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We investigate the semi-inclusive productions of spin-3/2 hadrons in unpolarized 𝑒+𝑒− annihi-
lation and deep inelastic lepton-nucleon scattering. The quark transverse momentum dependent
(TMD) fragmentation functions (FFs) to spin-3/2 hadrons are defined for the first time from the
decomposition of the quark-quark correlator at leading twist, 14 of which are newly defined for
rank-3 tensor polarized hadron states. We perform a leading order calculation of the differential
cross sections. For two-hadron production in 𝑒+𝑒− annihilation, half of the 48 structure functions
are found nonzero even if the spin of the second hadron is not analyzed, and ten of the rank-3
tensor polarized TMD FFs contribute. We also apply these newly defined FFs in semi-inclusive
deep inelastic scattering (SIDIS) for the study of nucleon structures. For a polarized lepton beam,
one third of 96 structure functions have nonzero leading order contributions and 42 of rank-3
tensor polarized TMD FFs contribute. For the polarized lepton, half of 192 structure functions
are nonzero and 14 of them are from rank-3 tensor polarized hadron states.

25th International Spin Physics Symposium (SPIN 2023)
24-29 September 2023
Durham, NC, USA

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:zhao-jing@mail.sdu.edu.cn
https://pos.sissa.it/


P
o
S
(
S
P
I
N
2
0
2
3
)
0
7
2

Production of spin-3/2 hadrons in 𝑒+𝑒− annihilation and SIDIS Jing Zhao

1. Introduction

The quantum chromodynamics (QCD) is the fundamental theory of the strong interaction. Due
to the color confinement, quarks and gluons, the fundamental degrees of freedom in QCD, cannot
be isolated as free particles at long distance, and are always confined within the hadron by the
strong interaction. The fragmentation functions (FFs) are introduced to describe the momentum
distribution of final-state hadrons produced by high energy partons. They are defined as functions
of the longitudinal momentum fraction 𝑧 carried by the fragmented hadron. Extending to a three-
dimensional description, one can define the transverse momentum dependent (TMD) FFs, which
are functions of 𝑧 and the transverse momentum of the produced hadron.

Taking into account the spin degrees of freedom of quark and produced hadron, one can study
the spin effect in hadronization. The spin-dependent TMD FFs encode the correlation of the struck
parton momentum distribution and the spin of the parton or the produced hadron. They lead to
rich phenomena in high energy reactions, such as the azimuthal asymmetries in semi-inclusive
electron-positron annihilations measured by Belle [1–3], BABAR [4], and BESIII [5]. In this talk,
we present the study of the TMD FFs for spin-3/2 hadrons, which are still very limited investigated
on either theoretical or experimental aspects. While the unpolarized, the vector polarized, and the
rank-2 tensor polarized TMD FFs remain the same up to some normalization factors as introducd in
previous studies [6–9], the rank-3 tensor polarized ones are newly defined and only exist for hadrons
with 𝑠 ≥ 3/2.

On the other hand, the TMD FFs are also essential input for the study of three-dimensional
structures of the nucleon via the semi-inclusive deep inelastic scattering (SIDIS) process. Applying
the TMD factorization [10–12], one can express the cross section for SIDIS process as the con-
volution of short-distance hard part, quark TMD PDFs, and FFs. Measuring the produced hadron
with the strange quantum number can improve the sensitivity to 𝑠 quark distribution in the nucleon.
The Ω baryon, composed of three 𝑠 quarks, is extremely sensitive to strange sea distribution. Fur-
thermore, the spin state of the produced Ω can be analyzed through its weak decays. Therefore,
the production of the Ω in SIDIS has the unique advantage to study the 𝑠 quark sea distributions in
nucleon. This requires us to have a comprehensive theoretical understanding for spin-3/2 hadrons
TMD FFs. Among all different high energy reactions, 𝑒+𝑒− annihilation is the most suitable for
studying FFs. The inclusive process 𝑒+𝑒− → Ω𝑋 can be used to study the collinear FFs. In order
to access transverse momentum dependence, we consider the semi-inclusive hadron production in
𝑒+𝑒− annihilation, i.e., 𝑒+𝑒− → Ωℎ𝑋 . Thus, we focus on the production of spin-3/2 hadrons in
𝑒+𝑒− annihilation and SIDIS process.

The proceeding is organized as follows. In Sec. 2, we describe the spin information of spin-3/2
hadrons using the spin density matrix. In Sec. 3, we derive a complete set of TMD FFs for spin-3/2
hadrons. We present the calculation of the cross section for the production of spin-3/2 hadrons in
𝑒+𝑒− annihilation and SIDIS in Sec. 4 and Sec. 5, respectively. We make a summary and outlook
in Sec. 6.
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2. The description of spin-3/2 particles

The spin information of particles can be described by the spin density matrix. For a particle
with spin-𝑠, the corresponding spin density matrix 𝜌 is a (2𝑠 + 1) × (2𝑠 + 1) matrix. According
to the Hermiticity condition 𝜌 = 𝜌†, we can decompose 𝜌 of spin-3/2 particles on a basis of 16
independent Hermitian matrices,

