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Quark orbital angular momentum in the proton is evaluated via a Lattice QCD calculation of the

second Mellin moment of the twist-3 generalized parton distribution Ẽ2T in the forward limit. The

connection between this approach to quark orbital angular momentum and approaches previously

utilized in Lattice QCD calculations, via generalized transverse momentum-dependent parton

distributions and via Ji’s sum rule, is reviewed. This connection can be given in terms of Lorentz

invariance and equation of motion relations. The calculation of the second Mellin moment of

Ẽ2T proceeds via a finite-momentum proton matrix element of a quark bilocal operator with a

straight-line gauge connection and separation in both the longitudinal and transverse directions.

The dependence on the former component serves to extract the second Mellin moment, whereas

the dependence on the latter component provides a transverse momentum cutoff for the matrix

element. Furthermore, a derivative of the matrix element with respect to momentum transfer in

the forward limit is required, which is obtained using a direct derivative method. The calculation

utilizes a clover fermion ensemble at pion mass 317 MeV. The resulting quark orbital angular

momentum is consistent with previous evaluations through alternative approaches, albeit with

greater statistical uncertainty using a comparable number of samples.
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1. Introduction

The orbital angular momentum carried by quarks inside the proton constitutes one of the pieces

of the proton spin puzzle – the question of how the spin of the proton is composed of the spins and

orbital angular momenta of its quark and gluon constituents. This question has prompted enduring

efforts in hadronic physics, sparked by the initial EMC experiments [1, 2] that revealed that one

cannot simply explain proton spin in terms of valence quark spin.

The objective of quantifying quark orbital angular momentum already meets challenges at the

conceptual level as a consequence of gauge invariance, which prevents one from unambiguously

separating the quark and gluon degrees of freedom. Quark fields are intrinsically linked to gluon

fields, and consequently any construction of quark orbital angular momentum includes gluonic ef-

fects. The partition of orbital angular momentum in the proton into a quark and a gluon contribution

is therefore a matter of definition. Whereas, in principle, a continuum of definitions is possible, two

stand out prominently in discussions of the proton spin puzzle, namely, the Ji definition [3] and the

Jaffe-Manohar definition [4, 5].

The quark-gluon structure of hadrons is encoded in parton distribution functions – generalized

parton distributions (GPDs), revealing transverse position structure along with longitudinal momen-

tum structure; transverse momentum-dependent parton distributions (TMDs), revealing transverse

momentum structure along with longitudinal momentum structure; and, overarching the aforemen-

tioned, generalized TMDs (GTMDs), which contain GPDs and TMDs as limits. In particular,

GTMDs furnish mixed transverse position and momentum information, and are therefore suited for

a direct partonic definition of longitudinal orbital angular momentum [6].

Altogether, three avenues to evaluate longitudinal quark orbital angular momentum in a longi-

tudinally polarized proton from its parton distribution functions have been constructed:

• Ji’s sum rule: The total longitudinal quark angular momentum can be derived from the

quark GPD combination H +E [3], whereas the longitudinal quark spin is given by the quark

GPD H̃. One can thus obtain the longitudinal orbital angular momentum indirectly, by taking

the difference (denoting the longitudinal direction as the 3-direction),

L3 = J3 − S3 =
1

2

∫
dx x(H + E) −

1

2

∫
dx H̃ , (1)

where x denotes the quark momentum fraction and all GPDs are evaluated in the forward

limit. This relation yields specifically the orbital angular momentum according to the Ji

definition.

• Twist-2 GTMD F14: As already mentioned above, direct access to longitudinal quark orbital

angular momentum can be obtained through a GTMD [6], named F14 in the nomenclature of

[7],

L3 = −

∫
dx

∫
d2kT

k2
T

M2
F14 , (2)

where kT denotes the quark transverse momentum and the GTMD is again evaluated in

the forward limit. This approach allows one to evaluate quark orbital angular momentum

according to both the Ji and the Jaffe-Manohar definitions (and, more generally, a continuous
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interpolation between the two), since the QCD matrix element definition of F14 is based on

a bilocal quark operator including a transverse separation, which allows for a choice of the

shape of the gauge connection between the quark operators. A staple-shaped gauge connection

path, as used in the standard definition of TMDs, yields Jaffe-Manohar quark orbital angular

momentum [5, 8]; a straight-line path yields Ji quark orbital angular momentum [8–10].

