

Relativistic magnetohydrodynamics with spin

Samapan Bhadury,^a Wojciech Florkowski,^a Amaresh Jaiswal,^b Avdhesh Kumar^{b, *c*} and Radoslaw Ryblewski^{d,∗}

 Institute of Theoretical Physics, Jagiellonian University, ul. St. Łojasiewicza 11, 30-348 Krakow, Poland ^b School of Physical Sciences, National Institute of Science Education and Research, An OCC of Homi

Bhabha National Institute, Jatni-752050, India

Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan

 Institute of Nuclear Physics Polish Academy of Sciences, PL-31-342 Krakow, Poland E-mail: [bhadury.samapan@gmail.com,](mailto:bhadury.samapan@gmail.com) [wojciech.florkowski@uj.edu.pl,](mailto:wojciech.florkowski@uj.edu.pl) [a.jaiswal@niser.ac.in,](mailto:a.jaiswal@niser.ac.in) [avdheshk@gate.sinica.edu.tw,](mailto:avdheshk@gate.sinica.edu.tw) radoslaw.ryblewski@ifj.edu.pl

In this work, we present a novel framework of relativistic non-resistive dissipative magnetohydrodynamics for spin-polarized particles. Utilizing a classical relativistic kinetic equation for the distribution function in an extended phase-space of position, momentum, and spin, we derive equations of motion for dissipative currents at first-order in spacetime gradients. Our findings reveal a coupling between fluid vorticity and magnetization via an electromagnetic field, leading to relativistic analogs of the Einstein-de Haas and Barnett effects. Our study provides a tool for a better understanding of the polarization phenomena observed in relativistic heavy-ion collisions.

25th International Spin Physics Symposium (SPIN 2023) 24-29 September 2023 Durham, NC, USA

[∗]Speaker

 \odot Copyright owned by the author(s) under the terms of the Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). <https://pos.sissa.it/>

1. Introduction

Over the last decades, it has been well established [\[1\]](#page-5-0) that the strongly interacting matter produced in relativistic nuclear collisions evolves according to principles of relativistic hydrodynamics [\[2,](#page-5-1) [3\]](#page-5-2). It is expected that in non-central collisions this matter may experience large angular momentum and a strong magnetic field [\[4,](#page-5-3) [5\]](#page-5-4). These extreme physical conditions may lead, similarly to the non-relativistic magneto-mechanical effects of Einstein-de Haas [\[6\]](#page-5-5) and Barnett [\[7\]](#page-5-6), to spin polarization and magnetization of the matter and, consequently, of the emitted particles [\[8–](#page-5-7)[10\]](#page-6-0). The existence of spin polarization phenomenon was recently confirmed experimentally $[11-17]$ $[11-17]$ triggering vast theoretical developments aiming at finding a unified interpretation of the measured observables [\[18–](#page-6-3)[36\]](#page-7-0). In particular, based on fundamental conservation laws, an extension of relativistic hydrodynamics for spin-polarized fluids was proposed [\[37\]](#page-7-1) giving rise to the rapid development of a new field known as relativistic spin hydrodynamics [\[38](#page-7-2)[–51,](#page-8-0) [51–](#page-8-0)[71\]](#page-9-0).

Very recently, a formalism of dissipative non-resistive spin magnetohydrodynamics was constructed, aiming at incorporating into the spin hydrodynamics effects of spin polarization due to the presence of electromagnetic field [\[72\]](#page-9-1). In this contribution, we briefly review the framework of [\[72\]](#page-9-1) and discuss its main implications. Starting from the classical transport equation for the distribution function in an extended phase-space of position, momentum, and spin, in the presence of a magnetic field we derive equations of motion for dissipative currents at first-order in spacetime gradients. It is found that, apart from contributions from various standard hydrodynamic gradients [\[42,](#page-7-3) [43\]](#page-8-1), the spin current acquires also effects due to the gradients of electromagnetic field [\[72\]](#page-9-1). In particular, we show that the coupling between fluid vorticity and magnetization via an electromagnetic field gives rise to effects similar to that of Einstein-de Haas and Barnett.

We use the following conventions for the metric tensor and Levi-Civita symbol: $g_{\mu\nu}$ = diag(+1, -1, -1, -1) and $\epsilon^{0123} = -\epsilon_{0123} = 1$. We also use natural units with $c = \hbar = k_B = 1$.

2. Kinetic theory derivation of equations of motion

We consider the classical distribution function of particles with spin in an extended phase-space of space-time position $x \equiv x^{\mu}$, four-momentum $p \equiv p^{\mu}$, and intrinsic angular momentum $s \equiv s^{\mu\nu}$, $f \equiv f(x, p, s)$ [\[39\]](#page-7-4). The dynamics of f is determined by the following kinetic equation [\[72\]](#page-9-1)

$$
\left(p^{\alpha}\frac{\partial}{\partial x^{\alpha}} + m\mathcal{F}^{\alpha}\frac{\partial}{\partial p^{\alpha}} + m\mathcal{S}^{\alpha\beta}\frac{\partial}{\partial s^{\alpha\beta}}\right)f = C[f],\tag{1}
$$

and likewise for anti-particles with the replacement $f \rightarrow \bar{f}$. In Eq. [\(1\)](#page-1-0), the four-momentum $p^{\mu} = (E_p, p)$ is on the mass shell, with $E_p = \sqrt{m^2 + p^2}$ difining the particle energy and m denoting the particle mass, and $C[f]$ is the collision kernel.

In the above equation, $\mathcal{F}^{\alpha} = dp^{\alpha}/d\tau$ and $\mathcal{S}^{\alpha\beta} = ds^{\alpha\beta}/d\tau$ (where τ denotes the proper time along the world line) are, respectively, force and torque experienced by a particle moving under influence of electromagnetic field. For composite particles they have the forms

$$
\mathcal{F}^{\alpha} = \frac{\mathfrak{q}}{m} F^{\alpha\beta} p_{\beta} + \frac{1}{2} \left(\partial^{\alpha} F^{\beta\gamma} \right) m_{\beta\gamma}, \tag{2}
$$

$$
S^{\alpha\beta} = 2 F^{\gamma[\alpha} m^{\beta]}_{\gamma} - \frac{2}{m^2} \left(\chi - \frac{\mathfrak{q}}{m} \right) F_{\phi\gamma} s^{\phi[\alpha} p^{\beta]} p^{\gamma}, \tag{3}
$$

where $F^{\mu\nu}$ denotes the electromagnetic field strength tensor and $m^{\alpha\beta} = \chi s^{\alpha\beta}$ is the magnetic dipole moment of particles with χ playing the role of the gyromagnetic ratio [\[73\]](#page-9-2). The expressions for the first and second term on the right-hand side of Eq. [\(2\)](#page-1-1) represent well-known Lorentz and Mathisson force, respectively [\[73\]](#page-9-2). On the other hand, the form of the torque in Eq. [\(3\)](#page-1-1) is less understood. Hence, in this work, we choose to neglect it.