𝜌 =
1
4

(
1 + 4

5
𝑆𝑖Σ𝑖 + 2

3
𝑇 𝑖 𝑗Σ𝑖 𝑗 + 8

9
𝑅𝑖 𝑗𝑘Σ𝑖 𝑗𝑘

)
. (1)

Here Σ𝑖 are 4× 4 spin matrices for spin-3/2 hadron, Σ𝑖 𝑗 are the five rank-2 tensor polarization basis
defined by Σ𝑖 𝑗 = 1/2

(
Σ𝑖Σ 𝑗 + Σ 𝑗Σ𝑖

)
− 5/4𝛿𝑖 𝑗1, and Σ𝑖 𝑗𝑘 are the seven rank-3 tensor polarization

basis Σ𝑖 𝑗𝑘 = 1/6Σ{𝑖Σ 𝑗Σ𝑘} − 41/60
(
𝛿𝑖 𝑗Σ𝑘 + 𝛿 𝑗𝑘Σ𝑖 + 𝛿𝑘𝑖Σ 𝑗

)
. Following the common convention,

we define the spin vector 𝑆𝑖 in the hadron rest frame as

𝑆𝑖 =
(
𝑆𝑥𝑇 , 𝑆

𝑦

𝑇
, 𝑆𝐿

)
, (2)

the rank-2 spin tensor 𝑇 𝑖 𝑗 as

𝑇 𝑖 𝑗 =
1
2
©«
−𝑆𝐿𝐿 + 𝑆𝑥𝑥

𝑇𝑇
𝑆
𝑥𝑦

𝑇𝑇
𝑆𝑥
𝐿𝑇

𝑆
𝑥𝑦

𝑇𝑇
−𝑆𝐿𝐿 − 𝑆𝑥𝑥

𝑇𝑇
𝑆
𝑦

𝐿𝑇

𝑆𝑥
𝐿𝑇

𝑆
𝑦

𝐿𝑇
2𝑆𝐿𝐿

ª®®¬ , (3)

and the rank-3 spin tensor 𝑅𝑖 𝑗𝑘 is defined as

𝑅𝑖 𝑗𝑘 =
1
4



©«
−3𝑆𝑥

𝐿𝐿𝑇
+ 𝑆𝑥𝑥𝑥

𝑇𝑇𝑇
−𝑆𝑦

𝐿𝐿𝑇
+ 𝑆

𝑦𝑥𝑥

𝑇𝑇𝑇
−2𝑆𝐿𝐿𝐿 + 𝑆𝑥𝑥

𝐿𝑇𝑇

−𝑆𝑦
𝐿𝐿𝑇

+ 𝑆
𝑦𝑥𝑥

𝑇𝑇𝑇
−𝑆𝑥

𝐿𝐿𝑇
− 𝑆𝑥𝑥𝑥

𝑇𝑇𝑇
𝑆
𝑥𝑦

𝐿𝑇𝑇

−2𝑆𝐿𝐿𝐿 + 𝑆𝑥𝑥
𝐿𝑇𝑇

𝑆
𝑥𝑦

𝐿𝑇𝑇
4𝑆𝑥

𝐿𝐿𝑇

ª®®¬©«
−𝑆𝑦

𝐿𝐿𝑇
+ 𝑆

𝑦𝑥𝑥

𝑇𝑇𝑇
−𝑆𝑥
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− 𝑆𝑥𝑥𝑥

𝑇𝑇𝑇
𝑆
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−𝑆𝑥
𝐿𝐿𝑇

− 𝑆𝑥𝑥𝑥
𝑇𝑇𝑇

−3𝑆𝑦
𝐿𝐿𝑇

− 𝑆
𝑦𝑥𝑥

𝑇𝑇𝑇
−2𝑆𝐿𝐿𝐿 − 𝑆𝑥𝑥
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𝑆
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. (4)

The spin vector and tensors for a moving hadron can be obtained by a Lorentz boost from those
defined in the rest frame, and their explicit expressions are given in Eq.(18)–(20) of Ref. [13].

3. TMD fragmentation functions for spin-3/2 hadrons

The unintegrated quark-quark correlation function is defined by

Δ𝛼𝛽 (𝑘, 𝑃, 𝑆, 𝑇, 𝑅) =
∑︁
𝑋

∫
d4𝜉

(2𝜋)4 𝑒
𝑖𝑘 ·𝜉 ⟨0|L(∞, 𝜉)𝜓𝛼 (𝜉) |𝑃, 𝑆, 𝑇, 𝑅, 𝑋⟩

× ⟨𝑃, 𝑆, 𝑇, 𝑅, 𝑋 |�̄�𝛽 (0)L†(∞, 0) |0⟩, (5)
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where 𝑘 is the momentum of the quark, 𝛼 and 𝛽 are Dirac indices, 𝜓 is the quark field operator,
and

∑︁
𝑋

also implies the integration over the momenta of the undetected hadrons labeled by 𝑋 . The

gauge link L(𝑦2, 𝑦1) is defined as L(𝑦2, 𝑦1) = P exp
[
−𝑖𝑔

∫ 𝑦2
𝑦1

𝑑𝑦 · 𝐴(𝑦)
]
.

