurring only in the perturbative matching coefficients. In this way, since 𝑓EEC is dimensionless,
the 𝑃+𝜃 will show up in the form of ln 𝑃+ 𝜃

𝜇
. Therefore, 𝑑Σ𝑁

𝑑𝑄2𝑑𝜃
could also be written as

𝑑Σ𝑁

𝑑𝑄2𝑑𝜃
=

𝑑Σ̂𝑇,𝑁

𝑑𝑄2𝑑𝜃
+ 2

𝑑Σ̂𝐿,𝑁

𝑑𝑄2𝑑𝜃
+ 𝑄4

2𝑠2
𝑑Σ̂𝑇,𝑁−2

𝑑𝑄2𝑑𝜃
− 𝑄2

𝑠

(
𝑑Σ̂𝑇,𝑁−1

𝑑𝑄2𝑑𝜃
+ 2

𝑑Σ̂𝐿,𝑁−1

𝑑𝑄2𝑑𝜃

)
, (11)

where we defined

𝑑Σ̂𝜆,𝑁

𝑑𝑄2𝑑𝜃
=

∑︁
𝑖=𝑞,𝑔

∫
𝑑𝑢 𝑢𝑁−1𝜎̂𝜆,𝑖

(
𝑢, 𝑄2

)
𝑓𝑖,EEC

(
𝑁, ln

𝑄𝜃

𝑢𝜇

)
, (12)
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with 𝑢 =
𝑥𝐵
𝑧

and we have used the fact that 𝑃+ =
𝑄

𝑥𝐵
=

𝑄

𝑧𝑢
in the Breit frame. The 𝜇-dependence in

other forms through the strong coupling and the collinear PDFs are suppressed in the 𝑓𝑖,EEC, where
𝑓𝑖,EEC(𝑁, ln 𝑄𝜃

𝑢𝜇
) is the NEEC in the Mellin space,

𝑓𝑖,EEC(𝑁, ln
𝑄𝜃

𝑢𝜇
) =

∫ 1

0
𝑑𝑧 𝑧𝑁−1 𝑓𝑖,EEC(𝑧, ln

𝑄𝜃

𝑧𝑢𝜇
) . (13)

The NEEC satisfies the modified DGLAP evolution equation

𝑑

𝑑 ln 𝜇2 𝑓𝑖,EEC(𝑁, ln
𝑄𝜃

𝑢𝜇
) =

∑︁
𝑗

∫
𝑑𝜉𝜉𝑁−1𝑃𝑖 𝑗 (𝜉) 𝑓 𝑗 ,EEC(𝑁, ln

𝑄𝜃

𝜉 𝑢𝜇
) , (14)

where 𝑃𝑖 𝑗 is the vacuum splitting function. The solution of this RG equation at NLL level of
accuracy is given in [34].

In the limit of extremely small angles, we anticipate the 𝑑Σ𝑁/𝑑𝜃 pattern indicates the presence
of a free hadron phase where the energy is uniformly distributed. In this phase, the energy deposit
within the region bounded by the polar angle being less than 𝜃 is proportional to 𝜃2. As NEEC is
proportional to the distribution of energy with respect to the polar angle, We expect

𝑑Σ𝑁

𝑑𝜃
|NP ∝ 𝜃 . (15)

The analogous pattern has also been observed in the final state jet through the utilization of CMS
open data [47].

3. Numerical Results

In this section, we explore the NEEC distributions with two distinct collision energies. The
interaction of 18 GeV electrons with 275 GeV protons at the EIC with

√
𝑠 = 140.7 GeV, and the

interaction of 22 GeV electrons with 2 GeV protons at CEBAF with
√
𝑠 = 13.3 GeV.

For the EIC kinematics, we set the parameters as 𝑁 = 4 and 𝑄 = 20 GeV, while for the
CEBAF kinematics, we consider 𝑁 = 4 and 𝑄 = 3 GeV. For all the numerical results, we use the
PDF4LHC15_nnlo_mc PDF sets [48] with the associated strong coupling provided by LHAPDF6 [49].