The number current N^{λ} , the energy-momentum tensor $T_f^{\lambda\mu}$ $S^{\lambda,\mu\nu}$, and the spin current $S^{\lambda,\mu\nu}$ of the fluid are expressed, respectively, through the zeroth, first, and "spin" moment of the distribution function [\[43\]](#page-8-1)

$$
N^{\lambda} = \int_{p,s} p^{\lambda} (f - \bar{f}), \qquad (4)
$$

$$
T_{\rm f}^{\lambda \mu} = \int_{p,s} p^{\lambda} p^{\mu} \left(f + \bar{f} \right), \tag{5}
$$

$$
S^{\lambda,\mu\nu} = \int_{p,s} p^{\lambda} s^{\mu\nu} \left(f + \bar{f} \right), \tag{6}
$$

while the polarization-magnetization tensor is given by the formula

$$
M^{\mu\nu} = m \int_{p,s} m^{\mu\nu} \left(f - \bar{f} \right). \tag{7}
$$

In the above equations we used the shorthand notation $\int_{p,s} \equiv \int dP dS$ with $dP \equiv d^3p/[E_p(2\pi)^3]$ and $dS \equiv m/(\pi \mathfrak{s}) d^4 s \delta(s \cdot s + \mathfrak{s}^2) \delta(p \cdot s)$, where the length of the spin vector, $\mathfrak{s}^2 = \frac{1}{2}$ $rac{1}{2}$ $\left(1 + \frac{1}{2}\right)$ $\frac{1}{2}$ = $\frac{3}{4}$ $\frac{3}{4}$, is defined by the eigenvalue of the Casimir operator.

Presuming that the microscopic interactions preserve fundamental conservation laws the following moments of the collision kernel should vanish:

$$
\int_{p,s} C[f] = 0, \qquad \int_{p,s} p^{\mu} C[f] = 0, \qquad \int_{p,s} s^{\mu \nu} C[f] = 0.
$$
 (8)

Using these properties and Eqs. [\(4\)](#page-2-0)-[\(7\)](#page-2-1) one may show that the zeroth, first and "spin" moment of the kinetic equation [\(1\)](#page-1-0) (assuming no torque) lead, respectively, to the following equations

$$
\partial_{\mu}N^{\mu} = 0, \qquad \partial_{\nu}T_{\rm f}^{\mu\nu} = F^{\mu}_{\ \alpha}J_{\rm f}^{\alpha} + \frac{1}{2} \left(\partial^{\mu}F^{\nu\alpha} \right) M_{\nu\alpha}, \qquad \partial_{\lambda}S^{\lambda,\mu\nu} = 0,\tag{9}
$$

where J_f^{μ} $f_f^{\mu} = qN^{\mu}$ is a charge current with q denoting the electric charge of the particles. Equations [\(9\)](#page-2-2) constitute the basis for the framework of spin-magnetohydrodynamics.

Assuming Landau's definition of four-velocity *u* of the fluid, $T_f^{\mu\nu}$ $\int_{f}^{\mu\nu} u_{\nu} = \epsilon u^{\mu}$, where ϵ is the energy density, the particle current, and the stress-energy tensor are given by

$$
N^{\mu} = nu^{\mu} + n^{\mu}, \quad T_f^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (P + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}
$$
 (10)

where *n* is the net particle number density, n^{μ} particle number diffusion, *P* is the pressure, Π and $\pi^{\mu\nu}$ are the bulk and shear viscous pressures, and $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$. Since we are interested in the formulation of magnetohydrodynamics with spin in the non-resistive limit, we have

$$
F^{\mu\nu} = \epsilon^{\mu\nu\alpha\beta} u_{\alpha} B_{\beta},\tag{11}
$$

where B^{μ} is the magnetic field four-vector satisfying the well-known Maxwell equations, see Ref. [\[72\]](#page-9-1). The field strength tensor and polarization-magnetization tensors are related to each other by $H^{\mu\nu} - M^{\mu\nu} = F^{\mu\nu}$, where $H^{\mu\nu}$ is the induction tensor.

3. Dynamics of dissipative currents

To derive constitutive relations for dissipative quantities in Eqs. [\(10\)](#page-2-3), we consider the kinetic equation [\(1\)](#page-1-0), with the collision term treated in relaxation-time approximation (RTA) [\[74\]](#page-9-3)

$$
\left(p^{\alpha}\frac{\partial}{\partial x^{\alpha}} + m \mathcal{F}^{\alpha}\frac{\partial}{\partial p^{\alpha}}\right)f = -(u \cdot p)\frac{f - f_{\text{eq}}}{\tau_{\text{eq}}} \equiv -(u \cdot p)\frac{\delta f}{\tau_{\text{eq}}},\tag{12}
$$

where f_{eq} is the equilibrium distribution function and relaxation time τ_{eq} is assumed to be independent of particle momentum and energy. Note that, within the RTA, the zeroth and first moments (see, respectively, the first and second equation in [\(8\)](#page-2-4)) of the right-hand side of Eq. [\(12\)](#page-3-0) vanish when Landau frame and matching conditions are used. Moreover, imposing the matching condition [\[43\]](#page-8-1)

$$
u_{\lambda} \delta S^{\lambda, \mu\nu} \equiv u_{\lambda} \left(S^{\lambda, \mu\nu} - S^{\lambda, \mu\nu}_{\text{eq}} \right) = 0, \tag{13}
$$

where $\delta S^{\lambda,\mu\nu}$ is the dissipative part of the spin current, also the spin moment (see the third equation in [\(8\)](#page-2-4)) vanishes.