• Twist-3 GPD Ẽ2T : A third way to access quark orbital angular momentum specifically

according to the Ji definition is through a twist-3 GPD, named Ẽ2T in the nomenclature of

[7]. Ẽ2T is related to the combination of orbital angular momentum and spin L3+2S3 [10–12],

and one can thus obtain L3 by subtracting twice the spin S3,

L3 = (L3 + 2S3) − 2S3 = −

∫
dx xẼ2T −

∫
dx H̃ , (3)

where again all GPDs are evaluated in the forward limit. It should be noted that a version

of this approach was first advanced by M. Polyakov and collaborators [13, 14], denoting the

relevant twist-3 GPD variously as G3 or G2; these are related to Ẽ2T [11]. The connection of

these GPDs to quark orbital angular momentum was established using the operator product

expansion. Further discussion was given in [15]. Below, an alternative approach based on

GTMDs that connects (3) to (2) [10, 12] will be reviewed.

Both the expressions (1) and (2) have been employed previously to evaluate quark orbital angular

momentum in the proton within Lattice QCD. Ji’s sum rule is the traditional approach that has

been taken in numerous studies, cf., e.g., [16–22]. On the other hand, the approach via the GTMD

F14 was used to extend the treatment from Ji to Jaffe-Manohar quark orbital angular momentum in

[23, 27], with consistency of the results for Ji quark orbital angular momentum obtained via either

(1) or (2) demonstrated in [27]. In the present investigation, the third approach, via (3), is explored.

After elucidating the connection between (3) and (2) in the next section, the setup and realization

of a lattice calculation of the second Mellin moment of Ẽ2T in (3) is discussed, and the result is

confronted with evaluations of Ji quark orbital angular momentum via (1) and (2).

2. Equation of motion relation connecting Ẽ2T to orbital angular momentum

Proton GTMDs parametrize [7] the GTMD correlator

WΓ
Λ′Λ
=

1

2

∫
dz− d2zT

(2π)3
eixP

+z−−ikT ·zT 〈p′,Λ′ | ψ̄(−z/2) ΓU ψ(z/2) | p,Λ〉
��
z+=0 , (4)

whereΛ′,Λ denote the helicities of the proton states carrying momenta p′, p, respectively; the quark

operators located at −z/2, z/2 are connected by a gauge link U, which for present purposes will

be taken to follow a straight-line path between the quark operator locations. Γ denotes a Dirac

matrix structure, and the quark longitudinal momentum fraction x and transverse momentum kT

are Fourier conjugate to P+z− and zT , respectively. Here, the average of p′ and p is denoted as

P = (p′ + p)/2; the difference, which will be taken to be purely transverse in the following, is the

momentum transfer ∆T = p′ − p.

The derivation of equation of motion relations between GTMD correlators can be sketched as

follows (cf. [12] for details): Consider replacing ψ in (4) by 0 = (iD/ −m)ψ, corresponding to the
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equation of motion for the quark field. The resulting vanishing expression can be returned to a form

containing GTMD correlators by removing the derivative from the ψ field employing integration by

parts. This generates two types of terms: On the one hand, derivatives may act on the exponential

factor in (4), yielding GTMD correlators multiplied by momenta; on the other hand, derivatives may

act on the gauge link U, yielding quark-gluon-quark correlators distinct from GTMD correlators.

Note that derivatives acting on the ψ̄ field can be eliminated by invoking also the adjoint equation

of motion 0 = ψ̄ (i
←−
D/ +m); by combining the expressions obtained using the original and adjoint

quark equations of motion symmetrically, the quark mass term can be canceled.

Carrying out these steps specifically for Γ = iσi+γ5, where i is a transverse vector index, one

obtains the relations

0 = ik+ǫ i jW
γ
j

Λ′Λ
+

∆
i

2
W

γ
+
γ

5

Λ′Λ
− iǫ i j k jW

γ
+

Λ′Λ
+Mi

Λ′Λ
, (5)

where it has already been used that the momentum transfer is purely transverse for present purposes.

