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We construct an exact analytic solution of the revised small-𝑥 helicity evolution equations derived
in [1] based on the earlier work [2, 3]. The equations we solve are obtained in the large-𝑁𝑐 limit
(with 𝑁𝑐 the number of quark colors) and are double-logarithmic (summing powers of 𝛼𝑠 ln2 (1/𝑥)
with 𝛼𝑠 the strong coupling constant and 𝑥 the Bjorken 𝑥 variable). Our solution provides small-𝑥,
large-𝑁𝑐 expressions for the flavor-singlet quark and gluon helicity parton distribution functions
(PDFs) and for the 𝑔1 structure function, with their leading small-𝑥 asymptotics given by

ΔΣ(𝑥, 𝑄2) ∼ Δ𝐺 (𝑥, 𝑄2) ∼ 𝑔1 (𝑥, 𝑄2) ∼
(

1
𝑥

)𝛼ℎ

,

where the exact analytic expression we obtain for the intercept 𝛼ℎ can be approximated by
𝛼ℎ = 3.66074

√︃
𝛼𝑠 𝑁𝑐

2𝜋 . Our solution also yields an all-order (in 𝛼𝑠) resummed small-𝑥 anomalous
dimension Δ𝛾𝐺𝐺 (𝜔) which agrees with all the existing fixed-order calculations (to three loops).
Notably, our anomalous dimension is different from that obtained in the infrared evolution equation
framework developed earlier by Bartels, Ermolaev, and Ryskin (BER) [4], with the disagreement
starting at four loops. Despite the previously reported agreement at two decimal points based on
the numerical solution of the same equations [1], the intercept of our large-𝑁𝑐 helicity evolution
and that of BER disagree beyond that precision, with the BER intercept at large 𝑁𝑐 given by a
different analytic expression from ours with the numerical value of 𝛼𝐵𝐸𝑅

ℎ
= 3.66394

√︃
𝛼𝑠 𝑁𝑐

2𝜋 . We
speculate on the origin of this disagreement.
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1. Introduction

This contribution to the SPIN2023 proceedings is based on [5]. A crucial piece of the proton
spin puzzle is the proton’s spin content at small Bjorken 𝑥. Since any experiment can only ever reach
some nonzero 𝑥min, a theoretical handle on the small-𝑥 regime is necessary in order to confidently
extrapolate below such an 𝑥min. It is in this context that a set of novel small-𝑥 helicity evolution
equations were derived [2, 3, 6, 7]. An important correction to this KPS (Kovchegov, Pitonyak, and
Sievert) evolution was found in [1], resulting in the updated KPS-CTT (‘CTT’ = Cougoulic, Tarasov,
Tawabutr) evolution. The equations are double-logarithmic (resumming powers of 𝛼𝑠 ln2(1/𝑥))
and describe the small-𝑥 evolution of the ‘polarized dipole amplitudes,’ quantities which ultimately
determine the helicity-dependent parton distribution functions (hPDFs) along with the 𝑔1 structure
function. The KPS-CTT evolution yields an infinite hierarchy of equations, much like that in the
unpolarized case [8–17], but upon taking the large-𝑁𝑐 (or large-𝑁𝑐&𝑁 𝑓 ) limit, the infinite hierarchy
reduces to a closed system of integral equations.

The updated small-𝑥, large-𝑁𝑐 evolution equations were solved numerically in the same paper
where they were published [1], yielding small-𝑥 asymptotics for the helicity-dependent parton
distribution functions and for 𝑔1 of

ΔΣ(𝑥, 𝑄2) ∼ Δ𝐺 (𝑥, 𝑄2) ∼ 𝑔1(𝑥, 𝑄2) ∼
(
1
𝑥

)3.66
√
�̄�𝑠

, with �̄�𝑠 =
𝛼𝑠𝑁𝑐

2𝜋
. (1)

The intercept of 3.66
√
�̄�𝑠 appeared to agree with that derived earlier by Bartels, Ermolaev, and

Ryskin (BER) using an infrared evolution equations (IREE) approach [4]. In addition, an iterative
solution of the large-𝑁𝑐 KPS-CTT equations in [1] indicated full agreement with the small-𝑥, large-
𝑁𝑐 part of the glue-glue polarized anomalous dimension Δ𝛾𝐺𝐺 (𝜔) out to the existing three-loop
order of the fixed-order calculations [18–21] (see also [22–30]). Despite this good agreement, an
analytic solution of these equations would nevertheless be valuable.