Herein, we assume the equilibrium distribution to have the Fermi-Dirac form,

$$
f_{\text{eq}} = \left\{ 1 + \exp\left[\beta(u \cdot p) - \xi - \frac{1}{2} \omega_{\mu\nu} s^{\mu\nu} \right] \right\}^{-1},\tag{14}
$$

and similarly for anti-particles with $\xi \to -\xi$, where $\xi \equiv \mu \beta$ and $\beta \equiv 1/T$. Here, $\omega_{\mu\nu}$ plays the role of Lagrange multiplier corresponding to spin conservation [\[37\]](#page-7-1) and is related to spin polarization observable via Pauli-Lubanski four-vector [\[38,](#page-7-2) [39\]](#page-7-4). Considering the limit of small polarization, we can keep only terms up to linear in $\omega^{\mu\nu}$ and write

$$
f_{\text{eq}} = f_0 + \frac{1}{2} \omega_{\mu\nu} s^{\mu\nu} f_0 (1 - f_0), \tag{15}
$$

where $f_0 = {1 + \exp[\beta(u \cdot p) - \xi]}^{-1}$.

The dissipative quantities defined in Eqs. [\(10\)](#page-2-3) and [\(13\)](#page-3-1) are given in terms of the non-equilibrium corrections to the distribution function,

$$
n^{\mu} = \int_{p,s} p^{\langle \mu \rangle} (\delta f - \delta \bar{f}), \qquad \Pi = \int_{p,s} \left(-\frac{1}{3} \right) p^{\langle \mu \rangle} p_{\langle \mu \rangle} (\delta f + \delta \bar{f}), \qquad (16)
$$

$$
\pi^{\mu\nu} = \int_{p,s} p^{\langle \mu} p^{\nu \rangle} (\delta f + \delta \bar{f}), \qquad \delta S^{\lambda, \mu\nu} = \int_{p,s} p^{\lambda} s^{\mu\nu} (\delta f + \delta \bar{f}), \qquad (17)
$$

where used the notation $X^{\langle \mu \rangle} \equiv \Delta^{\mu}_{\alpha} X^{\alpha}$ and $X^{\langle \mu \nu \rangle} \equiv \Delta^{\mu \nu}_{\alpha \beta} X^{\alpha \beta}$.

To obtain the relativistic Navier-Stokes expressions for the dissipative quantities, using Eq. [\(12\)](#page-3-0) we evaluate the non-equilibrium corrections to the phase-space distribution functions up to firstorder in hydrodynamic gradients. In this way, for particles we get

$$
\delta f_1 = - \frac{\tau_{eq}}{(u \cdot p)} \Big[p^{\alpha} \partial_{\alpha} + \frac{m \chi}{2} \left(\partial^{\alpha} F^{\beta \gamma} \right) s_{\beta \gamma} \partial_{\alpha}^{(p)} \Big] f_{eq} + \frac{\tau_{eq}}{(u \cdot p)} q F^{\alpha \beta} p_{\beta} \partial_{\alpha}^{(p)} \Big[\frac{\tau_{eq}}{(u \cdot p)} \Big\{ p^{\rho} \partial_{\rho} + \frac{m \chi}{2} \left(\partial^{\rho} F^{\phi \kappa} \right) s_{\phi \kappa} \partial_{\rho}^{(p)} \Big\} f_{eq} \Big],
$$
(18)

where, $\partial_{\alpha}^{(p)} \equiv \frac{\partial}{\partial p^{\alpha}}$ is the partial derivative with respect to particle momenta. Anti-particle analogue of δf_1 may be obtained from Eq. [\(18\)](#page-3-2) by the replacement $f \to \bar{f}, \xi \to -\xi, \mathfrak{q} \to -\mathfrak{q}$ and, $\chi \to -\chi$.

Substituting the non-equilibrium corrections to distribution functions in Eqs. $(16)-(17)$ $(16)-(17)$ $(16)-(17)$, we get the following general form of constitutive relations for the currents $X^{\mu_1...\mu_s} \in \{n^{\mu}, \Pi, \pi^{\mu\nu}, \delta S^{\lambda,\mu\nu}\}\$ at first order in gradients

$$
X^{\mu_1...\mu_s} = \tau_{eq} \left[\beta_{X\Pi}^{\mu_1...\mu_s} \theta + \beta_{Xa}^{\mu_1...\mu_s} \alpha_{\dot{\mu}_\alpha} + \beta_{Xn}^{\mu_1...\mu_s} \alpha (\nabla_\alpha \xi) + \beta_{XF}^{\mu_1...\mu_s} \alpha^\beta (\nabla_\alpha B_\beta) \right]
$$

+ $\beta_{X\pi}^{\mu_1...\mu_s} \alpha^\beta \sigma_{\alpha\beta} + \beta_{X\Omega}^{\mu_1...\mu_s} \alpha^\beta \Omega_{\alpha\beta} + \beta_{X\Sigma}^{\mu_1...\mu_s} \alpha^\beta \gamma (\nabla_\alpha \omega_{\beta\gamma}) \right],$ (19)

where we used the notation: $\theta \equiv \partial_{\alpha} u^{\alpha}$, $\dot{X} \equiv u^{\alpha} \partial_{\alpha} X$, $\nabla^{\mu} \equiv \partial^{\langle \mu \rangle}$, $\sigma^{\mu \nu} \equiv \partial^{\langle \mu} u^{\nu \rangle}$ and $\Omega_{\mu \nu} \equiv \partial^{\langle \mu \rangle} u^{\mu \nu}$ $(\partial_\mu u_\nu - \partial_\nu u_\mu)/2$. The explicit expressions for the tensorial transport coefficients β may be found in Ref. [\[72\]](#page-9-1). Here it is sufficient to note that the dissipative currents are affected by various hydrodynamic gradients, including those of magnetic field.

4. Discussion

Based on the above formalism we make some important observations and conclusions:

1. *Relativistic Barnett and Einstein-de Haas effects.* Plugging equilibrium distribution functions into Eq. [\(7\)](#page-2-1) one may show that the equilibrium magnetization tensor reads [\[72\]](#page-9-1)

$$
M_{\text{eq}}^{\mu\nu} = a_1 \,\omega^{\mu\nu} + a_2 \,u^{[\mu} u_{\gamma} \omega^{\nu]\gamma}.
$$
 (20)

Since in global equilibrium, the spin polarization tensor ω corresponds to the thermal vorticity tensor ϖ [\[18,](#page-6-3) [19,](#page-6-4) [24,](#page-6-5) [37–](#page-7-1)[39,](#page-7-4) [52,](#page-8-2) [54\]](#page-8-3), from Eq. [\(20\)](#page-4-0) we conclude that the vorticity of the fluid is related to its magnetization. Hence, Eq. [\(20\)](#page-4-0) leads to relativistic analogs of the well-known Barnett [\[7\]](#page-5-6) and Einstein-de Haas [\[6\]](#page-5-5) effects.