We validate the factorization formalism by comparing the leading singular ln 𝜃 contributions
predicted by the factorization theorem with the complete 𝛼𝑠 and 𝛼2

𝑠 calculations of the distribution
𝑑Σ𝑁/𝑑𝑦, where 𝑦 ≡ ln tan 𝜃

2 . The comparison is shown in Fig. 2 utilizing EIC kinematics. The
full fixed-order calculations are obtained numerically using nlojet++ [50]. Remarkably, in both
the small 𝑦 and large 𝑦 regions, we observe excellent agreement between the leading singular terms
predicted by the factorization formula and the full fixed-order calculations.

In the TMD region and the TFR, the logarithmic enhancements can spoil the convergence of
the perturbative expansion. Therefore, the resummation of these logarithms to all orders in the
strong coupling is necessary for reliable predictions to compare with experimental data.

The final distributions without non-perturbative effects for EIC and CEBAF are presented in
the left and right panels of Fig. 3, respectively. In the TMD region, we match the N2LL (N3LL)
resummed distributions to the QCD LO (NLO) ones. In the TFR, we match the NLL resummed

5
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Figure 2: Comparison between the ln 𝜃 leading singular contributions with the full fixed-order calculations
in both the forward and backward regions.

Figure 3: Comparison of EEC between the SCET predictions without non-perturbative effects, free hadron
gas model, and PYTHIA simulations running without hadronization modeling. The left panel displays the
results for EIC kinematics, while the right panel showcases the results for CEBAF kinematics.

distributions to the QCD LO (NLO) ones. We compare our calculations to PYTHIA [51, 52]
simulations without a hadronization modeling.

In the perturbative region, the matching result agrees reasonably well with the partonic PYTHIA
simulation. In the extreme forward region, when 𝑦 < −5.5 in EIC kinematics and 𝑦 < −3.4 in
CEBAF kinematics, we fit the un-normalized PYTHIA distribution with the non-perturbative model
𝑎NP𝜃 to observe the free hadron gas phase. Even without hadronization, We observe a nearly perfect
𝑑Σ𝑁/𝑑𝑦 ∝ 𝜃2 scaling, as expected above in Eq. (15), corresponding to uniformly distributed partons.

Furthermore, in Fig. 3, we observe a distinct phase transition. The transition from the TFR
resummation region to the free hadron gas region, connected by a non-perturbative transition
region. When comparing the EIC kinematics distribution to the CEBAF kinematics distribution, we
observe that the free hadron gas region and the transition region shift to larger angles in the CEBAF
kinematics distribution. This shift is expected since the transition occurs as 𝜃 ∼ 𝑂 (ΛQCD/𝑄).
Consequently, CLAS holds the potential for probing NEEC in the non-perturbative region, which
essentially enables direct imaging of the confining transition to free hadrons.

In Fig.4, we compare the simulated PYTHIA result with and without hadronization for both EIC
and CEBAF kinematics. We observe that for 𝑦 < −5.5 in EIC kinematics and 𝑦 < −3.4 in CEBAF

6
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Figure 4: Comparison of EEC between PYTHIA simulations with and without hadronization. The left panel
displays the results for EIC kinematics, while the right panel showcases the results for CEBAF kinematics.

kinematics, the 𝑑Σ𝑁/𝑑𝑦 ∝ 𝜃2 scaling persists, indicating the presence of uniformly distributed
hadrons.

4. Conclusion

In this work, we review the factorization theorem for the NEEC measurement in lepton-
nucleon collisions. The singular distributions can be derived from the factorized formula, which
are compared against the full fixed-order QCD calculations up to NLO. In the extremely small angle
limit, the free hadron gas model is introduced to investigate the non-perturbative distribution. We
compared our predictions to partonic PYTHIA simulations. Between the hadron gas phase region
and the perturbative resummation region, a transition phase is observed. We note that the transition
region from perturbative parton phase to non-perturbative region for CEBAF begins at 𝜃 ∼ 0.7 rad,
indicating CLAS may have a good opportunity to probe the non-perturbative NEEC.
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