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Update on the nucleon quark distribution functions
calculation with a confining NJL model adding
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We investigate the quark spin-independent and spin-dependent distributions in the nucleon within
the framework of a covariant and confining Nambu-Jona-Lasinio (NJL) model. The nucleon
bound state is obtained by solving the Faddeev equation in the quark–diquark approximation. In
contrast to earlier works, we include not only the scalar and axial vector diquark channels, but
now also the pseudoscalar and vector diquarks. The inclusion of these new diquark channels is
crucial in maintaining chiral symmetry. Since the scalar and axial vector diquarks have positive
parity, they can be in an 𝑠-wave state when combined with a quark to form a nucleon, whereas
pseudoscalar and vector diquarks have negative parity and so must be in a 𝑝-wave state. By
including these 𝑝-wave diquark correlations, we seek to understand how they affect the quark
helicity distributions. We present our calculations for the unpolarized and polarized quark light-
front momentum distribution functions and compare them to the available empirical fits. We
find the inclusion of these new diquark channels improved the agreement of our model with the
empirically-parametrized distribution functions. We obtain the nucleon axial coupling 𝑔𝐴 from
our calculation as 𝑔𝐴 = 1.42 for our full model, while 𝑔𝐴 = 1.51 if we include scalar and axial
vector diquarks only. We do not find improvement on the spin sum from adding the pseudoscalar
and vector diquarks.
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1. Introduction

In the late 1980s, the European Muon Collaboration (EMC) [1] discovered that only a small
fraction of the proton spin is accounted for by the quark spins, triggering the so-called “proton spin
crisis” which is still of much interest to the nuclear and particle physics communities today. A
complete picture of the proton spin structure requires understanding of the non-perturbative regime
of quantum chromodynamics (QCD) which is still missing, except for numerical lattice simulations.
More recently, it has been estimated that ∼ 30% of the nucleon spin is carried by the quark spin.
The remainder of the spin must arise from the gluon spin and the quark and gluon orbital angular
momentum (OAM), and certain sum rules have been derived in regard to their contributions [2].
The gauge-invariant decomposition of the nucleon spin into quark and gluon contributions allows
for their measurement in experiments such as deeply virtual Compton scattering (DVCS), and
necessitates the study of parton distributions beyond the longitudinal dimension.

In this work, we calculate the spin-independent and spin-dependent quark light-front momen-
tum distribution functions in the framework of a confining NJL model [3–5], which was developed
by W. Bentz, A. W. Thomas, and others. A proper-time regularization scheme is introduced to
simulate confinement in the absence of gluons, in which an infrared cutoff is applied to eliminate
free quark propagation. This model is attractive because it is manifestly covariant and exhibits
spontaneous chiral symmetry breaking. It has been used to calculate parton distribution func-
tions (PDFs) [6], nucleon elastic form factors [7], transverse momentum dependent distributions
(TMDs) [8], and generalized parton distributions (GPDs) [9, 10]. It has also been used to study
medium modifications to the nucleon structure functions in nuclei and nuclear matter [11, 12]. The
nucleon in this model is approximated by a bound state of a quark and a diquark [5], in which the
diquark is a 𝑞𝑞 bound state solution to the Bethe-Salpeter equation. We include all the diquark
channels of scalar, pseudoscalar, axial vector and vector in this work. We pay special attention
to the helicity distributions of the quarks inside a nucleon, especially how the new inclusion of
the OAM-carrying diquarks, namely the pseudoscalar and vector diquarks, affect the helicity PDF
results, as compared to the truncated model [6], where only scalar and axial vector diquark channels
are included.

2. NJL model

The NJL model is a low-energy, effective theory of the strong interaction that mimics many key
features of QCD. However, unlike QCD, the NJL model considers only the quarks as the explicit
degrees of freedom, neglecting the gluons that are present in QCD. The nucleon is modeled by a
relativistic quark-diquark bound state satisfying the Faddeev equation. In the 𝑞𝑞 channel, the NJL
Lagrangian for 𝑆𝑈 (2) flavor is given by:

L = 𝑞(𝑖 /𝜕 − 𝑚̂)𝑞 + 𝐺𝑠

(
𝑞𝛾5𝐶𝜏2𝛽𝐴𝑞

𝑇
) (
𝑞𝑇𝐶−1𝛾5𝜏2𝛽𝐴𝑞

)
− 𝐺 𝑝

(
𝑞𝐶𝜏2𝛽𝐴𝑞

𝑇
) (
𝑞𝑇𝐶−1𝜏2𝛽𝐴𝑞

)
+ 𝐺𝑎

[(
𝑞𝛾𝜇𝐶 ®𝜏𝜏2𝛽𝐴𝑞

𝑇
) (
𝑞𝑇𝐶−1𝛾𝜇𝜏2 ®𝜏𝛽𝐴𝑞

)
+
(
𝑞𝛾𝜇𝛾5𝐶𝜏2𝛽𝐴𝑞

𝑇
) (
𝑞𝑇𝐶−1𝛾𝜇𝛾5𝜏2𝛽𝐴𝑞

)]
,

(1)
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where 𝐶 = 𝑖𝛾2𝛾0 is the charge conjugation matrix and 𝛽𝐴 =

√︃
3
2𝜆𝐴 (𝐴 = 2, 5, 7) [7]. 𝑞 is the

quark field, 𝑚̂ ≡ diag[𝑚𝑢, 𝑚𝑑] is the current quark mass matrix, which we take as 𝑚𝑢 = 𝑚𝑑 . ®𝜏
are the Pauli matrices for the 𝑆𝑈 (2) flavor, and 𝐺𝑠, 𝐺 𝑝, and 𝐺𝑎 are the coupling constant of the
four-fermi interaction in each diquark interaction channel. We will respect the three-flavor chiral
symmetry and thus take 𝐺 𝑝 = 𝐺𝑠. From the Lagrangian we can see, without the pseudoscalar and
vector diquarks, chiral symmetry is not satisfied. Thus, it is not only interesting but also necessary
to include them.

The interaction Lagrangian can be Fierz-symmetrized, so that only direct terms need to be
considered after a redefinition of the 4-fermion couplings. One of the interesting feature of this
model is the dynamical chiral symmetry breaking (DCSB). By solving the mass gap equation, one
obtains a constituent quark mass 𝑀 which is different from the bare quark mass 𝑚, 𝑀 > 𝑚 for
coupling strengths 𝐺 > 𝐺𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, so that 𝑀 > 0, even in the chiral limit 𝑚 = 0. The parameter 𝑀
is fixed a priori in our model to be 𝑀 = 400 MeV.

Then, by solving the corresponding Bethe-Salpeter equations , the coupling strength parameters
for different 𝑞𝑞 channels are related to the diquark mass parameters. Each of the Bethe-Salpeter
vertex normalization factors are also determined.

In a covariant formulation, near a bound-state pole, the two-body 𝑡 matrix behaves as

T (𝑞) → Γ𝑖 (𝑞)Γ̄𝑖 (𝑞)
𝑞2 − 𝑀2

𝑖

, (2)

where Γ𝑖 is the normalized homogeneous Bethe-Salpeter vertex function for the state 𝑖, and Γ̄𝑖 is
the normalized conjugate vertex. Expanding the denominators about the pole masses,

Π(𝑞2) = Π(𝑀2
𝑖 ) + (𝑞2 − 𝑀2

𝑖 )
𝜕

𝜕𝑞2 Π(𝑞2)
��
𝑞2=𝑀2

𝑖

+ ... (3)

we find for the diquarks

𝜏𝑠 (𝑞) −→ 4𝑖𝐺𝑠 −
𝑖𝑍𝑠

𝑞2 − 𝑀2
𝑠 + 𝑖𝜀

,

𝜏
𝜇𝜈
𝑎 (𝑞) −→ 4𝑖𝐺𝑎𝑔

𝜇𝜈 − 𝑖𝑍𝑎

𝑞2 − 𝑀2
𝑎 + 𝑖𝜀

(
𝑔𝜇𝜈 − 𝑞𝜇𝑞𝜈

𝑀2
𝑎

)
,

𝜏𝑝 (𝑞) −→ −4𝑖𝐺 𝑝 +
𝑖𝑍𝑝

𝑞2 − 𝑀2
𝑝 + 𝑖𝜀

,

𝜏
𝜇𝜈
𝑣 (𝑞) −→ 4𝑖𝐺𝑎𝑔

𝜇𝜈 − 𝑖𝑍𝑣

𝑞2 − 𝑀2
𝑣 + 𝑖𝜀

(
𝑔𝜇𝜈 − 𝑞𝜇𝑞𝜈

𝑀2
𝑣

)
. (4)