2. *Spin polarization due to the coupling between thermal vorticity and electromagnetic field.* Using Eq. [\(13\)](#page-3-1), one may derive the following evolution equation for $\omega^{\mu\nu}$

$$
\dot{\omega}^{\mu\nu} = \mathcal{D}_{\Pi}^{[\mu\nu]} \theta + \mathcal{D}_{a}^{[\mu\nu]\gamma} \dot{u}_{\gamma} + \mathcal{D}_{\Pi}^{[\mu\nu]\gamma} (\nabla_{\gamma}\xi) + \mathcal{D}_{B}^{[\mu\nu]\rho\kappa} (\nabla_{\rho}B_{\kappa}) + \mathcal{D}_{\pi}^{[\mu\nu]\rho\kappa} \sigma_{\rho\kappa} + \mathcal{D}_{\Omega}^{[\mu\nu]\rho\kappa} \Omega_{\rho\kappa} + \mathcal{D}_{\Sigma}^{[\mu\nu]\phi\rho\kappa} (\nabla_{\phi}\omega_{\rho\kappa}), \tag{21}
$$

where the tensorial coefficients, D , contain equilibrium quantities, see Ref. [\[72\]](#page-9-1). From Eq. [\(21\)](#page-4-1) we observe that among different gradient terms, there is a coupling of spin polarization tensor to the fluid vorticity represented by Ω . The coefficient \mathcal{D}_{Ω} multiplying this term vanishes when the electromagnetic field is absent which implies that the conversion between spin polarization and vorticity proceeds via coupling with electromagnetic field.

3. *Dissipative gradient terms.* Demanding the positivity of the divergence of the entropy current (given by the Boltzmann H-theorem) one can show that only the following gradient terms in Eqs. [\(19\)](#page-4-2) are dissipative

$$
\Pi = -\zeta \theta, \qquad n^{\mu} = \kappa^{\mu \alpha} (\nabla_{\alpha} \xi), \qquad \pi^{\mu \nu} = \eta^{\mu \nu \alpha \beta} \sigma_{\alpha \beta}, \tag{22}
$$

$$
\delta S^{\mu,\alpha\beta} = \Sigma^{\mu\alpha\beta\lambda\gamma\rho} \left(\nabla_{\lambda}\omega_{\gamma\rho} \right), \tag{23}
$$

where, comparing Eq. [\(19\)](#page-4-2) and Eqs. [\(22\)](#page-4-3)-[\(23\)](#page-4-3), the dissipative transport coefficients read: $\zeta = -\tau_{eq}\beta_{\Pi\Pi}$, $\kappa^{\mu\alpha} = \tau_{eq}\beta_{nn}^{(\mu)\alpha}$, $\eta^{\mu\nu\alpha\beta} = \tau_{eq}\beta_{\pi\pi}^{(\mu\nu)\alpha\beta}$ and $\Sigma^{\lambda\mu\nu\alpha\beta\gamma} = \tau_{eq}B^{\lambda,[\mu\nu]\alpha\beta\gamma}$ \sum
Σ

5. Summary and outlook

In this work, we reviewed a recently developed framework of relativistic dissipative nonresistive magnetohydrodynamics for spin-polarized particles. Using the relativistic kinetic equation for the distribution function in an extended phase space of space-time position, momentum, and spin with the kinetic kernel treated in the relaxation time approximation, we calculated equations of motion for dissipative currents at first-order in gradients. The resulting equations of motion contain various transport coefficients, both dissipative and non-dissipative, which were distinguished using the positivity of the entropy production law. We have shown the emergence of the coupling between the magnetization and the vorticity of the fluid, which constitutes a mechanism leading to relativistic analogs of the Einstein-de Hass and Barnett effects. Furthermore, our analysis reveals that the relationship between magnetic fields and spin polarization occurs at the gradient level. In the context of relativistic heavy-ion collisions, our model offers a new perspective on explaining the splitting of the polarization signal for Λ and anti- Λ particles commonly attributed to the interaction between the magnetic field and the intrinsic magnetic moments of the emitted particles.

Acknowledgements: A.J. was supported in part by the DST-INSPIRE faculty award under Grant No. DST/INSPIRE/04/2017/000038. This research was supported in part by the Polish National Science Centre Grants No. 2018/30/E/ST2/00432 (R.R.) and 2022/47/B/ST2/01372 (W.F.).