The correlation function is a 4 × 4 matrix in the Dirac space, and thus it can be expanded on
a basis of 16 Dirac 𝛾 matrices. Imposing the constraints of the Hermiticity and parity invariance,
one can decompose the quark-quark correlation function (5) for a spin-3/2 hadron as

Δ(𝑘, 𝑃, 𝑆, 𝑇, 𝑅) = 𝐵1𝑀1 + 𝐵2 /𝑃 + · · · + 𝐵20

𝑀2 𝜖𝜇𝜈𝜌𝜎𝛾
𝜇𝛾5𝑃

𝜈𝑘𝜌𝑘𝜏𝑇
𝜏𝜎

+ 𝑖
𝐵21

𝑀2 𝑘𝜇𝑘𝜈𝑘𝜌𝑅
𝜇𝜈𝜌𝛾5 + · · · + 𝐵28

𝑀3 𝜖𝜇𝜈𝜌𝜎𝛾
𝜇𝑘𝜈𝑃𝜌𝑘𝜏𝑘𝜆𝑅

𝜏𝜆𝜎 . (6)

Its complete expression is given in Ref. [13]. Here the 𝐵𝑖’s are Lorentz scalar functions of 𝑘 · 𝑃
and 𝑘2, and the mass factor 𝑀 is introduced to balance the dimension. The rank-3 tensor polarized
terms, 𝐵21 – 𝐵28, are newly defined for spin-3/2 hadrons, while the unpolarized, the vector polarized,
and the rank-2 tensor polarized ones also exist in the decomposition of the correlation function of
spin-1 hadrons [8].

By integrating Eq. (5) over 𝑘+, or, equivalently 𝑘2, we obtain the quark-quark correlation
function,

Δ (𝑧, 𝑘𝑇 ) =
1
4𝑧

∫
d𝑘+Δ (𝑘, 𝑃, 𝑆, 𝑇, 𝑅)

����
𝑘−= 𝑃−

𝑧

, (7)

which leads to the definition of quark TMD FFs after the Dirac decomposition as shown in Eq. (6).

1

Quark Polarization

Unpolarized Longitudinally 
Polarized

Transversely Polarized

H
ad

ro
n 

Po
la

ri
za

ti
on

U

L

T

LL

LT

TT

LLL

LLT

LTT

TTT

Table 1: The leading-twist TMD FFs for spin-3/2 hadrons.

Here, we consider 𝑃− as a large momentum component and collect the leading-twist TMD
FFs, which can be projected out from the correlator Δ(𝑧, 𝑘𝑇 ) by the Dirac matrices 𝛾−, 𝛾−𝛾5, and
𝑖𝜎𝑖−𝛾5. For instance, the 𝑆𝐿𝐿𝐿-dependent TMD FFs can be parametrized as

Δ𝐿𝐿𝐿 (𝑧, 𝑘𝑇 ) =
1
4

{
𝐺1𝐿𝐿𝐿

(
𝑧, 𝑘2

𝑇

)
𝑆𝐿𝐿𝐿𝛾5/𝑛 + 𝐻⊥

1𝐿𝐿𝐿

(
𝑧, 𝑘2

𝑇

)
𝑆𝐿𝐿𝐿𝑖𝜎𝜇𝜈𝛾5𝑛

𝜇
𝑘𝜈
𝑇

𝑀

}
. (8)
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Then a complete set of quark TMD FFs for spin-3/2 hadrons at leading twist are shown in Table 1.
Among the 32 TMD FFs at leading twist, two are for the unpolarized hadron state, six are for the
vector polarized hadron state, ten are for the rank-2 tensor polarized hadron state, and 14 are for the
rank-3 tensor polarized hadron state. While the unpolarized, the vector polarized, and the rank-2
tensor polarized ones have been defined in the study of spin-1 hadrons, the rank-3 tensor polarized
TMD FFs are newly defined and only exist for hadrons with 𝑠 ≥ 3/2.

The terms corresponding to different spin components of the hadron have been separated
and labeled by 𝑈 for unpolarized hadron, by 𝐿 and 𝑇 for vector polarized hadron, by 𝐿𝐿, 𝐿𝑇 ,
and 𝑇𝑇 for rank-2 tensor polarized hadron, and by 𝐿𝐿𝐿, 𝐿𝐿𝑇 , 𝐿𝑇𝑇 , and 𝑇𝑇𝑇 for rank-3 tensor
polarized hadron. The 𝐷, 𝐺, and 𝐻 are used to represent unpolarized, longitudinally polarized, and
transversely polarized quarks. A superscript “⊥” is assigned if there is inhomogeneous dependence
on the quark transverse momentum. The superscript “⊥⊥” in𝐻⊥⊥

1𝑇𝑇 , 𝐻⊥⊥
1𝐿𝑇𝑇 , and𝐻⊥⊥

1𝑇𝑇𝑇 is introduced
to differentiate them from 𝐻⊥

1𝑇𝑇 , 𝐻⊥
1𝐿𝑇𝑇 , and 𝐻⊥

1𝑇𝑇𝑇 .

