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We present studies aimed at probing the 3D gluon content of the proton through spin-dependent
TMD gluon densities, computed by means of the spectator-model approach. Our formalism incor-
porates a fit-based modulation function for the spectator mass, designed to capture longitudinal-
momentum effects across a broad kinematic range. Special emphasis is placed on the time-reversal
even Boer–Mulders and the time-reversal odd Sivers functions. Accurate understanding of these
functions is crucial for conducting precise 3D analyses of nucleons, highlighting the importance
of collaborative efforts between the LHC and EIC Communities.
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1. Introduction

Exploring the internal structure of nucleons through a multi-dimensional analysis of their
constituents represents a frontier in phenomenological studies at new-generation colliding machines.
The well-established collinear factorization, which relies on a one-dimensional description of the
proton content based on collinear parton distribution functions (PDFs), has been successful in
describing data at hadron-hadron and lepton-hadron colliders. However, fundamental questions
regarding the dynamics of strong interactions remain unanswered. Understanding the origin of
mass and spin of hadrons necessitates a paradigm extension from the purely collinear framework to
a 3D tomographic treatment, which is naturally provided by the Transverse Momentum Dependent
(TMD) formalism.

While our knowledge of quark TMD densities has seen significant progress in the last years,
the gluon-TMD sector remains almost uncharted. A first list of (un)polarized gluon TMD PDFs at
leading twist was given in Ref. [1] and then in Refs. [2–4]. Phenomenological studies on unpolarized
and polarized gluon TMD densities were proposed only recently [5–12]. A noteworthy distinction
between collinear and TMD densities lies in the dependence on the gauge structure, with TMD
PDFs being process-dependent due to their sensitivity to the transverse components of the gauge
link [13–15].

In particular, quark TMD PDFs exhibit dependence on the process through the [+] and [−]
staple links. The gauge-link dependence of gluon TMDs is more intricate, involving two principal
structures: the 𝑓 -type (or Weiszäcker–Williams) and the 𝑑-type (or dipole). The 𝑓 -type and 𝑑-type
densities are sensitive to [±,±] future-pointing and [±,∓] past-pointing gauge-link combinations,
respectively. Beyond these two major structures, there exist more intricate gauge links. They
are related to box-loop combinations of [+] and [−] staple links. However, they are accessed via
processes featuring multiple color exchanges between the initial and final state [16], thus leading to a
(potential) violation of TMD factorization [17]. A connection between the unpolarized gluon TMD
function and the BFKL unintegrated distribution exists only at small-𝑥 and moderate transverse
momentum [18–20] (see Refs. [21–49] for recent applications).

Prime studies on quark TMD PDFs were conducted within the spectator-model formalism [50,
51], considering different spin states of di-quark spectators and various form factors for the nucleon-
parton-spectator vertex. A pioneering extension to the T-even gluon TMD sector was done in
Refs. [52] (see also Refs. [53–58]). In this work we give results for the T-even gluon Boer–Mulders
function and a preliminary analysis of the 𝑓 -type T-odd gluon Sivers TMD PDF, both calculated via
an enchanced version of the spectator-model approach. The Boer–Mulders TMD can be accessed
even in unpolarized collisions at the LHC, thus providing us with useful information about the
distributions of linearly polarized gluons inside an unpolarized proton. The Sivers function is
crucial for studying transverse single-spin asymmetries at future experiments, such as the Electron-
Ion Collider (EIC) and the forthcoming LHCspin [59–61].

2. Leading-twist gluon TMD PDFs in a spectator model

We make use of an improved spectator-model approach to model the gluon TMD correlator.
Within our assumption, a gluon featuring four-momentum 𝑝, transverse momentum 𝒑𝑇 , and lon-
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Figure 1: Transverse-momentum trend of the Boer–Mulders gluon TMD at 𝑥 = 10−3 (left) and the | 𝒑𝑇 |-
weighted [+, +] Sivers function at 𝑥 = 10−1 (right), obtained within the spectator-model framework at
the initial energy scale of 𝑄0 = 1.64 GeV. Black curve depicts replica #11, which we elect as the most
representative one.

gitudinal fraction 𝑥, is struck from a parent nucleon with four-momentum 𝑃 and mass 𝑀 . Proton
remainders are effectively treated as a single on-shell particle, referred to as the spectator, possessing
mass 𝑀𝑋 and spin-1/2.