In this work, we have constructed such an analytic solution to the large-𝑁𝑐 KPS-CTT evolution,
from which we obtain analytic expressions for the small-𝑥 intercept and for an all-order (in 𝛼𝑠)
resummed small-𝑥 anomalous dimensionΔ𝛾𝐺𝐺 (𝜔). These analytic expressions allow us to compare
more precisely to the predictions of BER and ultimately reveal a small disagreement in the intercept
(at the third decimal point) and in the anomalous dimension (at four loops).

2. Large-𝑁𝑐 Equations

The large-𝑁𝑐 KPS-CTT evolution equations are written for the (impact-parameter-integrated)
polarized dipole amplitudes 𝐺 (𝑥2

10, 𝑧𝑠) and 𝐺2(𝑥2
10, 𝑧𝑠). As defined in [1] these amplitudes corre-

spond to sub-eikonal operators inserted between light-cone Wilson lines and are functions of the
transverse size squared of the dipole 𝑥2

𝑖 𝑗
= |𝑥

𝑖 𝑗
|2 (for 𝑖, 𝑗 = 0, 1, 2, . . . labeling the partons and with

𝑥
𝑖 𝑗

= 𝑥
𝑖
− 𝑥

𝑗
for the two-dimensional transverse vectors 𝑥 = (𝑥1, 𝑥2) in coordinate space) along

with the center of mass energy squared 𝑠 between the original projectile and the target multiplied by
the smallest longitudinal momentum fraction 𝑧 among the two partons making up the dipole. The
evolution of the amplitudes 𝐺 (𝑥2

10, 𝑧𝑠) and 𝐺2(𝑥2
10, 𝑧𝑠) also mixes with two additional ‘neighbor

dipole amplitudes’ Γ(𝑥2
10, 𝑥

2
21, 𝑧𝑠) and Γ2(𝑥2

10, 𝑥
2
21, 𝑧𝑠). These neighbors have the same operator

2
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definitions as 𝐺 (𝑥2
10, 𝑧𝑠) and 𝐺2(𝑥2

10, 𝑧𝑠), respectively, but differ in the light-cone lifetime ordering
which for the neighbors depends on the adjacent dipole size 𝑥2

21 [1–3]. At large-𝑁𝑐 we have a closed
system of four integral equations:

𝐺 (𝑥2
10, 𝑧𝑠) = 𝐺 (0) (𝑥2

10, 𝑧𝑠) +
𝛼𝑠𝑁𝑐

2𝜋

𝑧∫
1

𝑠𝑥2
10

d𝑧′

𝑧′

𝑥2
10∫

1
𝑧′𝑠

d𝑥2
21

𝑥2
21

[
Γ(𝑥2

10, 𝑥
2
21, 𝑧

′𝑠) (2a)

+ 3𝐺 (𝑥2
21, 𝑧

′𝑠) + 2𝐺2(𝑥2
21, 𝑧

′𝑠) + 2 Γ2(𝑥2
10, 𝑥

2
21, 𝑧

′𝑠)
]
,

Γ(𝑥2
10, 𝑥

2
21, 𝑧

′𝑠) = 𝐺 (0) (𝑥2
10, 𝑧

′𝑠) + 𝛼𝑠𝑁𝑐

2𝜋

𝑧′∫
1

𝑠𝑥2
10

d𝑧′′

𝑧′′

min
[
𝑥2

10,𝑥
2
21

𝑧′

𝑧′′
]∫

1
𝑧′′𝑠

d𝑥2
32

𝑥2
32

[
Γ(𝑥2

10, 𝑥
2
32, 𝑧

′′𝑠) (2b)

+ 3𝐺 (𝑥2
32, 𝑧

′′𝑠) + 2𝐺2(𝑥2
32, 𝑧

′′𝑠) + 2 Γ2(𝑥2
10, 𝑥

2
32, 𝑧

′′𝑠)
]
,

𝐺2(𝑥2
10, 𝑧𝑠) = 𝐺

(0)
2 (𝑥2

10, 𝑧𝑠) (2c)

+ 𝛼𝑠𝑁𝑐

𝜋

𝑧∫
Λ2

𝑠

d𝑧′

𝑧′

min
[
𝑧
𝑧′ 𝑥

2
10,

1
Λ2

]∫
max

[
𝑥2

10,
1
𝑧′𝑠

]
d𝑥2

21

𝑥2
21

[
𝐺 (𝑥2

21, 𝑧
′𝑠) + 2𝐺2(𝑥2

21, 𝑧
′𝑠)