4. Production of spin-3/2 hadrons in 𝑒+𝑒− annihilation

To access TMD FFs, we consider the process

𝑒− (𝑙1) + 𝑒+(𝑙2) → Ω(𝑃1) + ℎ(𝑃2) + 𝑋 (𝑃𝑋), (9)

where the variables in parentheses are the four momenta of the corresponding particles and for
simplicity the spin of the second hadron ℎ is not taken into account. With one-photon-exchange
approximation, the differential cross section can be expressed as

𝑃0
1𝑃

0
2𝑑𝜎

𝑑3𝑷1𝑑3𝑷2
=

𝛼2

4𝑄6 𝐿𝜇𝜈𝑊
𝜇𝜈 , (10)

where the leptonic tensor 𝐿𝜇𝜈 is

𝐿𝜇𝜈 = 2
(
𝑙𝜇𝑙

′
𝜈 + 𝑙𝜈𝑙

′
𝜇 − 𝑔𝜇𝜈 (𝑙 · 𝑙′)

)
, (11)

and the hadronic tensor 𝑊 𝜇𝜈 is given by

𝑊 𝜇𝜈 (𝑞; 𝑃1, 𝑆, 𝑇, 𝑅; 𝑃2) =
1

(2𝜋)4

∑︁
𝑋

(2𝜋)4𝛿4 (𝑞 − 𝑃𝑋 − 𝑃1 − 𝑃2)

× ⟨0 |𝐽𝜇 (0) | 𝑃𝑋; 𝑃1, 𝑆, 𝑇, 𝑅; 𝑃2⟩ ⟨𝑃𝑋; 𝑃1, 𝑆, 𝑇, 𝑅; 𝑃2 |𝐽𝜈 (0) | 0⟩ , (12)

where 𝑆,𝑇 , and 𝑅 represent the spin states of the first hadron, while the second hadron is unpolarized.
The hadronic tensor satisfies the Hermiticity, the parity invariance, and the gauge invariance
relations. We first construct the basic Lorentz tensors,

𝑡
𝜇𝜈

𝑈
=

{
�̃�𝜇𝜈 , 𝑃

𝜇

1 𝑃
𝜈
1 , 𝑃

𝜇

2 𝑃
𝜈
2 , 𝑃

{𝜇
1 𝑃

𝜈}
2

}
, (13)

𝑡
P,𝜇𝜈

𝑈
=

{
𝑃
{𝜇
1 𝜖𝜈}𝑞𝑃1𝑃2 , 𝑃

{𝜇
2 𝜖𝜈}𝑞𝑃1𝑃2

}
, (14)

which correspond to parity conserving and parity nonconserving ones, respectively. Here �̃�𝜇𝜈

and 𝑃𝜇 are so-called conserved vectors, which are defined as 𝑔𝜇𝜈 = 𝑔𝜇𝜈 − 𝑞𝜇𝑞𝜈/𝑞2 and 𝑃𝜇 =

5
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Figure 1: The Collins-Soper frame for 𝑒+𝑒− →
Ωℎ𝑋 .

Figure 2: The two-hadron center-of-mass frame for
𝑒+𝑒− → Ωℎ𝑋 .

𝑃𝜇 − 𝑃 · 𝑞/𝑞2𝑞𝜇, respectively. The four vectors 𝑃𝜇

1 and 𝑃
𝜇

2 have the similar definitions to 𝑃. The
unpolarized basis tensors are directly given by those in 𝑡

𝜇𝜈

𝑈
. The polarized basis tensors can be

obtained by multiplying the basic Lorentz tensors by a spin-dependent scalar or pseudoscalar. Then
the eight vector polarized basis tensors, 16 rank-2 tensor polarized basis tensors, and 20 rank-3
tensor polarized basis tensors are constructed from those in 𝑡

𝜇𝜈

𝑈
and 𝑡

P,𝜇𝜈

𝑈
as

𝑡
𝜇𝜈

𝑉
=
{
𝜖𝑆𝑞𝑃1𝑃2

}
𝑡
𝜇𝜈

𝑈
, {𝑆 · 𝑞, 𝑆 · 𝑃2} 𝑡P,𝜇𝜈

𝑈
, (15)

𝑡
𝜇𝜈

𝑇
=
{
𝑇𝑃2𝑃2 , 𝑇𝑃2𝑞, 𝑇𝑞𝑞

}
𝑡
𝜇𝜈

𝑈
,

{
𝜖𝑇

𝑃2 𝑃1𝑃2𝑞, 𝜖𝑇
𝑞𝑃1𝑃2𝑞

}
𝑡
P,𝜇𝜈

𝑈
, (16)

𝑡
𝜇𝜈

𝑅
=

{
𝜖𝑅

𝑃2𝑃2 𝑃1𝑃2𝑞, 𝜖𝑅
𝑃2𝑞𝑃1𝑃2𝑞, 𝜖𝑅

𝑞𝑞𝑃1𝑃2𝑞
}
𝑡
𝜇𝜈

𝑈
,
{
𝑅𝑃2𝑃2𝑃2 , 𝑅𝑞𝑞𝑞, 𝑅𝑃2𝑃2𝑞, 𝑅𝑃2𝑞𝑞

}
𝑡
P,𝜇𝜈

𝑈
. (17)