References

- [1] C. Gale, S. Jeon, and B. Schenke, "Hydrodynamic Modeling of Heavy-Ion Collisions," *[Int. J.](http://dx.doi.org/10.1142/S0217751X13400113) Mod. Phys. A* **28** [\(2013\) 1340011,](http://dx.doi.org/10.1142/S0217751X13400113) [arXiv:1301.5893 \[nucl-th\]](http://arxiv.org/abs/1301.5893).
- [2] W. Florkowski, M. P. Heller, and M. Spalinski, "New theories of relativistic hydrodynamics in the LHC era," *Rept. Prog. Phys.* **81** [no. 4, \(2018\) 046001,](http://dx.doi.org/10.1088/1361-6633/aaa091) [arXiv:1707.02282](http://arxiv.org/abs/1707.02282) [\[hep-ph\]](http://arxiv.org/abs/1707.02282).
- [3] G. S. Rocha, D. Wagner, G. S. Denicol, J. Noronha, and D. H. Rischke, "Theories of Relativistic Dissipative Fluid Dynamics," [arXiv:2311.15063 \[nucl-th\]](http://arxiv.org/abs/2311.15063).
- [4] K. Tuchin, "Particle production in strong electromagnetic fields in relativistic heavy-ion collisions," *[Adv. High Energy Phys.](http://dx.doi.org/10.1155/2013/490495)* **2013** (2013) 490495, [arXiv:1301.0099 \[hep-ph\]](http://arxiv.org/abs/1301.0099).
- [5] F. Becattini, F. Piccinini, and J. Rizzo, "Angular momentum conservation in heavy ion collisions at very high energy," *Phys. Rev. C* **77** [\(2008\) 024906,](http://dx.doi.org/10.1103/PhysRevC.77.024906) [arXiv:0711.1253](http://arxiv.org/abs/0711.1253) [\[nucl-th\]](http://arxiv.org/abs/0711.1253).
- [6] A. Einstein and W. de Haas, "Gyromagnetic and electron-inertia effects," *Deutsche Physikalische Gesellschaft, Verhandlungen* **17** (1915) 152.
- [7] S. J. Barnett, "Gyromagnetic and electron-inertia effects," *[Rev. Mod. Phys.](http://dx.doi.org/10.1103/RevModPhys.7.129)* **7** (Apr, 1935) [129–166.](http://dx.doi.org/10.1103/RevModPhys.7.129) <https://link.aps.org/doi/10.1103/RevModPhys.7.129>.
- [8] Z.-T. Liang and X.-N. Wang, "Globally polarized quark-gluon plasma in non-central A+A collisions," *[Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.94.102301)* **94** (2005) 102301, [arXiv:nucl-th/0410079](http://arxiv.org/abs/nucl-th/0410079). [Erratum: Phys.Rev.Lett. 96, 039901 (2006)].
- [9] S. A. Voloshin, "Polarized secondary particles in unpolarized high energy hadron-hadron collisions?," [arXiv:nucl-th/0410089](http://arxiv.org/abs/nucl-th/0410089).
- [10] B. Betz, M. Gyulassy, and G. Torrieri, "Polarization probes of vorticity in heavy ion collisions," *Phys. Rev. C* **76** [\(2007\) 044901,](http://dx.doi.org/10.1103/PhysRevC.76.044901) [arXiv:0708.0035 \[nucl-th\]](http://arxiv.org/abs/0708.0035).
- [11] **STAR** Collaboration, L. Adamczyk *et al.*, "Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid," *Nature* **548** [\(2017\) 62–65,](http://dx.doi.org/10.1038/nature23004) [arXiv:1701.06657 \[nucl-ex\]](http://arxiv.org/abs/1701.06657).
- [12] **STAR** Collaboration, J. Adam *et al.*, "Polarization of Λ ($\bar{\Lambda}$) hyperons along the beam direction in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV," *[Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.123.132301)* **123** no. 13, (2019) [132301,](http://dx.doi.org/10.1103/PhysRevLett.123.132301) [arXiv:1905.11917 \[nucl-ex\]](http://arxiv.org/abs/1905.11917).
- [13] **ALICE** Collaboration, S. Acharya *et al.*, "Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions," *Phys. Rev. Lett.* **125** [no. 1, \(2020\) 012301,](http://dx.doi.org/10.1103/PhysRevLett.125.012301) [arXiv:1910.14408 \[nucl-ex\]](http://arxiv.org/abs/1910.14408).
- [14] **ALICE** Collaboration, S. Acharya *et al.*, "Global polarization of ΛΛ¯ hyperons in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 and 5.02 TeV," *Phys. Rev. C* 101 [no. 4, \(2020\) 044611,](http://dx.doi.org/10.1103/PhysRevC.101.044611) [arXiv:1909.01281 \[nucl-ex\]](http://arxiv.org/abs/1909.01281). [Erratum: Phys.Rev.C 105, 029902 (2022)].
- [15] **STAR** Collaboration, J. Adam *et al.*, "Global Polarization of Ξ and Ω Hyperons in Au+Au Collisions at $\sqrt{s_{NN}}$ = 200 GeV," *Phys. Rev. Lett.* **126** [no. 16, \(2021\) 162301,](http://dx.doi.org/10.1103/PhysRevLett.126.162301) [arXiv:2012.13601 \[nucl-ex\]](http://arxiv.org/abs/2012.13601).
- [16] **STAR** Collaboration, M. S. Abdallah *et al.*, "Global Λ-hyperon polarization in Au+Au collisions at $\sqrt{s_{NN}}$ =3 GeV," *Phys. Rev. C* 104 [no. 6, \(2021\) L061901,](http://dx.doi.org/10.1103/PhysRevC.104.L061901) [arXiv:2108.00044](http://arxiv.org/abs/2108.00044) [\[nucl-ex\]](http://arxiv.org/abs/2108.00044).
- [17] **HADES** Collaboration, R. Abou Yassine *et al.*, "Measurement of global polarization of Λ hyperons in few-GeV heavy-ion collisions," *Phys. Lett. B* **835** [\(2022\) 137506,](http://dx.doi.org/10.1016/j.physletb.2022.137506) [arXiv:2207.05160 \[nucl-ex\]](http://arxiv.org/abs/2207.05160).
- [18] F. Becattini and F. Piccinini, "The Ideal relativistic spinning gas: Polarization and spectra," *Annals Phys.* **323** [\(2008\) 2452–2473,](http://dx.doi.org/10.1016/j.aop.2008.01.001) [arXiv:0710.5694 \[nucl-th\]](http://arxiv.org/abs/0710.5694).
- [19] F. Becattini and L. Tinti, "The Ideal relativistic rotating gas as a perfect fluid with spin," *Annals Phys.* **325** [\(2010\) 1566–1594,](http://dx.doi.org/10.1016/j.aop.2010.03.007) [arXiv:0911.0864 \[gr-qc\]](http://arxiv.org/abs/0911.0864).
- [20] F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, "Relativistic distribution function for particles with spin at local thermodynamical equilibrium," *Annals Phys.* **338** [\(2013\) 32–49,](http://dx.doi.org/10.1016/j.aop.2013.07.004) [arXiv:1303.3431 \[nucl-th\]](http://arxiv.org/abs/1303.3431).
- [21] H. Li, L.-G. Pang, Q. Wang, and X.-L. Xia, "Global Λ polarization in heavy-ion collisions from a transport model," *Phys. Rev. C* **96** [no. 5, \(2017\) 054908,](http://dx.doi.org/10.1103/PhysRevC.96.054908) [arXiv:1704.01507](http://arxiv.org/abs/1704.01507) [\[nucl-th\]](http://arxiv.org/abs/1704.01507).