Mi
Λ′Λ

denotes a quark-gluon-quark term; i, j are transverse vector indices. These equation of

motion relations among GTMD correlators imply corresponding relations among the GTMDs that

parametrize [7] them. By judicious choice of Λ′,Λ and contractions of the transverse i index,

one can isolate particular GTMDs of interest. For present purposes, the relevant combination is

WΓ
++
−WΓ−−, together with contraction with ∆i/∆2

T
. This results in the GTMD relation

0 = −2x

(
kT · ∆T

∆
2
T

F27 + F28

)
+ G14 − 2

k2
T
∆

2
T
− (kT · ∆T )

2

M2∆
2
T

F14 +
∆
i

∆
2
T

(
Mi
++
−Mi

−−

)
. (6)

The ordering of terms in (5) and (6), as well as (7) below, is identical for easy reference. Upon

integration over kT , identifying1 the resulting GPDs [7], one obtains the equation of motion relation

0 = xẼ2T + H̃ − 2

∫
d2kT

k2
T
∆

2
T
− (kT · ∆T )

2

M2∆
2
T

F14 +

∫
d2kT

∆
i

∆
2
T

(
Mi
++
−Mi

−−

)
, (7)

This relation is valid point by point in momentum fraction x and (transverse) momentum transfer

∆T . To arrive at quark orbital angular momentum, one must integrate over x and take the forward

limit. In that case, the quark-gluon-quark term integrates to zero [12] and one finally arrives at the

relation

−

∫
dx

∫
d2kT

k2
T

M2
F14 = −

∫
dx xẼ2T −

∫
dx H̃ , (8)

demonstrating the equivalence of (2) and (3).

Note that also the equivalence of these with (1) can be established within the same GTMD

framework, by supplementing the equation of motion relation discussed above with a Lorentz

invariance relation, as laid out in detail in [12].

1The identification of kT -integrals of (G)TMD quantities with collinear quantities such as GPDs in general is subject

to loop corrections depending on the handling of ultraviolet divergences on the (G)TMD vs. the collinear side. The

importance of systematic effects arising more generally from varying treatments of the ultraviolet divergences will be the

subject of further comment below.
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3. Extraction of Ẽ2T Mellin moment from GTMD correlator

To extract the second Mellin moment of Ẽ2T relevant for quark orbital angular momentum,

cf. (3), from a GTMD correlator, one can refer to the steps that led from (5) to (8) in reverse order:

L3 + 2S3 = −

∫
dx xẼ2T (9)

= 2

∫
dx x

∫
d2kT

(
kT · ∆T

∆
2
T

F27 + F28

)
(10)

= −iP+
∫

dx x

∫
d2kT ǫi j

∆
i

∆
2
T

(
W

γ
j

++
−Wγ

j

−−

)
, (11)

where all distributions are to be taken in the forward limit, ∆T → 0; note k+ = xP+. Now, referring

to the definition of the GTMD correlator (4), the factor x in (11) can be replaced by a derivative with

respect to the longitudinal component of z, i.e., x → i∂/∂(z · P) acting on the QCD matrix element

(note the additional minus sign from shifting the derivative from the exponential factor to the matrix

element via integration by parts). Then, having done so, one can carry out the integrations over x

and kT in (11), which simply cancel the integrations over z− and zT in the GTMD correlator (4).

Formally, this results in taking the limit z− → 0 and zT → 0, which must be handled with care

in view of the finite resolution implied by the lattice spacing; this will be discussed in more detail

below. Furthermore, in the forward limit, 2(∆i/∆2
T
) f i = (∂/∂∆i) f i for any vector function f which

vanishes at least linearly in that limit. Thus, one arrives at

L3 + 2S3

n
= (12)

1

n
ǫi j

1

2

∂

∂(z · P)

∂

∂∆i
〈P + ∆T /2,+| ψ̄(−z/2)γ j U ψ(z/2) |P − ∆T /2,+〉

����
z+=0,∆T=0,z−→0,zT→0

,

where it has also been used that the W
γ
j

++
and Wγ

j

−− contributions are identical (up to their sign),

and therefore it is sufficient to calculate the former and multiply by a factor 2. The normalization

by the number of valence quarks n serves to cancel the renormalization factor of the quark bilinear

operator; it can be obtained from the matrix element

n =
1

2P j

〈
P j,+

�� ψ̄(−z/2)γ j U ψ(z/2)
��P j,+

〉����
z+=0,z−→0,zT→0

(13)

(no summation over j implied); in this matrix element, the proton momentum is in the j-direction,

orthogonal to P defining the longitudinal direction in (12). Alternatively, one can invoke invariance

of (13) under rotation of the j-direction to align with the direction of P in (12). This was done in

practice, in order to avoid having to perform calculations for additional proton momenta; recording

data for an additional Dirac matrix structure, γlongitudinal , is, in comparison, much less expensive.

