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Recently years have seen significant progress in the first-principles calculation of TMD physics
from lattice QCD. We will describe the theoretical method for calculating both quark and gluon
TMDs, which has been developed under the framework of large-momentum effective theory.
Then we review its most recent applications to the non-perturbative quark TMDs and their ra-
pidity evolution anomalous dimension, i.e., the Collins-Soper kernel, and discuss the control and
improvement of systematic uncertainties in such calculations.
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1. Introduction

The transverse-momentum-dependent parton distributions (TMDs) are the key observables for
a 3D tomography of the nucleon in the momentum space. They are among the top targets for high-
energy scattering experiments at Fermilab, CERN, Jefferson Lab, RHIC and the future Electron-lon
Collider. Over the past two decades, significant progress has been made in the global fitting of quark
TMDs from the semi-inclusive deep inelastic scattering (SIDIS) and Drell-Yan processes. See the
review in Ref. [1]. The main goal of these experiments is to extract the intrinsic non-perturbative
TMBDs at parton transverse momentum |k, | ~ Aqcp, the region that is most relevant for nucleon
structure, but the uncertainties in this domain still remains.

In recent years, there have been growing efforts in the first-principles calculation of TMDs from
lattice quantum chromodynamics (QCD). Since TMDs are defined by quark and gluon correlators
involving staple-shaped Wilson lines on the light-cone, it is impossible to directly compute their
matrix elements on the Euclidean lattice due to the real-time dependence. Hence, initial efforts
concentrated on the ratio of TMD moments, which are weighted averages in the longitudinal
momentum fraction x space and remain independent of time [2—7]. Then, a breakthrough was
made by Large-Momentum Effective Theory (LaMET) [8—10] to calculate the x-dependence of
parton distribution functions (PDFs), which has undergone profound development to make precision
controlled calculations [11, 12] nowadays. The LaMET approach has also motivated the study of
TMDs from lattice QCD [13-30], leading to the calculations of the TMD evolution kernel [31-39],
the TMD soft function [32, 33, 38], and their (x, k) dependence [40, 41].

In this review, I will introduce the LaMET formalism for TMD calculation, and discuss its
recent applications.

2. TMD Definition

The TMDs in SIDIS and Drell-Yan processes involve a collinear part (beam function B) and
soft part (soft function ). For example, the quark TMD can be schematically defined as:

) ~ Bi(x,br,e,xPt, T
it br . £) = lim Zoy(e, ) lim PP m

-0 /S9(br,€,7)

where i is the parton flavor index, x is the longitudinal momentum fraction, b, is the Fourier

conjugate to the transverse momentum k7, and P* is the light-cone momentum of the target
nucleon. € and 7 are the regulators for the ultraviolet (UV) and rapidity divergences, and u and ¢
are the corresponding renormalization scales, with ¢ also being called the Collins-Soper scale.

The beam function B is defined from the hadronic matrix element of a staple-shaped quark
Wilson line correlator, shown in Fig. 1, while a soft function is defined from the vacuum matrix
elements of a Wilson loop operator that involves two lightlike directions. Both the beam and soft
functions include the so-called rapidity divergences, which can be regulated by 7. The choice of T
can be the large rapidity yp of a spacelike Wilson line that is close to the light-cone, whose direction
is given by

ny = (np,np.np) = (=¢7,1,0,), )
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Figure 1: Beam and soft functions on the light-cone.

and yp — —oo corresponds to the light-cone limit or 7 — 0.

Due to the real-time dependence of light-cone, neither the beam or soft function can be directly
simulated on the lattice. However, LaMET has provided a framework to relate the light-cone PDFs
from time-independent lattice observables [42—44]. Thanks to years of development, the lattice
calculation of PDFs has entered the era of precision calculation [11, 12, 45].
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Figure 2: Spacelike beam function and the (static) quasi beam function.
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Figure 3: Spacelike soft function.