With the 48 basis tensors above, we can expand the hadronic tensor 𝑊 𝜇𝜈 as

𝑊 𝜇𝜈 =

4∑︁
𝑖=1

𝑉𝑈,𝑖𝑡
𝜇𝜈

𝑈,𝑖
+

8∑︁
𝑖=1

𝑉𝑉,𝑖𝑡
𝜇𝜈

𝑉,𝑖
+

16∑︁
𝑖=1

𝑉𝑇,𝑖𝑡
𝜇𝜈

𝑇,𝑖
+

20∑︁
𝑖=1

𝑉𝑅,𝑖𝑡
𝜇𝜈

𝑅,𝑖
, (18)

where the coefficients 𝑉’s are scalar functions of 𝑞2, 𝑃1 · 𝑞, 𝑃2 · 𝑞, and 𝑃1 · 𝑃2.
Contracting the hadronic tensor with the leptonic tensor, one can derive the general form of the

differential cross section. It is convenient to specify a reference frame to obtain a general angular
distribution of this cross section. There are two commonly used frames, one is the Collins-Soper
(CS) frame as illustrated in Fig. 1, the other is the hadronic center-of-mass (c.m.) frame as illustrated
in Fig. 2. In this calculation, the CS frame is more convenient to describe the angular distributions
of the produced hadrons, but the spin components are easier to be defined in the c.m. frame.
Therefore, we introduce 𝜃 and 𝜙 in the CS frame and define the spin components in the c.m. frame,
𝑆𝐿 , |𝑆𝑇 |, 𝜙𝑇 , 𝑆𝐿𝐿 , |𝑆𝐿𝑇 |, 𝜙𝐿𝑇 , |𝑆𝑇𝑇 |, 𝜙𝑇𝑇 , 𝑆𝐿𝐿𝐿 , |𝑆𝐿𝐿𝑇 |, 𝜙𝐿𝐿𝑇 , |𝑆𝐿𝑇𝑇 |, 𝜙𝐿𝑇𝑇 , |𝑆𝑇𝑇𝑇 |, and 𝜙𝑇𝑇𝑇 .

After contracting the hadronic tensor and the leptonic tensor, we can express the differential
cross section in terms of 48 structure functions. The explicit expression of the cross section has
been presented in Ref. [13] and here we only show the rank-3 tensor polarized part below

𝑃0
1𝑃

0
2𝑑𝜎

𝑑3𝑷1𝑑3𝑷2
=

𝛼2

4𝑄4

{
· · · + 𝑆𝐿𝐿𝐿

[(
sin2 𝜃 sin 2𝜙

)
𝐹

sin 2𝜙
𝐿𝐿𝐿,𝑈

+ (sin 2𝜃 sin 𝜙)𝐹sin 𝜙

𝐿𝐿𝐿,𝑈

]
+ |𝑆𝐿𝐿𝑇 |

[
sin 𝜙𝐿𝐿𝑇

((
1 + cos2 𝜃

)
𝐹𝑇
𝐿𝐿𝑇,𝑈 +

(
1 − cos2 𝜃

)
𝐹𝐿
𝐿𝐿𝑇,𝑈 + (sin 2𝜃 cos 𝜙)𝐹cos 𝜙

𝐿𝐿𝑇,𝑈
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+
(
sin2 𝜃 cos 2𝜙

)
𝐹

cos 2𝜙
𝐿𝐿𝑇,𝑈

)
+ cos 𝜙𝐿𝐿𝑇

((
sin2 𝜃 sin 2𝜙

)
𝐹

sin 2𝜙
𝐿𝐿𝑇,𝑈

+ (sin 2𝜃 sin 𝜙)𝐹sin 𝜙

𝐿𝐿𝑇,𝑈

)]
+ |𝑆𝐿𝑇𝑇 |

[
sin 2𝜙𝐿𝑇𝑇

((
1 + cos2 𝜃

)
𝐹𝑇
𝐿𝑇𝑇,𝑈 +

(
1 − cos2 𝜃

)
𝐹𝐿
𝐿𝑇𝑇,𝑈 + (sin 2𝜃 cos 𝜙)𝐹cos 𝜙

𝐿𝑇𝑇,𝑈

+
(
sin2 𝜃 cos 2𝜙

)
𝐹

cos 2𝜙
𝐿𝑇𝑇,𝑈

)
+ cos 2𝜙𝐿𝑇𝑇

((
sin2 𝜃 sin 2𝜙

)
𝐹

sin 2𝜙
𝐿𝑇𝑇,𝑈

+ (sin 2𝜃 sin 𝜙)𝐹sin 𝜙

𝐿𝑇𝑇,𝑈

)]
+ |𝑆𝑇𝑇𝑇 |

[
sin 3𝜙𝑇𝑇𝑇

((
1 + cos2 𝜃

)
𝐹𝑇
𝑇𝑇𝑇,𝑈 +

(
1 − cos2 𝜃

)
𝐹𝐿
𝑇𝑇𝑇,𝑈 + (sin 2𝜃 cos 𝜙)𝐹cos 𝜙

𝑇𝑇𝑇,𝑈

+
(
sin2 𝜃 cos 2𝜙

)
𝐹

cos 2𝜙
𝑇𝑇𝑇,𝑈

)
+ cos 3𝜙𝑇𝑇𝑇

((
sin2 𝜃 sin 2𝜙

)
𝐹

sin 2𝜙
𝑇𝑇𝑇,𝑈

+ (sin 2𝜃 sin 𝜙)𝐹sin 𝜙

𝑇𝑇𝑇,𝑈

)] }
, (19)