]
,

Γ2(𝑥2
10, 𝑥

2
21, 𝑧

′𝑠) = 𝐺
(0)
2 (𝑥2

10, 𝑧
′𝑠) (2d)

+ 𝛼𝑠𝑁𝑐

𝜋

𝑧′
𝑥2

21
𝑥2

10∫
Λ2

𝑠

d𝑧′′

𝑧′′

min
[
𝑧′

𝑧′′ 𝑥
2
21,

1
Λ2

]∫
max

[
𝑥2

10,
1

𝑧′′𝑠

]
d𝑥2

32

𝑥2
32

[
𝐺 (𝑥2

32, 𝑧
′′𝑠) + 2𝐺2(𝑥2

32, 𝑧
′′𝑠)

]
,

where Γ(𝑥2
10, 𝑥

2
21, 𝑧

′𝑠) and Γ2(𝑥2
10, 𝑥

2
21, 𝑧

′𝑠) are only defined for 𝑥10 ≥ 𝑥21 and Λ is an infrared (IR)
cutoff such that we require all the dipole sizes to be 𝑥𝑖 𝑗 < 1/Λ.

Also derived in [1] are the following equations which relate the polarized dipole amplitudes
to the (dipole) gluon and (flavor-singlet) quark helicity TMDs 𝑔𝐺 𝑑𝑖𝑝

1𝐿 (𝑥, 𝑘2
𝑇
) and 𝑔𝑆1𝐿 (𝑥, 𝑘

2
𝑇
), along

with the hPDFs Δ𝐺 (𝑥, 𝑄2) and ΔΣ(𝑥, 𝑄2) and the 𝑔1 structure function. 𝑄(𝑥2
10, 𝑧𝑠) is an additional

polarized dipole amplitude, but at large-𝑁𝑐 𝑄(𝑥2
10, 𝑧𝑠) ≈ 𝐺 (𝑥2

10, 𝑧𝑠).

3
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𝑔
𝐺 𝑑𝑖𝑝

1𝐿 (𝑥, 𝑘2
𝑇 ) =

𝑁𝑐

𝛼𝑠2𝜋4

∫
d2𝑥10 𝑒

−𝑖𝑘 ·𝑥10

[
1 + 𝑥2

10
𝜕

𝜕𝑥2
10

]
𝐺2

(
𝑥2

10, 𝑧𝑠 =
𝑄2

𝑥

)
, (3a)

𝑔𝑆1𝐿 (𝑥, 𝑘
2
𝑇 ) =

8𝑖𝑁𝑐𝑁 𝑓

(2𝜋)5

1∫
Λ2/𝑠

d𝑧
𝑧

∫
d2𝑥10 𝑒

𝑖𝑘 ·𝑥10
𝑥10

𝑥2
10

·
𝑘

𝑘2

[
𝑄(𝑥2

10, 𝑧𝑠) + 2𝐺2(𝑥2
10, 𝑧𝑠)

]
, (3b)

Δ𝐺 (𝑥, 𝑄2) = 2𝑁𝑐

𝛼𝑠𝜋
2

[(
1 + 𝑥2

10
𝜕

𝜕𝑥2
10

)
𝐺2

(
𝑥2

10, 𝑧𝑠 =
𝑄2

𝑥

)]
𝑥2

10=
1
𝑄2

, (3c)

ΔΣ(𝑥, 𝑄2) = −
𝑁𝑐𝑁 𝑓

2𝜋3

1∫
Λ2/𝑠

d𝑧
𝑧

min
{

1
𝑧𝑄2 ,

1
Λ2

}∫
1
𝑧𝑠

d𝑥2
10

𝑥2
10

[
𝑄(𝑥2

10, 𝑧𝑠) + 2𝐺2(𝑥2
10, 𝑧𝑠)

]
, (3d)

𝑔1(𝑥, 𝑄2) = −
∑︁
𝑓

𝑁𝑐𝑍
2
𝑓

4𝜋3

1∫
Λ2/𝑠

d𝑧
𝑧

min
{

1
𝑧𝑄2 ,

1
Λ2

}∫
1
𝑧𝑠

d𝑥2
10

𝑥2
10

[
𝑄(𝑥2

10, 𝑧𝑠) + 2𝐺2(𝑥2
10, 𝑧𝑠)