4. Setup of lattice calculation and result

In the Lorentz frame in which the GTMD correlator (4) is originally defined, the quark bilocal

operator contains temporal separations. This frame is therefore not suitable for a lattice calculation.

5
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0
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Figure 1: Pairs of values of z3 at constant z2
= −z2

3
− z2

2
used to evaluate the finite difference approximating

the derivative with respect to z · P in (12). Each pair is distinguished by its color. The spacing of the grid is

the lattice spacing a (note that the displayed grid is not the underlying lattice itself, but it is a grid of relative

distances on that lattice). The final result for (L3 + 2S3)/n is determined by the z2
= −a2 case (red dots).

The lattice calculation instead is performed in a boosted frame in which the separation in the

operator is purely spatial. To facilitate the connection between the frames, it is useful to formulate

the problem in terms of the invariants z · P and z2:

Original frame: z+ = 0, z · P = z−P+, z2
= −z2

T

Lattice frame: z0 = 0, z · P = −z3P3, z2
= −z2

3
− z2

T
,

(14)

where, as before, the spatial direction of the proton momentum P has been taken to define the

3-direction. Also, in the following, the momentum transfer ∆T will point in the 1-direction, and the

transverse component of the operator separation zT will point in the 2-direction.

Obtaining the form (12) from (11), one integrates over the quark momenta kT and k−. Formally,

this implies the limits z− → 0, zT → 0 in (12), if one were to integrate over all momenta without any

cutoff. However, the finite resolution implied by the lattice spacing a implies a cutoff on momenta,

or, formulated in z-space, quark operator separations smaller than |z | = a cannot be resolved. Thus,

the aforementioned limits z− → 0, zT → 0 will be understood to mean evaluation at fixed −z2
= a2;

likewise, the derivative with respect to z3 (in the lattice frame) in (12) will be taken to mean a finite

difference over the minimally resolved distance a. In the numerical calculations to be presented

below, a range of |z | was studied, with the case |z | = a determining the final results. Fig. 1 shows

pairs of values of z3 at constant z2 used to evaluate the finite difference approximating the derivative

with respect to z · P in (12). Consistently, also the denominator n in (12) is evaluated at the same

z2, matching the operators in numerator and denominator at finite lattice spacing.

Note that this (gauge-invariant) momentum cutoff scheme, with z2 effectively defining the cutoff

on momentum integrations, differs from the perturbative MS renormalization scheme. Conversion

of the results to the latter would require a matching factor that has currently not yet been determined.

Systematic deviations between the two schemes have, however, been estimated to be minor [24]

when the momentum cutoff is comparable to the renormalization scale. The numerical results

presented below corroborate that the systematic uncertainty associated with the connection to the

MS scheme is not dominant compared to other uncertainties of the calculation.

6
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Figure 2: The combination L3 + 2S3, in units of the number of valence quarks n, obtained through the

second Mellin moment of the twist-3 GPD Ẽ2T , as a function of the spatial cutoff |z| used in evaluating (12),

cf. discussion in main text. The two panels display two different proton momenta P3 (values quoted in panel

legends are given in units of 2π/ℓ, cf. main text).

In addition to the derivative with respect to z · P, (12) calls for a derivative of the matrix

element with respect to (transverse) momentum transfer. This derivative was realized using a direct

derivative method [25–27] in order to avoid any systematic bias in its evaluation. The treatment is

identical to that carried out in [27], and the reader is referred to the detailed description there for

specifics.