The Bethe-Salpeter vertex normalization factors 𝑍𝑖 are defined so that they are always positive

𝑍−1
𝑠 = −1

2
𝜕

𝜕𝑞2 Π𝑃𝑃 (𝑞2)
��
𝑞2=𝑀2

𝑠
, (5)

𝑍−1
𝑎 = −1

2
𝜕

𝜕𝑞2 Π𝑉𝑉 (𝑞2)
��
𝑞2=𝑀2

𝑎
, (6)

𝑍−1
𝑝 =

1
2
𝜕

𝜕𝑞2 Π𝑆𝑆 (𝑞2)
��
𝑞2=𝑀2

𝑝
, (7)

𝑍−1
𝑣 = −1

2
𝜕

𝜕𝑞2 Π
(𝑇 )
𝐴𝐴

(𝑞2)
���
𝑞2=𝑀2

𝑣

. (8)
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Figure 1: Homogeneous Faddeev equation for the nucleon in the NJL model. The single lines represent the
quark propagator and the double lines the diquark propagators. The pseudoscalar and vector diquarks are
included in this work in addition to scalar and axial-vector diquarks.

The nucleon is modeled by a relativistic quark-diquark state and satisfies the following Faddeev
equation (Fig. 1)

Γ𝑁 (𝑝, 𝑠) = 𝐾 (𝑝) Γ𝑁 (𝑝, 𝑠), (9)

where the kernel is 𝐾 ≡ 𝑍Π𝑁 , in which 𝑍 is the quark exchange kernel, and Π𝑁 is the quark-diquark
bubble matrix. Γ𝑁 is the nucleon vertex function and takes the following form

Γ𝑁 =
√︁
−𝑍𝑁


𝛼1

𝛼2
𝑝𝜇

𝑀𝑁
𝛾5 + 𝛼3𝛾

𝜇𝛾5

𝛼4𝛾5

𝛼5
𝑝𝜇

𝑀𝑁
+ 𝛼6𝛾

𝜇


𝑢(𝑝, 𝑠), (10)

where 𝑀𝑁 is the nucleon mass, and the nucleon spinor is normalized such that 𝑢̄(𝑝, 𝑠)𝑢(𝑝, 𝑠) =

2𝑀𝑁 . The quark exchange kernel projected onto the color singlet and isospin one-half, in the static
approximation where the exchanged quark propagator 𝑆(𝑙) → − 1

𝑀
[13], becomes

𝑍𝛼𝛽 =
3
𝑀

©­­­­«
1

√
3𝛾𝜎𝛾5 𝛾5 𝛾𝜎

√
3𝛾5𝛾

𝜇 −𝛾𝜎𝛾𝜇
√

3𝛾𝜇 −
√

3𝛾𝜎𝛾𝜇𝛾5
𝛾5

√
3𝛾𝜎 1 𝛾𝜎𝛾5

−𝛾𝜇
√

3𝛾𝜎𝛾𝜇𝛾5 𝛾𝜇𝛾5 −𝛾𝜎𝛾𝜇

ª®®®®¬𝛼𝛽
. (11)

The quark-diquark bubble is given by

Π𝑁 =

©­­­­«
Π𝑁𝑠 0 0 0

0 Π
𝜇𝜈

𝑁𝑎
0 0

0 0 Π𝑁 𝑝 0
0 0 0 Π

𝜇𝜈

𝑁𝑣

ª®®®®¬
, (12)

where

Π𝑁𝑠,𝑎,𝑝,𝑣 (𝑝) = −𝑖
∫

𝑑4𝑘

(2𝜋)4 𝜏𝑠,𝑎, 𝑝,𝑣 (𝑝 − 𝑘)𝑖𝑆(𝑘). (13)
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As an effective theory, the NJL model is non-renormalizable, thus it needs a regularization
prescription in order to be well-defined. We use the proper-time regularization scheme

1
𝑋

=
1

(𝑛 − 1)!