where the two subscripts for each structure function represent the polarization states of the two
hadrons, Ω and ℎ, respectively. The superscripts either label the azimuthal modulation or represent
the virtual photon polarization. The 𝐹’s, the scalar functions, are linear combinations of the 𝑉’s in
Eq. (18). Among them, the 20 rank-3 tensor polarized ones are newly defined and only exist when
the spin of the detected hadron is no less than 𝑠 ≥ 3/2.

Then we calculate the structure functions in the parton model and consider the kinematic region
𝒒2
𝑇
≪ 𝑄2, where one can apply the TMD factorization. At the leading order, the hadronic tensor

can be expressed as a convolution of two correlation functions,

𝑊 𝜇𝜈 = 𝑁𝑐𝑧1𝑧2
∑︁
𝑞

𝑒2
𝑞

∫
𝑑2𝒌1𝑇𝑑

2𝒌2𝑇𝛿
(2) (𝒌1𝑇 + 𝒌2𝑇 − 𝒒𝑇 )Tr[ΔΩ/𝑞𝛾𝜇Δℎ/�̄�𝛾𝜈], (20)

where 𝒌1𝑇 and 𝒌2𝑇 are defined in the c.m. frame and directly correspond to the quark transverse
momentum in the definition of the correlation function.

After contracting the hadronic tensor and the leptonic tensor, one can obtain the structure
functions in terms of the convolutions of two TMD FFs. For conciseness, we introduce the
transverse momentum convolution notation

C
[
𝑤𝑎 (𝑘1𝑇 , 𝑘2𝑇 )𝐷 (𝑧1, 𝑘

2
1𝑇 )𝐷 (𝑧2, 𝑘

2
2𝑇 )

]
≡ 1

4
𝑁𝑐𝑧1𝑧2

∑︁
𝑞

𝑒2
𝑞

∫
𝑑2𝒌1𝑇𝑑

2𝒌2𝑇𝛿
(2) (𝒌1𝑇 + 𝒌2𝑇 − 𝒒𝑇 )𝑤𝑎 (𝑘1𝑇 , 𝑘2𝑇 )𝐷𝑞 (𝑧1, 𝑘

2
1𝑇 )𝐷 �̄� (𝑧2, 𝑘

2
2𝑇 ),

(21)

where 𝐷𝑞 (𝑧1, 𝑘
2
1𝑇 ) is a TMD FF for the first hadron Ω, 𝐷 �̄� (𝑧2, 𝑘

2
2𝑇 ) is a TMD FF for the second

hadron ℎ, and 𝑤𝑎 (𝑘1𝑇 , 𝑘2𝑇 ), with 𝑎 = 1, · · · , 10, is one of the dimensionless scalar functions as
provided below,

𝑤1 = −𝑞𝑇 · 𝑘1𝑇

𝑀1
, 𝑤2 = −𝑞𝑇 · 𝑘2𝑇

𝑀2
, 𝑤3 =

2(𝑞𝑇 · 𝑘1𝑇) (𝑞𝑇 · 𝑘2𝑇) + 𝑘1𝑇 · 𝑘2𝑇

𝑀1𝑀2
,

𝑤4 =
𝑘
𝑖 𝑗
1𝑇𝑞𝑇𝑖𝑘2𝑇 𝑗 + 2𝑘 𝑖 𝑗1𝑇𝑞𝑇𝑖𝑞𝑇 𝑗 (𝑞𝑇 · 𝑘2𝑇)

𝑀2
1 𝑀2

, 𝑤5 =
2𝑘 𝑖 𝑗1𝑇𝑞𝑇𝑖𝑞𝑇 𝑗

𝑀2
1

,

𝑤6 =

2
[
𝑘
𝑖 𝑗𝑙
1𝑇 𝑞𝑇𝑖𝑞𝑇 𝑗𝑘2𝑇𝑙 + 2𝑘 𝑖 𝑗𝑙1𝑇 𝑞𝑇𝑖𝑞𝑇 𝑗𝑞𝑇𝑙 (𝑘2𝑇 · 𝑞𝑇)

]
𝑀3

1 𝑀2
, 𝑤7 = − 𝑘1𝑇 · 𝑘2𝑇

𝑀1𝑀2
, 𝑤8 =

4𝑘 𝑖 𝑗𝑙1𝑇 𝑞𝑇𝑖𝑞𝑇 𝑗𝑞𝑇𝑙

𝑀3
1

,

𝑤9 =

4
[
𝑘
𝑖 𝑗𝑙𝑚
1𝑇 𝑞𝑇𝑖𝑞𝑇 𝑗𝑞𝑇𝑙𝑘2𝑇𝑚 + 2𝑘 𝑖 𝑗𝑙𝑚1𝑇 𝑞𝑇𝑖𝑞𝑇 𝑗𝑞𝑇𝑙𝑞𝑇𝑚(𝑘2𝑇 · 𝑞𝑇)