- [22] Y. Sun and C. M. Ko, "Λ hyperon polarization in relativistic heavy ion collisions from a chiral kinetic approach," *Phys. Rev. C* **96** [no. 2, \(2017\) 024906,](http://dx.doi.org/10.1103/PhysRevC.96.024906) [arXiv:1706.09467 \[nucl-th\]](http://arxiv.org/abs/1706.09467).
- [23] F. Becattini, W. Florkowski, and E. Speranza, "Spin tensor and its role in non-equilibrium thermodynamics," *Phys. Lett. B* **789** [\(2019\) 419–425,](http://dx.doi.org/10.1016/j.physletb.2018.12.016) [arXiv:1807.10994 \[hep-th\]](http://arxiv.org/abs/1807.10994).
- [24] W. Florkowski, A. Kumar, and R. Ryblewski, "Thermodynamic versus kinetic approach to polarization-vorticity coupling," *Phys. Rev. C* **98** [no. 4, \(2018\) 044906,](http://dx.doi.org/10.1103/PhysRevC.98.044906) [arXiv:1806.02616](http://arxiv.org/abs/1806.02616) [\[hep-ph\]](http://arxiv.org/abs/1806.02616).
- [25] H.-Z. Wu, L.-G. Pang, X.-G. Huang, and Q. Wang, "Local spin polarization in high energy heavy ion collisions," *[Phys. Rev. Research.](http://dx.doi.org/10.1103/PhysRevResearch.1.033058)* **1** (2019) 033058, [arXiv:1906.09385](http://arxiv.org/abs/1906.09385) [\[nucl-th\]](http://arxiv.org/abs/1906.09385).
- [26] X.-L. Sheng, L. Oliva, and Q. Wang, "What can we learn from the global spin alignment of ϕ mesons in heavy-ion collisions?," *Phys. Rev. D* **101** [no. 9, \(2020\) 096005,](http://dx.doi.org/10.1103/PhysRevD.101.096005) [arXiv:1910.13684 \[nucl-th\]](http://arxiv.org/abs/1910.13684).
- [27] B. Fu, K. Xu, X.-G. Huang, and H. Song, "Hydrodynamic study of hyperon spin polarization in relativistic heavy ion collisions," *Phys. Rev. C* **103** [no. 2, \(2021\) 024903,](http://dx.doi.org/10.1103/PhysRevC.103.024903) [arXiv:2011.03740 \[nucl-th\]](http://arxiv.org/abs/2011.03740).
- [28] D.-L. Yang, K. Hattori, and Y. Hidaka, "Effective quantum kinetic theory for spin transport of fermions with collsional effects," *JHEP* **07** [\(2020\) 070,](http://dx.doi.org/10.1007/JHEP07(2020)070) [arXiv:2002.02612 \[hep-ph\]](http://arxiv.org/abs/2002.02612).
- [29] X.-G. Deng, X.-G. Huang, Y.-G. Ma, and S. Zhang, "Vorticity in low-energy heavy-ion collisions," *Phys. Rev. C* **101** [no. 6, \(2020\) 064908,](http://dx.doi.org/10.1103/PhysRevC.101.064908) [arXiv:2001.01371 \[nucl-th\]](http://arxiv.org/abs/2001.01371).
- [30] V. E. Ambrus and M. N. Chernodub, "Hyperon–anti-hyperon polarization asymmetry in relativistic heavy-ion collisions as an interplay between chiral and helical vortical effects," *Eur. Phys. J. C* **82** [no. 1, \(2022\) 61,](http://dx.doi.org/10.1140/epjc/s10052-022-10002-y) [arXiv:2010.05831 \[hep-ph\]](http://arxiv.org/abs/2010.05831).
- [31] A. Palermo, M. Buzzegoli, and F. Becattini, "Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: Dirac field," *JHEP* **10** [\(2021\) 077,](http://dx.doi.org/10.1007/JHEP10(2021)077) [arXiv:2106.08340 \[hep-th\]](http://arxiv.org/abs/2106.08340).
- [32] W. Florkowski and R. Ryblewski, "Interpretation of Λ spin polarization measurements," *Phys. Rev. C* **106** [no. 2, \(2022\) 024905,](http://dx.doi.org/10.1103/PhysRevC.106.024905) [arXiv:2102.02890 \[hep-ph\]](http://arxiv.org/abs/2102.02890).
- [33] H. Li, X.-L. Xia, X.-G. Huang, and H. Z. Huang, "Global spin polarization of multistrange hyperons and feed-down effect in heavy-ion collisions," *Phys. Lett. B* **827** [\(2022\) 136971,](http://dx.doi.org/10.1016/j.physletb.2022.136971) [arXiv:2106.09443 \[nucl-th\]](http://arxiv.org/abs/2106.09443).
- [34] C. Yi, S. Pu, and D.-L. Yang, "Reexamination of local spin polarization beyond global equilibrium in relativistic heavy ion collisions," *Phys. Rev. C* **104** [no. 6, \(2021\) 064901,](http://dx.doi.org/10.1103/PhysRevC.104.064901) [arXiv:2106.00238 \[hep-ph\]](http://arxiv.org/abs/2106.00238).
- [35] A. Kumar, B. Müller, and D.-L. Yang, "Spin polarization and correlation of quarks from the glasma," *Phys. Rev. D* **107** [no. 7, \(2023\) 076025,](http://dx.doi.org/10.1103/PhysRevD.107.076025) [arXiv:2212.13354 \[nucl-th\]](http://arxiv.org/abs/2212.13354).
- [36] A. Kumar, B. Müller, and D.-L. Yang, "Spin alignment of vector mesons by glasma fields," *Phys. Rev. D* **108** [no. 1, \(2023\) 016020,](http://dx.doi.org/10.1103/PhysRevD.108.016020) [arXiv:2304.04181 \[nucl-th\]](http://arxiv.org/abs/2304.04181).
- [37] W. Florkowski, B. Friman, A. Jaiswal, and E. Speranza, "Relativistic fluid dynamics with spin," *Phys. Rev. C* **97** [no. 4, \(2018\) 041901,](http://dx.doi.org/10.1103/PhysRevC.97.041901) [arXiv:1705.00587 \[nucl-th\]](http://arxiv.org/abs/1705.00587).
- [38] W. Florkowski, B. Friman, A. Jaiswal, R. Ryblewski, and E. Speranza, "Spin-dependent distribution functions for relativistic hydrodynamics of spin-1/2 particles," *[Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.97.116017)* **97** [no. 11, \(2018\) 116017,](http://dx.doi.org/10.1103/PhysRevD.97.116017) [arXiv:1712.07676 \[nucl-th\]](http://arxiv.org/abs/1712.07676).
- [39] W. Florkowski, A. Kumar, and R. Ryblewski, "Relativistic hydrodynamics for spin-polarized fluids," *[Prog. Part. Nucl. Phys.](http://dx.doi.org/10.1016/j.ppnp.2019.07.001)* **108** (2019) 103709, [arXiv:1811.04409 \[nucl-th\]](http://arxiv.org/abs/1811.04409).
- [40] K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H. Taya, "Fate of spin polarization in a relativistic fluid: An entropy-current analysis," *Phys. Lett. B* **795** [\(2019\) 100–106,](http://dx.doi.org/10.1016/j.physletb.2019.05.040) [arXiv:1901.06615 \[hep-th\]](http://arxiv.org/abs/1901.06615).
- [41] E. Speranza and N. Weickgenannt, "Spin tensor and pseudo-gauges: from nuclear collisions to gravitational physics," *Eur. Phys. J. A* **57** [no. 5, \(2021\) 155,](http://dx.doi.org/10.1140/epja/s10050-021-00455-2) [arXiv:2007.00138](http://arxiv.org/abs/2007.00138) [\[nucl-th\]](http://arxiv.org/abs/2007.00138).
- [42] S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, and R. Ryblewski, "Dissipative Spin Dynamics in Relativistic Matter," *Phys. Rev. D* **103** [no. 1, \(2021\) 014030,](http://dx.doi.org/10.1103/PhysRevD.103.014030)