∫ ∞

0
𝑑𝜏 𝜏𝑛−1𝑒−𝜏𝑋 −→ 1

(𝑛 − 1)!

∫ 1/Λ2
𝐼𝑅

1/Λ2
𝑈𝑉

𝑑𝜏 𝜏𝑛−1𝑒−𝜏𝑋, (14)

where 𝑋 represents a product of propagators that have been combined using Feynman parametriza-
tion. The ultraviolet cutoff Λ𝑈𝑉 is needed to render the theory finite, while Λ𝐼𝑅 is introduced to
mimic confinement.

By solving the Faddeev equation, the model parameters are fitted to the nucleon and delta
masses 𝑀𝑁 = 940 MeV and 𝑀Δ = 1232 MeV. The infrared regulator and the dressed quark
mass are assigned their values a priori, Λ𝐼𝑅 = 240 MeV and 𝑀 = 400 MeV. The Λ𝑈𝑉 is fixed
by the pion decay constant and we obtain Λ𝑈𝑉 = 645 MeV. We obtain 𝐺𝑠 = 7.65 GeV−2 and
𝐺𝑎 = 4.91 GeV−2. The corresponding diquark masses are 𝑀𝑠 = 0.679 GeV, 𝑀𝑝 = 0.945 GeV,
𝑀𝑎 = 0.929 GeV, and 𝑀𝑣 = 1.099 GeV. Compared to the previous values obtained without the
pseudoscalar and vector diquark channels, 𝑀𝑠 = 0.768 GeV and 𝑀𝑎 = 0.929 GeV, the scalar
diquark mass became smaller, while the axial vector diquark stayed the same. The axial vector
diquark mass does not change because the delta baryon Faddeev equation only concerns the axial
vector diquark. The normalization factors are found to be 𝑍𝑠 = 14.8, 𝑍𝑎 = 6.73, 𝑍𝑝 = 8.95,
𝑍𝑣 = 4.13, and the coefficients in the nucleon vertex function are (𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6) =

(0.324, 0.072,−0.275, 0.027,−0.030,−0.361) and the nucleon vertex function normalization factor
is 𝑍𝑁 = 43.5.

3. Quark distribution functions

The leading twist spin-independent and helicity quark light-cone momentum distributions in
the nucleon are defined by Eqs. (15) and (16), respectively.

𝑓𝑞 (𝑥) = 𝑝−
∫

𝑑𝜉−

2𝜋
𝑒𝑖𝑥 𝑝

+ 𝜉 − ⟨𝑝, 𝑠 |𝜓̄𝑞 (0)𝛾+𝜓𝑞 (𝜉−) |𝑝, 𝑠⟩𝑐, (15)

Δ 𝑓𝑞 (𝑥) = 𝑝−
∫

𝑑𝜉−

2𝜋
𝑒𝑖𝑥 𝑝

+ 𝜉 − ⟨𝑝, 𝑠 |𝜓̄𝑞 (0)𝛾+𝛾5𝜓𝑞 (𝜉−) |𝑝, 𝑠⟩𝑐, (16)

To determine the quark distributions, Eq. (15) can be expressed in a more convenient form, as
shown in Ref. [6].

𝑓𝑞 (𝑥) = −𝑖
∫

𝑑4𝑘

(2𝜋)4 𝛿

(
𝑥 − 𝑘−

𝑝−

)
Tr

[
𝛾+𝑀𝑞 (𝑝, 𝑘)

]
, (17)

where 𝑀𝑞 (𝑝, 𝑘) is the quark two-point function in the bound nucleon. This allows the distribution
functions to be associated with a straightforward Feynman diagram calculation in any model that
describes the nucleon as a bound state of quarks. The Feynman diagrams considered in this
calculation are depicted in Fig. 2.