]
. (3e)

Here 𝑘 = (𝑘1, 𝑘2) is the transverse momentum vector with 𝑘𝑇 = |𝑘 |, 𝑍 𝑓 is the fractional electric
charge of the quark, 𝑁 𝑓 is the number of quark flavors, and Eq. (3d) assumes all quark flavors
contribute equally. Then with analytic solutions for the polarized dipole amplitudes 𝐺 (𝑥2

10, 𝑧𝑠) and
𝐺2(𝑥2

10, 𝑧𝑠) (at small-𝑥 and large-𝑁𝑐), one can obtain analytic expressions in that same regime for
all the quantities in Eqs. (3).

3. Solution

To solve Eqs. (2) analytically we begin by writing the polarized dipole amplitudes 𝐺 (𝑥2
10, 𝑧𝑠)

and 𝐺2(𝑥2
10, 𝑧𝑠) as double inverse Laplace transforms in the variables ln

(
𝑧𝑠𝑥2

10
)

and ln
(
1/𝑥2

10Λ
2) ,

𝐺 (𝑥2
10, 𝑧𝑠) =

∫
d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝑒
𝜔 ln(𝑧𝑠𝑥2

10 )+𝛾 ln
(

1
𝑥2

10Λ
2

)
𝐺𝜔𝛾 , (4)

𝐺2(𝑥2
10, 𝑧𝑠) =

∫
d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝑒
𝜔 ln(𝑧𝑠𝑥2

10 )+𝛾 ln
(

1
𝑥2

10Λ
2

)
𝐺2𝜔𝛾 , (5)

and similarly for their initial conditions/inhomogeneous terms,

𝐺 (0) (𝑥2
10, 𝑧𝑠) =

∫
d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝑒
𝜔 ln(𝑧𝑠𝑥2

10 )+𝛾 ln
(

1
𝑥2

10Λ
2

)
𝐺

(0)
𝜔𝛾 , (6)

𝐺
(0)
2 (𝑥2

10, 𝑧𝑠) =
∫

d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝑒
𝜔 ln(𝑧𝑠𝑥2

10 )+𝛾 ln
(

1
𝑥2

10Λ
2

)
𝐺

(0)
2𝜔𝛾

. (7)

4
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Starting from these expressions, one can manipulate the large-𝑁𝑐 evolution equations (Eqs. (2))
to obtain expressions for the neighbor dipole amplitudes Γ, Γ2 and constrain the unknown double-
Laplace images 𝐺𝜔𝛾 , 𝐺2𝜔𝛾 . The details of the calculation are omitted here. For the sake of brevity,
we just report the most relevant pieces of the solution (omitting the expressions for the neighbor
dipole amplitudes Γ and Γ2 since these do not enter any of quantities in Eqs. (3)). With that caveat,
our solution is

𝐺2(𝑥2
10, 𝑧𝑠) =

∫
d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝑒
𝜔 ln(𝑧𝑠𝑥2

10 )+𝛾 ln
(

1
𝑥2

10Λ
2

)
𝐺2𝜔𝛾 , (8)

𝐺 (𝑥2
10, 𝑧𝑠) =

∫
d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝑒
𝜔 ln(𝑧𝑠𝑥2

10 )+𝛾 ln
(

1
𝑥2

10Λ
2

) [
𝜔𝛾

2 �̄�𝑠

(
𝐺2𝜔𝛾 − 𝐺

(0)
2𝜔𝛾

)
− 2𝐺2𝜔𝛾

]
, (9)

with

𝐺2𝜔𝛾 = 𝐺
(0)
2𝜔𝛾

+ �̄�𝑠

𝜔 (𝛾 − 𝛾−
𝜔) (𝛾 − 𝛾+𝜔)

[
2
(
𝛾 − 𝛿+𝜔

) (
𝐺

(0)
𝛿+𝜔𝛾

+ 2𝐺 (0)
2 𝛿+𝜔𝛾

)
(10)

− 2
(
𝛾+𝜔 − 𝛿+𝜔

) (
𝐺

(0)
𝛿+𝜔𝛾+

𝜔
+ 2𝐺 (0)

2 𝛿+𝜔𝛾+
𝜔

)
+ 8 𝛿−𝜔

(
𝐺

(0)
2𝜔𝛾

− 𝐺
(0)
2𝜔𝛾+

𝜔

) ]
,

𝛿±𝜔 =
𝜔

2

[
1 ±

√︂
1 − 4 �̄�𝑠

𝜔2

]
, (11)

𝛾±𝜔 =
𝜔

2

1 ±

√︄
1 − 16 �̄�𝑠

𝜔2

√︂
1 − 4 �̄�𝑠

𝜔2

 , (12)

and with the double-Laplace images of the initial conditions 𝐺 (0)
𝜔𝛾 and 𝐺

(0)
2𝜔𝛾

as defined in Eqs. (6)
and (7).