Within the LaMET framework, the TMDs can also be calculated through a factorization
formula [16, 18, 19, 24]. The beam function with the off-the-light-cone rapidity regulator can be
approximated by a static staple-shaped quark correlator in a highly boosted hadron state, see Fig. 2,
enabled by the principle of Lorentz invariance [24]. However, since the soft function involves
two close-to-the-light-cone directions, see Fig. 3, they cannot be related to any static Wilson loop



Lattice QCD Calculation of TMD Physics Yong Zhao

operator on the lattice through Lorentz transformation. Nevertheless, at large rapidity difference
YB — Y, the soft function can be expanded as

lim  Sq(br. (6. 2(yn = yB))) = Sp(br, ) e 208 4 Q720 8)) 3)

Yn=YB—X®

where vy, is the rapidity anomalous dimension, and S, is called a reduced soft function [18] that
can be extracted from a meson form factor defined as

Fr(P%,br) = (n(=P)|j1(br)j2(0)|7(P)), “)

where 7(P) is a pion state with momentum P, and j; » = ¢T'j o4 are light-quark currents. At large
momentum P? > Aqcp, the form factor can be factorized as

Fr(P*, br) = S,(br, 1) / dxdx’ H(x,x', ))®" (x, by, P%, f)®(x’, by, P*, 1), 5)

where @ is a quasi TMD wave function that is defined by a pion to vacuum matrix element and can
be directly simulated on the lattice.
With the quasi TMD and reduced soft functions, we can establish the factorization formula
that relate them to the light-cone TMD [16, 18, 19, 24],
~[SJ ~
Ji)p (b1, 1 P2)

\Y Sr(bT: /J)

= C(u,xP?) exp

1 2xP?)?
57{(/1, br)In ( ) }

A2
1 QCD ]} ©)

(xPbr)?’ (xP2)?

X Ji[/;}(xabTa Hs g){l + 0

where s stands for the Dirac spin structure, and C is a perturbative matching coefficient which is
free from mixing with the gluon or other quark flavors.
The above factorization formula allows us to compute:

* The Collins-Soper kernel [13, 15];
* The flavor separation of TMDs;

* The spin-dependence of TMDs [21];

The full TMD and TMD wave function dependence on x and br;

Twist-3 PDFs from the small-b7 expansion of TMDs [22].

* Sub-leading TMDs [25].

3. Lattice applications

Since its proposal, the quasi-TMD approach within the LaMET framework has been applied
to the lattice calculations of the Collins-Soper kernel, the TMD soft function, and the full (x, br)
dependence of TMD PDF and wave function. Among them, the Collins-Soper kernel has been the
most studied by several lattice groups [31-39].
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The master formula for the lattice extraction of the Collins-Soper kernel is [15]

S by) = 1 HC(y,xpg) [ dbt P77/ (b7, p, i) Zuy (B, fi, @)W (b7, br,a,n, PY)
¢ In(P{/PY) " C(u,xP?) [db* e***P2 Z/(b%, u, @) Zuv (b, fi, )W (b7, by, a,n, P3)
2 2
1 A 1 A
x{1+o 1 oo "] ]} ™
(xPzbr)? (xP2)% ((1 = x)P2br)? ((1 - x)P?)?

where W is the bare lattice matrix element of the quasi-beam or wave function, Zyy is the lattice
renormalization factor, and Z’ converts the lattice renormalization scheme to the continuum MS
scheme.

The sources of systematic uncertainties include: 1) unphysical quark masses; 2) lattice renor-
malization; 3) operator mixing under lattice regularization; 4) Fourier transform; 5) perturbative
matching; 6) extraction of the Collins-Soper kernel from the quasi-TMD ratios. Recently, a lattice
QCD calculation of the kernel [39] used quark masses corresponding to a close-to-physical value
of the pion mass, with next-to-next-to-leading logarithmic (NNLL) matching to TMDs from the
corresponding quasi-TMD, and includes a complete analysis of systematic uncertainties arising
from operator mixing. The simulation of quasi-TMD wave function matrix elements is much less
expensive than the quasi-TMD PDF, as it only involves two-point correlation functions. Thus, using
the same statistics one achieve better statistical precision and have more stable Fourier transform.
Besides, the physical pion mass helps better suppress the power corrections in the factorization
formula.

The perturbative matching correction is an important source of error. It can be derived as

1 C(xP3, p)

0 , P2 PE ) = +
Yl PP ) = e ey | ™ e

x— x|, (8)

where ¥ = 1 — x. The matching coefficient can be resummed as
C(xP% u) = C(xP%2xP*)exp [K(u,2xP%)] . 9)

At NNLL, the matching C(xP?,2xP?) is truncated at O(as) and K is at O(a? In(u/(2xP?)).