For the calculation of the spin-dependent PDFs, we use the result

𝑢(𝑝, 𝑠)𝑢̄(𝑝, 𝑠) =
(
/𝑝 + 𝑀𝑁

) 1 + 𝛾5/𝑠
2

, (18)

5
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Figure 2: Feynman diagrams representing the quark distributions in the nucleon, needed in the evaluation
of Eq. (17). The single line represents the quark propagator and the double line the diquark propagator. The
shaded oval denotes the quark-diquark vertex function and the red cross represents the operator insertion
which has the form of 𝛾+𝛿(𝑥 − 𝑘+/𝑝+) 1

2 (1± 𝜏𝑧) for the spin-independent distribution and 𝛾+ → 𝛾+𝛾5 for the
spin-dependent one. The left figure where the operator insertion is on the stand alone quark line is referred
to as the quark diagram, while the right figure where the operator insertion is on the quark which is within a
diquark is called the diquark diagram.

where 𝑠𝜇 is the spin vector of the particle satisfying 𝑠2 = −1 and 𝑠 · 𝑝 = 0. In general, 𝑠𝜇 can be
written as

𝑠𝜇 =

(
®𝑝 · ®𝑛
𝑀𝑁

, ®𝑛 + ( ®𝑝 · ®𝑛) ®𝑝
𝑀𝑁

(
𝑀𝑁 + 𝑝0) ) (19)

where ®𝑛 = ®𝑝
| ®𝑝 | if the particle is longitudinally polarized, ®𝑛 · ®𝑝 = 0 if transversely polarized.

For the helicity distribution, the proton is longitudinally polarized, and the helicity distribution
is defined as

Δ 𝑓 (𝑥) = 𝑓+(𝑥) − 𝑓− (𝑥), (20)

i.e., the difference in the distributions of the quark spin aligned with the proton versus the quark
spin anti-aligned with the proton.

In our model, the resulting distributions have no support for negative 𝑥, indicating a valence
quark picture. By separating the isospin factors, the spin-independent 𝑢 and 𝑑 distributions in the
proton can be expressed as

𝑢𝑣 (𝑥) = 𝑓 𝑠
𝑞/𝑁 (𝑥) + 1

3
𝑓 𝑎
𝑞/𝑁 (𝑥) + 𝑓

𝑝

𝑞/𝑁 (𝑥) + 𝑓 𝑣
𝑞/𝑁 (𝑥) + 𝑓 𝑠𝑠

𝑞 (𝐷)/𝑁 (𝑥) + 5
3
𝑓 𝑎𝑎
𝑞 (𝐷)/𝑁 (𝑥)

+ 𝑓
𝑝𝑝

𝑞 (𝐷)/𝑁 (𝑥) + 𝑓 𝑣𝑣
𝑞 (𝐷)/𝑁 (𝑥) + 2

√
3
𝑓
𝑝𝑎

𝑞 (𝐷)/𝑁 (𝑥), (21)

𝑑𝑣 (𝑥) =
2
3
𝑓 𝑎
𝑞/𝑁 (𝑥) + 𝑓 𝑠𝑠

𝑞 (𝐷)/𝑁 (𝑥) + 1
3
𝑓 𝑎𝑎
𝑞 (𝐷)/𝑁 (𝑥) + 𝑓

𝑝𝑝

𝑞 (𝐷)/𝑁 (𝑥) + 𝑓 𝑣𝑣
𝑞 (𝐷)/𝑁 (𝑥) − 2

√
3
𝑓
𝑝𝑎

𝑞 (𝐷)/𝑁 (𝑥).

(22)

Due to the isospin structures, the scalar, pseudoscalar and vector quark diagrams do not contribute
to the 𝑑 quark’s distribution in the proton.

The 𝑢 and 𝑑 quarks spin-dependent distributions in the proton end up being

Δ𝑢𝑣 (𝑥) = Δ 𝑓 𝑠
𝑞/𝑁 (𝑥) + 1

3
Δ 𝑓 𝑎

𝑞/𝑁 (𝑥) + Δ 𝑓
𝑝

𝑞/𝑁 (𝑥) + Δ 𝑓 𝑣
𝑞/𝑁 (𝑥) + 5

3
Δ 𝑓 𝑎𝑎

𝑞 (𝐷)/𝑁 (𝑥)

+ Δ 𝑓 𝑣𝑣
𝑞 (𝐷)/𝑁 (𝑥) + 2 Δ 𝑓

𝑠𝑝

𝑞 (𝐷)/𝑁 (𝑥) + 2
√

3
Δ 𝑓 𝑠𝑎

𝑞 (𝐷)/𝑁 (𝑥), (23)
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Δ𝑑𝑣 (𝑥) =
2
3
Δ 𝑓 𝑎

𝑞/𝑁 (𝑥) + 1
3
Δ 𝑓 𝑎𝑎

𝑞 (𝐷)/𝑁 (𝑥) + Δ 𝑓 𝑣𝑣
𝑞 (𝐷)/𝑁 (𝑥) + 2 Δ 𝑓

𝑠𝑝

𝑞 (𝐷)/𝑁 (𝑥) − 2
√

3
Δ 𝑓 𝑠𝑎

𝑞 (𝐷)/𝑁 (𝑥).