With these analytic results, one can then use Eqs. (3) to write down analytic expressions (at
small-𝑥 and large-𝑁𝑐) for the helicity PDFs and TMDs along with 𝑔1. These are

5
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𝑔
𝐺 𝑑𝑖𝑝

1𝐿 (𝑥, 𝑘2
𝑇 ) =

2 𝑁𝑐

𝛼𝑠 𝜋
3

1
𝑘2
𝑇

∫
d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝑒
𝜔 ln

(
𝑄2

𝑥𝑘2
𝑇

)
+𝛾 ln

(
𝑘2
𝑇

Λ2

)
22𝜔−2𝛾 Γ (𝜔 − 𝛾 + 1)

Γ (𝛾 − 𝜔) 𝐺2𝜔𝛾 , (13)

Δ𝐺 (𝑥, 𝑄2) = 2 𝑁𝑐

𝛼𝑠𝜋
2

∫
d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝑒
𝜔 ln

( 1
𝑥

)
+𝛾 ln

(
𝑄2

Λ2

)
𝐺2𝜔𝛾 , (14)

𝑔𝑆1𝐿 (𝑥, 𝑘
2
𝑇 ) = −

𝑁 𝑓

𝛼𝑠 2𝜋3
1
𝑘2
𝑇

∫
d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝑒
𝜔 ln

(
𝑄2

𝑥 𝑘2
𝑇

)
+𝛾 ln

(
𝑘2
𝑇

Λ2

)
− 𝑒

(𝛾−𝜔) ln

(
𝑘2
𝑇

Λ2

) (15)

× 22𝜔−2𝛾 Γ (1 + 𝜔 − 𝛾)
Γ (1 − 𝜔 + 𝛾) 𝛾

(
𝐺2𝜔𝛾 − 𝐺

(0)
2𝜔𝛾

)
,

ΔΣ(𝑥, 𝑄2) = −
𝑁 𝑓

𝛼𝑠 2𝜋2

∫
d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝜔

𝜔 − 𝛾

(
𝐺2𝜔𝛾 − 𝐺

(0)
2𝜔𝛾

)
𝑒
𝜔 ln

( 1
𝑥

)
𝑒
𝛾 ln

(
𝑄2

Λ2

)
, (16)

𝑔1(𝑥, 𝑄2) = −1
2

∑︁
𝑓

𝑍2
𝑓

1
𝛼𝑠 2𝜋2

∫
d𝜔
2𝜋𝑖

∫
d𝛾
2𝜋𝑖

𝜔

𝜔 − 𝛾

(
𝐺2𝜔𝛾 − 𝐺

(0)
2𝜔𝛾

)
𝑒
𝜔 ln

( 1
𝑥

)
𝑒
𝛾 ln

(
𝑄2

Λ2

)
. (17)

Note that the Γ appearing in Eqs. (13) and (15) is the Γ-function and not the neighbor dipole
amplitude.

4. Intercept, Anomalous Dimension, and Comparison to BER

The small-𝑥 asymptotics of our solution are governed by the rightmost singularity in the
complex-𝜔 plane. This comes from a branch point in the function 𝛾−

𝜔 , defined in Eq. (12). This
branch point is

𝜔 = 𝛼ℎ ≡ 4
31/3

√︄
Re

[(
−9 + 𝑖

√
111

)1/3
] √︂

𝛼𝑠 𝑁𝑐

2𝜋
≈ 3.66074

√︂
𝛼𝑠 𝑁𝑐

2𝜋
, (18)

and so we have the following small-𝑥 asymptotics:

ΔΣ(𝑥, 𝑄2) ∼ Δ𝐺 (𝑥, 𝑄2) ∼ 𝑔1(𝑥, 𝑄2) ∼ 𝑔
𝐺 𝑑𝑖𝑝

1𝐿 (𝑥, 𝑘2
𝑇 ) ∼ 𝑔𝑆1𝐿 (𝑥, 𝑘

2
𝑇 ) ∼

(
1
𝑥

)𝛼ℎ

. (19)