Numerical data for the ratio (12) were obtained utilizing a 2+1-flavor clover fermion ensemble

on a 323 × 96 lattice with spacing a = 0.114 fm = (1.73 GeV)−1. The pion mass on this ensemble

is mπ = 317 MeV, and the source-sink separation employed to construct three-point functions

was 10 a = 1.14 fm. Two proton momenta were explored, P3 = 2π/ℓ, 4π/ℓ, where ℓ = 32 a

denotes the spatial lattice extent. Note that non-zero proton momentum is required to evaluate

(13) (or spatial rotations thereof). The Ji definition of longitudinal orbital angular momentum (and

likewise longitudinal spin) is boost-invariant, but lattice calculations at different P3 may deviate

from one another, e.g., as a result of discretization artefacts that will tend to increase with rising

P3. Fig. 2 displays results for (L3 + 2S3)/n for the two proton momenta, as a function of the

spatial cutoff |z | used in evaluating (12). The results are remarkably stable with respect to |z | and

agree within uncertainties for the two proton momenta, as expected. Of course, L3 is expected to

evolve nontrivially with the ultraviolet scale. However, at the given lattice spacing, there appears

to be little ambiguity in the extraction of (L3 + 2S3)/n, in view of its stability with respect to the

implementation of the momentum cutoff.

To extract the final estimate for Ji longitudinal quark orbital angular momentum in the proton,

the spin contribution 2S3 must be subtracted from (12). This contribution was previously evaluated

on the same lattice ensemble in [28]. To achieve a combination of data that is as consistent as

possible, the results from [28] were evaluated at matching fixed source-sink separation 10 a (rather

than using the extrapolation to the ground state also available there), yielding 2S3 = 1.18(2). It

should be noted that, whereas this result does not depend on renormalization scheme or scale (in

the isovector case considered here), the handling of discretization effects in arriving at it does not

fully coincide with the one implied by the momentum cutoff scheme adopted above in extracting

7
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Figure 3: Isovector longitudinal Ji quark orbital angular momentum in the proton, in units of the number of

valence quarks n, obtained in lattice calculations utilizing the three approaches given by eqs. (1), (2) and (3)

discussed in the introduction.

(L3 + 2S3)/n. However, being performed at a single lattice spacing, no quantitative assessment of

the discretization error of the present calculation is possible in any case. In addition, the |z | = a data

from Fig. 2 were linearly extrapolated to P3 = 0 for the purpose of combining the data. The final

estimate of the isovector longitudinal Ji quark orbital angular momentum in the proton obtained in

this manner is

L3/n = −0.34(6) . (15)

5. Discussion

Fig. 3 places the result (15) into the context of alternative evaluations of isovector longitudinal

Ji quark orbital angular momentum in the proton based on both the GTMD F14, cf. (2), as well as

Ji’s sum rule, cf. (1). The result employing the GTMD F14 was obtained [27] on the same lattice

ensemble as utilized in the present investigation, in the same quark momentum cutoff scheme as

used in evaluating (12). The result employing Ji’s sum rule was obtained by interpolating data

from [17] to the same pion mass as employed here; these data are given in the MS scheme at scale

µ = 2 GeV.

The various determinations agree within the statistical uncertainties; the different systematics

inherent in the distinct approaches, including the schemes in which the ultraviolet divergences

are handled, appear to only influence the results for the quark orbital angular momentum to an

insignificant extent, compared to the statistical fluctuations. The magnitude of those fluctuations

in the determination of quark orbital angular momentum via the twist-3 GPD Ẽ2T is notable. It
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is much larger than the one using the GTMD F14, obtained on the same ensemble with the same

statistics (the Ji sum rule result cannot be directly compared in the same way concerning the

statistical fluctuations, since it was obtained on different ensembles employing significantly smaller

sets of samples). The main reason for the comparatively large statistical uncertainty of the result

obtained using the twist-3 GPD Ẽ2T is that it is realized through a difference of large numbers,

L3 = (L3+2S3)−2S3, canceling a large part of the signal and thus enhancing the relative uncertainty.

Also a less than optimal cancellation of fluctuations in the numerator and denominator of (12) may

play a role, when the matrix element in the denominator (13) is rotated to align the j-direction with

the direction of P in (12), as remarked after eq. (13).

Nonetheless, the present study demonstrates the feasibility of extracting quark orbital angular

momentum in the proton from the twist-3 GPD Ẽ2T , albeit requiring higher computational effort

compared to other approaches to achieve comparable accuracy. Presumably also phenomenological

studies employing the GPD Ẽ2T would have to grapple with the numerical challenges inherent in

the difference of large numbers required to determine the quark orbital angular momentum in the

proton.
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