(24)

Here, the scalar and pseudoscalar diquark diagrams spin-dependent distributions vanish because of
lack of spin structures, however, the scalar-pseudoscalar transition diquark diagram does not vanish
because of parity.

Importantly, in this covariant framework, the Ward identities corresponding to number and mo-
mentum conservation are satisfied, guaranteeing the validity of the baryon number and momentum
sum rules. ∫ 1

0
𝑑𝑥 𝑓𝑞/𝑃 (𝑥) = 𝑁𝑞/𝑃,

∫ 1

0
𝑑𝑥 𝑥

[
𝑓𝑢/𝑃 (𝑥) + 𝑓𝑑/𝑃 (𝑥)

]
= 1. (25)

The model scale is found to be 0.19 GeV2, which is slightly higher than the previous 0.16 GeV2.
To compare our results to the experimental data, we evolve the PDFs to a higher energy scale where
empirical PDFs are available, namely, 5 GeV2. We used the program package QCDNUM [14] for
this evolution.

4. Results

Fig. 3 shows our calculated spin-independent 𝑢 quark and 𝑑 quark light-cone momentum
distribution in the proton, in comparison with the JAM22 global fit [15]. We have plotted our PDF
results both from a full model calculation and from a truncated model without the pseudoscalar and
vector diquarks. The agreement of the model calculation with the JAM empirical PDFs is extremely
good, and with the full model the agreement is even better.

In Fig. 4 we present the spin-dependent 𝑢 and 𝑑 quark distributions in the proton, and again we
compare both our full model and truncated model results with the polarized PDFs from JAM22 [15].
For the full model we obtain a 𝑔𝐴 value of 1.420, which is in better agreement to the known value
of 𝑔𝐴 = 1.267 than the model with only scalar and axial vector diquarks, which is 𝑔𝐴 = 1.507.
The discrepancy decreased from 0.240 to 0.153. The first polarized moments we obtained are
Δ𝑢𝑣 = 1.080 and Δ𝑑𝑣 = −0.341 in the full model, while for the scalar and axial vector only model
they are Δ𝑢𝑣 = 1.099 and Δ𝑑𝑣 = −0.408. The spin sum is 0.739 for the full model which is worse
than the 0.691 for the scalar and axial vector only model.

Finally, in Fig. 5, we compare our predicted ratios (Δ𝑞/𝑞) with the JAM22 fit, where the JAM
data are only plotted up to 𝑥 = 0.85 and simply filled for 𝑥 ∈ [0.85, 1], while the model results
are plotted all the way up to 𝑥 = 1. As 𝑥 → 1, our result calculated from the full model gives
Δ𝑢/𝑢 ≈ 0.78 while Δ𝑑/𝑑 ≈ −0.33. In comparison, the model with only scalar and axial vector
diquarks gives Δ𝑢/𝑢 ≈ 0.80 while the Δ𝑑/𝑑 ratio approaches −0.17.

5. Conclusion

We used the framework of the relativistic Faddeev equation in the NJL model to calculate
the quark light-cone momentum distributions in the nucleon based on a straightforward Feynman
diagram evaluation. The work can be extended to calculate GPDs and TMDs or to a finite baryon
density calculation.
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Figure 3: Comparison between our full model and truncated model with the results of JAM22 for the
spin-independent PDF. Error bars for JAM22 are at 1𝜎.

Figure 4: Comparison between our full model and truncated model with the results of JAM22 for the
spin-dependent PDF. Error bars for JAM22 are at 1𝜎.
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Figure 5: Comparison of Δ𝑞/𝑞 between both our full model and truncated model with the results of JAM22.
Error bars for JAM22 are at 1𝜎. The JAM result are plotted only up to 𝑥 = 0.85 (grey vertical line) while the
model calculations are plotted for the full range of 𝑥 ∈ [0, 1].
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