[arXiv:2008.10976 \[nucl-th\]](http://arxiv.org/abs/2008.10976).

- [43] S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, and R. Ryblewski, "Relativistic dissipative spin dynamics in the relaxation time approximation," *[Phys. Lett. B](http://dx.doi.org/10.1016/j.physletb.2021.136096)* **814** (2021) [136096,](http://dx.doi.org/10.1016/j.physletb.2021.136096) [arXiv:2002.03937 \[hep-ph\]](http://arxiv.org/abs/2002.03937).
- [44] J. Hu, "Relativistic first-order spin hydrodynamics via the Chapman-Enskog expansion," *Phys. Rev. D* **105** [no. 7, \(2022\) 076009,](http://dx.doi.org/10.1103/PhysRevD.105.076009) [arXiv:2111.03571 \[hep-ph\]](http://arxiv.org/abs/2111.03571).
- [45] S. Shi, C. Gale, and S. Jeon, "From chiral kinetic theory to relativistic viscous spin hydrodynamics," *Phys. Rev. C* **103** [no. 4, \(2021\) 044906,](http://dx.doi.org/10.1103/PhysRevC.103.044906) [arXiv:2008.08618 \[nucl-th\]](http://arxiv.org/abs/2008.08618).
- [46] N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang, and D. H. Rischke, "Generating Spin Polarization from Vorticity through Nonlocal Collisions," *[Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.127.052301)* **127** no. 5, (2021) [052301,](http://dx.doi.org/10.1103/PhysRevLett.127.052301) [arXiv:2005.01506 \[hep-ph\]](http://arxiv.org/abs/2005.01506).
- [47] E. Speranza, F. S. Bemfica, M. M. Disconzi, and J. Noronha, "Challenges in solving chiral hydrodynamics," *Phys. Rev. D* **107** [no. 5, \(2023\) 054029,](http://dx.doi.org/10.1103/PhysRevD.107.054029) [arXiv:2104.02110 \[hep-th\]](http://arxiv.org/abs/2104.02110).
- [48] D. She, A. Huang, D. Hou, and J. Liao, "Relativistic viscous hydrodynamics with angular momentum," *Sci. Bull.* **67** [\(2022\) 2265–2268,](http://dx.doi.org/10.1016/j.scib.2022.10.020) [arXiv:2105.04060 \[nucl-th\]](http://arxiv.org/abs/2105.04060).
- [49] H.-H. Peng, J.-J. Zhang, X.-L. Sheng, and Q. Wang, "Ideal Spin Hydrodynamics from the Wigner Function Approach," *Chin. Phys. Lett.* **38** [no. 11, \(2021\) 116701,](http://dx.doi.org/10.1088/0256-307X/38/11/116701) [arXiv:2107.00448 \[hep-th\]](http://arxiv.org/abs/2107.00448).
- [50] D.-L. Wang, S. Fang, and S. Pu, "Analytic solutions of relativistic dissipative spin hydrodynamics with Bjorken expansion," *Phys. Rev. D* **104** [no. 11, \(2021\) 114043,](http://dx.doi.org/10.1103/PhysRevD.104.114043) [arXiv:2107.11726 \[nucl-th\]](http://arxiv.org/abs/2107.11726).
- [51] C. Yi, S. Pu, J.-H. Gao, and D.-L. Yang, "Hydrodynamic helicity polarization in relativistic heavy ion collisions," *Phys. Rev. C* **105** [no. 4, \(2022\) 044911,](http://dx.doi.org/10.1103/PhysRevC.105.044911) [arXiv:2112.15531](http://arxiv.org/abs/2112.15531) [\[hep-ph\]](http://arxiv.org/abs/2112.15531).
- [52] W. Florkowski, A. Kumar, R. Ryblewski, and R. Singh, "Spin polarization evolution in a boost invariant hydrodynamical background," *Phys. Rev. C* **99** [no. 4, \(2019\) 044910,](http://dx.doi.org/10.1103/PhysRevC.99.044910) [arXiv:1901.09655 \[hep-ph\]](http://arxiv.org/abs/1901.09655).
- [53] R. Singh, M. Shokri, and R. Ryblewski, "Spin polarization dynamics in the Bjorken-expanding resistive MHD background," *Phys. Rev. D* **103** [no. 9, \(2021\) 094034,](http://dx.doi.org/10.1103/PhysRevD.103.094034) [arXiv:2103.02592 \[hep-ph\]](http://arxiv.org/abs/2103.02592).
- [54] W. Florkowski, R. Ryblewski, R. Singh, and G. Sophys, "Spin polarization dynamics in the non-boost-invariant background," *Phys. Rev. D* **105** [no. 5, \(2022\) 054007,](http://dx.doi.org/10.1103/PhysRevD.105.054007) [arXiv:2112.01856 \[hep-ph\]](http://arxiv.org/abs/2112.01856).
- [55] D. Montenegro, L. Tinti, and G. Torrieri, "Ideal relativistic fluid limit for a medium with polarization," *Phys. Rev. D* **96** [no. 5, \(2017\) 056012,](http://dx.doi.org/10.1103/PhysRevD.96.056012) [arXiv:1701.08263 \[hep-th\]](http://arxiv.org/abs/1701.08263). [Addendum: Phys.Rev.D 96, 079901 (2017)].
- [56] A. D. Gallegos, U. Gürsoy, and A. Yarom, "Hydrodynamics of spin currents," *[SciPost Phys.](http://dx.doi.org/10.21468/SciPostPhys.11.2.041)* **11** [\(2021\) 041,](http://dx.doi.org/10.21468/SciPostPhys.11.2.041) [arXiv:2101.04759 \[hep-th\]](http://arxiv.org/abs/2101.04759).
- [57] M. Hongo, X.-G. Huang, M. Kaminski, M. Stephanov, and H.-U. Yee, "Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation," *JHEP* **11** [\(2021\)](http://dx.doi.org/10.1007/JHEP11(2021)150) [150,](http://dx.doi.org/10.1007/JHEP11(2021)150) [arXiv:2107.14231 \[hep-th\]](http://arxiv.org/abs/2107.14231).