The nucleon-gluon-spectator effective vertex incorporates two form factors, expressed as dipo-
lar functions of 𝒑2

𝑇
Our choice for nucleon-gluon-spectator vertex reads

Y𝜇

𝑎𝑏
= 𝛿𝑎𝑏

(
𝑔1(𝑝2)𝛾𝜇 + 𝑔2(𝑝2) 𝑖

2𝑀
𝜎𝜇𝜈𝑝𝜈

)
, (1)

the 𝑔1,2 functions being two dipolar functions of 𝒑2
𝑇
. The choice of dipolar form factors dampens

gluon-propagator singularities and mitigates logarithmic instabilities in the | 𝒑𝑇 |-integrated correla-
tor. All twist-two T-even gluon TMD PDFs in the proton were computed in [52]. In that study, the
pure spectator approach was refined by weighting the spectator mass 𝑀𝑋 over a continuous range
using a spectral modulation function designed to capture both small- and moderate-𝑥 dynamics. Its
expression reads

𝜌 [spect.] (𝑀𝑋) = 𝜇2𝑎
(

𝐴

𝐵 + 𝜇2𝑏 + 𝐶

𝜋𝜎
𝑒
− (𝑀𝑋−𝐷)2

𝜎2

)
. (2)

Thus, a given TMD PDF is written as

F 𝑔 (𝑥, 𝒑2
𝑇 ) =

∫ ∞

𝑀

𝑑𝑀𝑋 𝜌 [spect.] (𝑀𝑋) F̂ 𝑔 (𝑥, 𝒑2
𝑇 ; 𝑀𝑋) , (3)

where F̂ 𝑔 stands for corresponding densities calculated in a pure spectator-model framework.
Values of parameters coming both from the couplings (Eq. (1)) and the modulation function

(Eq. (3)) were fixed by performing a simultaneous fit of the | 𝒑𝑇 |-integrated unpolarized and helicity
gluon TMD PDFs, 𝑓

𝑔

1 and 𝑔
𝑔

1 , to the corresponding collinear densities provided by the NNPDF
Collaboration [62, 63] at the initial energy scale of 𝑄0 = 1.64 GeV. The impact of statistical
uncertainty was assessed using the bootstrap method [64].
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The spectator-model gluon correlator at tree level carries no sensitivity on the gauge link. As
consequence, our model T-even TMD PDFs do not depended on the process. A T-odd function can
be constructed by superseding the tree-level approximation and considering its interference with
another channel. Using the same strategy employed for the quark TMD sector [50], we account for
one-gluon exchange in the eikonal approximation, representing the truncation at the first order of
the full gauge-link operator. As a result, our T-odd densities acquire sensitivity on the gauge link.
Thus, they are process dependent.

A given spectator-model T-even TMD PDF, say the Boer–Mulders function (ℎ⊥𝑔1 ), does not
change under a gauge-link modification. At variance with the T-even case, two distinct T-odd
distributions, such as two Sivers functions ( 𝑓 ⊥𝑔1𝑇 ), appear. They can be obtained by suitably
projecting the transverse part of the gluon TMD correlator. Thus, the following relations of
modified universality for the T-odd case hold

𝑓
⊥ [+,+]
1𝑇 (𝑥, 𝒑2

𝑇 ) = − 𝑓
⊥ [−,−]
1𝑇 (𝑥, 𝒑2

𝑇 ) , [ 𝑓 -tipe] (4)

𝑓
⊥ [+,−]
1𝑇 (𝑥, 𝒑2

𝑇 ) = − 𝑓
⊥ [−,+]
1𝑇 (𝑥, 𝒑2

𝑇 ) . [𝑑-tipe]

We show results for the spectator-model gluon Boer–Mulders TMD PDF, along with pre-
liminary analyses on the gluon Sivers function. For consistency, we use the model parameters
those obtained from the fit of our integrated densities 𝑓

𝑔

1 and 𝑔
𝑔

1 , given in Ref. [50], to NNPDF
collinear PDFs [62, 63] at 𝑄0 = 1.64 GeV. The panels in Fig. 1 illustrate the transverse-momentum
dependence of the Boer–Mulders function (left) at 𝑥 = 10−3 and the | 𝒑𝑇 |-weighted [+, +] Sivers
distribution (right) at 𝑥 = 10−1. Both TMD PDFs feature a non-Gaussian 𝒑2

𝑇
behavior, with a

decreasing tail at high transverse momentum. The Boer–Mulders function starts from a finite value
at 𝒑2

𝑇
= 0 and rapidly decreases as 𝒑2

𝑇
increases. On the other hand, the Sivers function starts from

a small, non-zero value at 𝒑2
𝑇
= 0, then peaks in the range 𝒑2

𝑇
≲ 0.1 GeV2 before exhibiting a

larger, flattening tail.

3. Closing statements

We presented a study of spin-dependent gluon twist-two TMD PDFs obtained within an im-
proved version of the spectator-model approach [52]. The use of a fit-based modulation permitted us
to effectively capture the core gluon dynamics at both small and moderate values of the longitudinal
fraction 𝑥. Our ongoing efforts complete the calculation of all the T-odd gluon TMD PDFs [65].

These investigations can provide valuable insights into the 3D dynamics of gluons inside
the proton in the context of future colliding machines. These include: the Electron-Ion Collider
(EIC) [66–69], NICA-SPD [70], the High-Luminosity Large Hadron Collider (HL-LHC) [71–74],
including its extension to polarized fixed targets [59–61, 75–77], and the Forward Physics Facility
(FPF) [78–84].
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