]
𝑀4

1 𝑀2
, 𝑤10 =

2𝑘 𝑖 𝑗1𝑇𝑞𝑇𝑖𝑘2𝑇 𝑗

𝑀2
1 𝑀2

, (22)
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where 𝑞𝜇

𝑇
≡ 𝑞

𝜇

𝑇
/
√︃
𝒒2
𝑇

is the direction of the virtual photon transverse momentum in the c.m. frame.
At leading twist, 24 structure functions have nontrivial expressions. Here we only list the

nonzero structure functions for rank-3 tensor polarized hadron states,

𝐹
sin 2𝜙
𝐿𝐿𝐿,𝑈

= −C
[
𝑤3𝐻

⊥
1𝐿𝐿𝐿 (𝑧1, 𝑘

2
1𝑇 )𝐻

⊥
1 (𝑧2, 𝑘

2
2𝑇 )

]
, (23)

𝐹𝑇
𝐿𝐿𝑇,𝑈 = C

[
𝑤1𝐷

⊥
1𝐿𝐿𝑇 (𝑧1, 𝑘

2
1𝑇 )𝐷1(𝑧2, 𝑘

2
2𝑇 )

]
, (24)

𝐹
sin(2𝜙+𝜙𝐿𝐿𝑇 )
𝐿𝐿𝑇,𝑈

=
1
2

(
𝐹

cos 2𝜙
𝐿𝐿𝑇,𝑈

+ 𝐹
sin 2𝜙
𝐿𝐿𝑇,𝑈

)
= C

[
𝑤4𝐻

⊥
1𝐿𝐿𝑇 (𝑧1, 𝑘

2
1𝑇 )𝐻

⊥
1 (𝑧2, 𝑘

2
2𝑇 )

]
, (25)

𝐹
sin(2𝜙−𝜙𝐿𝐿𝑇 )
𝐿𝐿𝑇,𝑈

=
1
2

(
𝐹

sin 2𝜙
𝐿𝐿𝑇,𝑈

− 𝐹
cos 2𝜙
𝐿𝐿𝑇,𝑈

)
= −C

[
𝑤2𝐻1𝐿𝐿𝑇 (𝑧1, 𝑘

2
1𝑇 )𝐻

⊥
1 (𝑧2, 𝑘

2
2𝑇 )

]
, (26)

𝐹𝑇
𝐿𝑇𝑇,𝑈 = −C

[
𝑤5𝐷

⊥
1𝐿𝑇𝑇 (𝑧1, 𝑘

2
1𝑇 )𝐷1(𝑧2, 𝑘

2
2𝑇 )

]
, (27)

𝐹
sin(2𝜙+2𝜙𝐿𝑇𝑇 )
𝐿𝑇𝑇,𝑈

=
1
2

(
𝐹

cos 2𝜙
𝐿𝑇𝑇,𝑈

+ 𝐹
sin 2𝜙
𝐿𝑇𝑇,𝑈

)
= −C

[
𝑤6𝐻

⊥⊥
1𝐿𝑇𝑇 (𝑧1, 𝑘

2
1𝑇 )𝐻

⊥
1 (𝑧2, 𝑘

2
2𝑇 )

]
, (28)

𝐹
sin(2𝜙−2𝜙𝐿𝑇𝑇 )
𝐿𝑇𝑇,𝑈

=
1
2

(
𝐹

sin 2𝜙
𝐿𝑇𝑇,𝑈

− 𝐹
cos 2𝜙
𝐿𝑇𝑇,𝑈

)
= C

[
𝑤7𝐻

⊥
1𝐿𝑇𝑇 (𝑧1, 𝑘

2
1𝑇 )𝐻

⊥
1 (𝑧2, 𝑘

2
2𝑇 )

]
, (29)

𝐹𝑇
𝑇𝑇𝑇,𝑈 = −C

[
𝑤8𝐷

⊥
1𝑇𝑇𝑇 (𝑧1, 𝑘

2
1𝑇 )𝐷1(𝑧2, 𝑘

2
2𝑇 )

]
, (30)

𝐹
sin(2𝜙+3𝜙𝑇𝑇𝑇 )
𝑇𝑇𝑇,𝑈

=
1
2

(
𝐹

cos 2𝜙
𝑇𝑇𝑇,𝑈

+ 𝐹
sin 2𝜙
𝑇𝑇𝑇,𝑈

)
= −C

[
𝑤9𝐻

⊥⊥
1𝑇𝑇𝑇 (𝑧1, 𝑘

2
1𝑇 )𝐻

⊥
1 (𝑧2, 𝑘

2
2𝑇 )

]
, (31)

𝐹
sin(2𝜙−3𝜙𝑇𝑇𝑇 )
𝑇𝑇𝑇,𝑈

=
1
2

(
𝐹

sin 2𝜙
𝑇𝑇𝑇,𝑈

− 𝐹
cos 2𝜙
𝑇𝑇𝑇,𝑈

)
= −C

[
𝑤10𝐻

⊥
1𝑇𝑇𝑇 (𝑧1, 𝑘

2
1𝑇 )𝐻

⊥
1 (𝑧2, 𝑘

2
2𝑇 )

]
, (32)

which can be utilized to study the TMD FFs for a spin-3/2 hadron, although the other 24 structure
functions in the unpolarized differential cross section only arise at high twist or high order.