- [58] A. D. Gallegos, U. Gursoy, and A. Yarom, "Hydrodynamics, spin currents and torsion," *JHEP* **05** [\(2023\) 139,](http://dx.doi.org/10.1007/JHEP05(2023)139) [arXiv:2203.05044 \[hep-th\]](http://arxiv.org/abs/2203.05044).
- [59] V. E. Ambrus, R. Ryblewski, and R. Singh, "Spin waves in spin hydrodynamics," *[Phys. Rev.](http://dx.doi.org/10.1103/PhysRevD.106.014018) D* **106** [no. 1, \(2022\) 014018,](http://dx.doi.org/10.1103/PhysRevD.106.014018) [arXiv:2202.03952 \[hep-ph\]](http://arxiv.org/abs/2202.03952).
- [60] N. Weickgenannt, D. Wagner, E. Speranza, and D. H. Rischke, "Relativistic second-order dissipative spin hydrodynamics from the method of moments," *[Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.106.096014)* **106** no. 9, [\(2022\) 096014,](http://dx.doi.org/10.1103/PhysRevD.106.096014) [arXiv:2203.04766 \[nucl-th\]](http://arxiv.org/abs/2203.04766).
- [61] A. Daher, A. Das, W. Florkowski, and R. Ryblewski, "Canonical and phenomenological formulations of spin hydrodynamics," *Phys. Rev. C* **108** [no. 2, \(2023\) 024902,](http://dx.doi.org/10.1103/PhysRevC.108.024902) [arXiv:2202.12609 \[nucl-th\]](http://arxiv.org/abs/2202.12609).
- [62] A. Daher, A. Das, and R. Ryblewski, "Stability studies of first-order spin-hydrodynamic frameworks," *Phys. Rev. D* **107** [no. 5, \(2023\) 054043,](http://dx.doi.org/10.1103/PhysRevD.107.054043) [arXiv:2209.10460 \[nucl-th\]](http://arxiv.org/abs/2209.10460).
- [63] R. Biswas, A. Daher, A. Das, W. Florkowski, and R. Ryblewski, "Boost invariant spin hydrodynamics within the first order in derivative expansion," *Phys. Rev. D* **107** [no. 9, \(2023\)](http://dx.doi.org/10.1103/PhysRevD.107.094022) [094022,](http://dx.doi.org/10.1103/PhysRevD.107.094022) [arXiv:2211.02934 \[nucl-th\]](http://arxiv.org/abs/2211.02934).
- [64] N. Weickgenannt, D. Wagner, E. Speranza, and D. H. Rischke, "Relativistic dissipative spin hydrodynamics from kinetic theory with a nonlocal collision term," *[Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.106.L091901)* **106** no. 9, [\(2022\) L091901,](http://dx.doi.org/10.1103/PhysRevD.106.L091901) [arXiv:2208.01955 \[nucl-th\]](http://arxiv.org/abs/2208.01955).
- [65] S. Dey, W. Florkowski, A. Jaiswal, and R. Ryblewski, "Pseudogauge freedom and the SO(3) algebra of spin operators," *Phys. Lett. B* **843** [\(2023\) 137994,](http://dx.doi.org/10.1016/j.physletb.2023.137994) [arXiv:2303.05271](http://arxiv.org/abs/2303.05271) [\[hep-th\]](http://arxiv.org/abs/2303.05271).
- [66] R. Biswas, A. Daher, A. Das, W. Florkowski, and R. Ryblewski, "Relativistic second-order spin hydrodynamics: An entropy-current analysis," *Phys. Rev. D* **108** [no. 1, \(2023\) 014024,](http://dx.doi.org/10.1103/PhysRevD.108.014024) [arXiv:2304.01009 \[nucl-th\]](http://arxiv.org/abs/2304.01009).
- [67] S. Bhadury, A. Das, W. Florkowski, G. K. K., and R. Ryblewski, "Polarization of spin-12 particles with effective spacetime dependent masses," *Phys. Lett. B* **849** [\(2024\) 138464,](http://dx.doi.org/10.1016/j.physletb.2024.138464) [arXiv:2307.12436 \[hep-ph\]](http://arxiv.org/abs/2307.12436).
- [68] N. Weickgenannt, "Linearly stable and causal relativistic first-order spin hydrodynamics," *Phys. Rev. D* **108** [no. 7, \(2023\) 076011,](http://dx.doi.org/10.1103/PhysRevD.108.076011) [arXiv:2307.13561 \[nucl-th\]](http://arxiv.org/abs/2307.13561).
- [69] F. Becattini, A. Daher, and X.-L. Sheng, "Entropy current and entropy production in relativistic spin hydrodynamics," [arXiv:2309.05789 \[nucl-th\]](http://arxiv.org/abs/2309.05789).
- [70] M. Kiamari, N. Sadooghi, and M. S. Jafari, "Relativistic magnetohydrodynamics of a spinful and vortical fluid: Entropy current analysis," [arXiv:2310.01874 \[nucl-th\]](http://arxiv.org/abs/2310.01874).
- [71] A. Daher, W. Florkowski, and R. Ryblewski, "Stability constraint for spin equation of state," [arXiv:2401.07608 \[hep-ph\]](http://arxiv.org/abs/2401.07608).
- [72] S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, and R. Ryblewski, "Relativistic Spin Magnetohydrodynamics," *Phys. Rev. Lett.* **129** [no. 19, \(2022\) 192301,](http://dx.doi.org/10.1103/PhysRevLett.129.192301) [arXiv:2204.01357](http://arxiv.org/abs/2204.01357) [\[nucl-th\]](http://arxiv.org/abs/2204.01357).
- [73] N. Weickgenannt, X.-L. Sheng, E. Speranza, Q. Wang, and D. H. Rischke, "Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism," *[Phys. Rev. D](http://dx.doi.org/10.1103/PhysRevD.100.056018)* **100** no. 5, [\(2019\) 056018,](http://dx.doi.org/10.1103/PhysRevD.100.056018) [arXiv:1902.06513 \[hep-ph\]](http://arxiv.org/abs/1902.06513).
- [74] J. L. Anderson and H. Witting, "A relativistic relaxation-time model for the boltzmann equation," *Physica* **74** no. 3, (1974) 466–488.