Next, fixing the simple initial conditions 𝐺
(0)
2 (𝑥2

10, 𝑧𝑠) = 1 and 𝐺 (0) (𝑥2
10, 𝑧𝑠) = 0, the gluon

hPDF in Eq. (14) becomes

Δ𝐺 (𝑥, 𝑄2) = 2𝑁𝑐

𝛼𝑠𝜋
2

∫
d𝜔
2𝜋𝑖

𝑒
𝜔 ln

( 1
𝑥

)
+𝛾−

𝜔 ln
(
𝑄2

Λ2

)
1
𝜔
, (20)

from which we can see that our prediction for the resummed all-order in 𝛼𝑠 𝐺𝐺 polarized anomalous
dimension at small 𝑥 and large-𝑁𝑐 (whose subsequent expansion in powers of 𝛼𝑠 we also show) is

Δ𝛾𝐺𝐺 (𝜔) = 𝛾−
𝜔 =

𝜔

2

1 −

√︄
1 − 16 �̄�𝑠

𝜔2

√︂
1 − 4 �̄�𝑠

𝜔2

 =
4 �̄�𝑠

𝜔
+

8 �̄�2
𝑠

𝜔3 +
56 �̄�3

𝑠

𝜔5 +
496 �̄�4

𝑠

𝜔7 + O(𝛼5
𝑠).

(21)
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Reassuringly, this prediction for the anomalous dimension agrees with the fixed-order calculations
out to the existing three-loop level (see [18–30]).

These quantities — the intercept in Eq. (18) and anomalous dimension in Eq. (21) — should
be compared to those predicted within the BER IREE formalism [4]:

𝛼𝐵𝐸𝑅
ℎ ≡

√︄
17 +

√
97

2

√︂
𝛼𝑠 𝑁𝑐

2𝜋
≈ 3.66394

√︂
𝛼𝑠 𝑁𝑐

2𝜋
, (22)

Δ𝛾𝐵𝐸𝑅
𝐺𝐺 (𝜔) = 𝜔

2

1 −

√√√
1 − 16 �̄�𝑠

𝜔2

1 − 3 �̄�𝑠

𝜔2

1 − �̄�𝑠

𝜔2

 =
4 �̄�𝑠

𝜔
+

8 �̄�2
𝑠

𝜔3 +
56 �̄�3

𝑠

𝜔5 +
504 �̄�4

𝑠

𝜔7 + O(𝛼5
𝑠). (23)

While the numerical prefactor of the KPS-CTT intercept in Eq. (18) does indeed round to 3.66
like the BER intercept in Eq. (22) (as was found in the numerical solution of the large-𝑁𝑐 KPS-CTT
equations [1]), the two numbers in Eqs. (18) and (22) disagree beyond that precision. A similarly
small disagreement persists in the anomalous dimensions (comparing that of KPS-CTT in Eq. (21)
with that of BER in Eq. (23)), with the disagreement only beginning at the four-loop level. At
this point, we cannot decisively resolve this (very minor) discrepancy between the predictions of
KPS-CTT and BER. However some exploration of the role of hard non-ladder gluons (see Appendix
B of [6]) has provided a possible, though not certain, reason for the differences. In [4] BER appear
to claim that hard non-ladder gluons should not contribute at DLA, but it does appear possible
to construct examples of diagrams which contain hard non-ladder gluons and are DLA that are
included in KPS-CTT evolution (for more details see the appendix of [5]). In light of the author’s
limited understanding of the IREE, all of this should be taken as preliminary to be explored further.

5. Summary

In this work, we have constructed an analytic solution to the small-𝑥 large-𝑁𝑐 KPS-CTT
evolution. This solution provides analytic small-𝑥, large-𝑁𝑐 expressions for the helicity TMDs,
PDFs, and the 𝑔1 structure function. Importantly it also provides an analytic expression for the
small-𝑥 intercept of this evolution and a prediction for the resummed GG polarized anomalous
dimension. The expressions for these last two quantities have revealed slight disagreements between
the predictions of the KPS-CTT evolution and the BER IREE. While these small discrepancies are
certainly interesting and merit further investigation, we believe that at this point the very close
agreement between the two different formalisms is promising and should inspire a reasonable
degree of confidence in phenomenological applications of the KPS-CTT evolution.
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