5. Production of spin-3/2 hadrons in SIDIS

We denote the production of Ω in SIDIS,

𝑒− (𝑙) + 𝑁 (𝑃) → 𝑒− (𝑙′) +Ω(𝑃ℎ) + 𝑋 (𝑃𝑋), (33)

where the variables in parentheses indicate the four momenta of the corresponding particles. For
this process, we follow the similar procedure in the calculation of 𝑒+𝑒− annihilation. Here we
take into account all possible combinations of the polarization states of the nucleon, the lepton,
and the produced spin-3/2 hadron. The cross section for the SIDIS process can also be written as
the contraction of leptonic tensor and hadronic tensor. The symmetric part of the hadronic tensor
contributes to the cross section for the unpolarized lepton beam, whereas the antisymmetric part of
the hadronic tensor is also necessary to be taken into account for the polarized lepton beam. With
the constraints of the properties of the hadronic tensor, we can construct six symmetric and three
antisymmetric basic Lorentz tensors,

𝑡
𝑆𝜇𝜈

𝑈
=

{
�̃�𝜇𝜈 , �̃�𝜇 �̃�𝜈 , �̃�{𝜇 �̃�𝜈}

ℎ
, �̃�

𝜇

ℎ
�̃�𝜈
ℎ

}
, (34)

𝑡
𝑆P,𝜇𝜈

𝑈
=

{
𝜖 {𝜇𝑞𝑃𝑃ℎ �̃�𝜈} , 𝜖 {𝜇𝑞𝑃𝑃ℎ �̃�

𝜈}
ℎ

}
, (35)

𝑡
𝐴𝜇𝜈

𝑈
=

{
�̃�[𝜇 �̃�𝜈 ]

ℎ

}
, (36)

𝑡
𝐴P,𝜇𝜈

𝑈
=
{
𝜖 𝜇𝜈𝑞𝑃, 𝜖 𝜇𝜈𝑞𝑃ℎ

}
, (37)
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where the superscripts 𝑆 and 𝐴 represent the symmetric terms and antisymmetric terms, respectively.
To construct the polarized basis tensors, we still use these basic Lorentz tensors multiplied by spin-
dependent scalars or pseudoscalars. Summing over all symmetric and antisymmetric terms, one
can obtain the complete expression of hadronic tensor

𝑊 𝜇𝜈 =

192∑︁
𝑖=1

𝑉𝑆
𝑖 𝑡

𝑆𝜇𝜈

𝑖
+ 𝑖

96∑︁
𝑖=1

𝑉 𝐴
𝑖 𝑡

𝐴𝜇𝜈

𝑖
. (38)

After contracting the hadronic tensor and leptonic tensor, we can express the differential cross
section in terms of 288 structure functions in accordance to the azimuthal distributions and all
polarization configurations. We then perform a leading order calculation in the parton model.
For an unpolarized lepton beam, half of the 192 structure functions have nonzero leading order
contributions in the parton model, among which 42 are from rank-3 tensor polarized fragmentation
functions of the hadron. For a polarized lepton beam, one third of the 96 structure functions
contribute at the leading order and 14 of them are from rank-3 tensor polarized fragmentation
functions. The complete results have been given in Ref. [14].

The measurement of these nonzero structure functions, particularly those for rank-3 tensor
polarized states, can be utilized to study the TMD FFs for a spin-3/2 hadron, although the other
structure functions in the differential cross section only arise at high twist or high order.

6. Summary and outlook

We use the spin density matrix to describe the spin states of spin-3/2 hadrons. At leading
twist, there are 32 TMD FFs to spin-3/2 hadrons defined by the parametrization of the quark-quark
correlation function. Through the kinematic analysis, one can obtain the general expression of
differential cross section in terms of structure functions. Applying the TMD factorization, we
perform the leading order calculations to express the structure functions in terms of the TMD PDFs
and TMD FFs in the parton model. For two-hadron production in 𝑒+𝑒− annihilation, half of 48
structure functions contribute at leading twist and ten of them are from rank-3 tensor polarized
FFs. For semi-inclusive production of spin-3/2 hadrons in DIS, the complete differential cross
section is expressed in terms of 288 structure functions. For an unpolarized lepton beam, half of
the 192 structure functions have nontrivial expressions in the parton model, among which 42 are for
rank-3 tensor polarized states. For a polarized lepton beam, one third of the 96 structure functions
contribute at the leading order and 14 of them are for rank-3 tensor polarized states. In the future,
the Belle II experiment with 40 times higher luminosity than the Belle experiment is expected
to produce enough Ω events for polarization analysis and makes it possible to extract the rank-3
tensor polarized FFs. In addition, the production of spin-3/2 hadrons can be measured in future
experiments, such as EIC and EicC, and will provide valuable insights into the study of nucleon
structures.
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