In addition, it was found that the power correction is significant when the condition xP*by > 1
is not satisfied, which is required for TMD factorization. When xP* > Aqcp and XP* > Aqcp.,
we have

e If xP*by > 1 and xP*by > 1, we have TMD factorization;
o If xP*by < 1 and xP*by < 1, we have collinear factorization;

o If xP*by ~ 1 and XP*br ~ 1, we have collinear factorization but with calculable power
corrections. In this region, we can compute the fixed-order expansion of the matching
coefficient;

Under this argument, it was proposed to use the unexpanded matching coefficient [39],

CNNLL (2 b ) = CONLO(p2 by 2p7) exp [KNNLL@272pz] ’ (10)
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where

C'™NEO(p2 by, 1) = C(p%, ) + SC(p%, br), lim S6C(p%,br)=0. (11)

pz bT —00

In this way, when p*by > 1, the matching coefficient smoothly approaches the TMD limit. The
br dependent matching coefficient can be extracted from Refs. [16, 27], which is plotted in Fig. 4.
The unexpanded power correction shows a good cancellation of the unphysical imaginary part of
the kernel in the small-b7 region.
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Figure 4: The unexpanded matching coefficient in xP?br.

By taking into account of the uNNLL matching coefficient, the Collins-Soper kernel is obtained
from the ratio of quasi-TMD wave functions, which is shown in Fig. 5. Since the kernel is
independent of x, the desired result should be constant in x in the moderate region. However, as
shown in Fig. 5, the slight dependence indicates the higher-order effects and power corrections.
Nevertheless, within our statistical errors, the bands are quite flat, which allows us to have a reliable
extraction of the Collins-Soper kernel.
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Figure 5: The Collins-Soper kernel extracted as a function of x.

The final result is compared to the global analysis as Fig. 6. As one can see, the lattice results
have reached a precision that can begin to differentiate the global fits. This is an encouraging step
towards systematic control to have a greater impact on the experiments.
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Figure 6: Collins-Soper kernel with uNNLL matching in b space (green squares) compared to phenomeno-
logical parameterizations of experimental data in Refs. [46—50] labeled BLNY, SV 19, Pavial9, MAP22, and
ART?23, respectively, as well as perturbative results from Refs. [5S1-53] labeled N3LL.

Another development is the lattice calculation of the reduced soft function [32, 33, 38], using
the meson form factor method. This effort has been making progress in the past few years, and
the most recent calculation was done using multiple lattice ensembles at unphysical valence quark
masses, at next-to-leading order (NLO) accuracy, which is shown in Fig. 7.
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Figure 7: A recent lattice QCD calculation of the reduced TMD soft function at NLO accuracy [38].

Since there is no experimental result on the soft function, the only comparison that can be
done is with the perturabtive prediction which is only valid in the small-b7 region. However,
due to the enhanced power correction and discretization effects, the systematics in this region is
underestimated, and it is not surprising that the lattice results are not consistent with perturbation
theory. Future efforts should focus on using finer lattice that allows for a window where one can
find the agreement between lattice and perturbation theory.

Finally, with the quasi beam function and reduced soft factor, one can eventually obtain the full
kinematic dependence of the TMDs. The first such attempt was made in a recent calculation [40]
for the isovector unpolarized proton TMD, which is shown in Fig. 8. The lattice results show some
qualitative agreement with the recent global analysis, but the systematics still need to be under

better control.
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Figure 8: A recent lattice QCD calculation of the isovector unpolarized proton TMD at NLO accuracy [40].

4. Conclusion

In summary, we have reviewed the LaMET framework for the lattice QCD calculation of TMDs,
which should cover all leading-power TMDs of all spin structures. This method has been applied to
the calculation of the Collins-Soper kernel, which has undergone significant development over the
past four years, with promising improvement of the systematic uncertainties. There are also first
calculations of the soft function and the full kinematic dependence of the TMDs, leading us to one
step closer to the complete 3D tomography of the nucleon from lattice QCD.

Last but not the least, it is worth mentioning that very recently, there is a new proposal
to calculate the PDFs and TMDs from pure correlators fixed in the Coulomb gauge [54, 55],
which can significantly improve the signal-to-noise ratio and simplify the lattice renormalization
procedure.
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