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better understanding of the polarization phenomena observed in relativistic heavy-ion collisions.
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1. Introduction

Over the last decades, it has been well established [1] that the strongly interacting matter
produced in relativistic nuclear collisions evolves according to principles of relativistic hydrody-
namics [2, 3]. It is expected that in non-central collisions this matter may experience large angular
momentum and a strong magnetic field [4, 5]. These extreme physical conditions may lead, similarly
to the non-relativistic magneto-mechanical effects of Einstein-de Haas [6] and Barnett [7], to spin
polarization and magnetization of the matter and, consequently, of the emitted particles [8–10].
The existence of spin polarization phenomenon was recently confirmed experimentally [11–17]
triggering vast theoretical developments aiming at finding a unified interpretation of the mea-
sured observables [18–36]. In particular, based on fundamental conservation laws, an extension
of relativistic hydrodynamics for spin-polarized fluids was proposed [37] giving rise to the rapid
development of a new field known as relativistic spin hydrodynamics [38–51, 51–71].

Very recently, a formalism of dissipative non-resistive spin magnetohydrodynamics was con-
structed, aiming at incorporating into the spin hydrodynamics effects of spin polarization due to the
presence of electromagnetic field [72]. In this contribution, we briefly review the framework of [72]
and discuss its main implications. Starting from the classical transport equation for the distribution
function in an extended phase-space of position, momentum, and spin, in the presence of a magnetic
field we derive equations of motion for dissipative currents at first-order in spacetime gradients. It
is found that, apart from contributions from various standard hydrodynamic gradients [42, 43], the
spin current acquires also effects due to the gradients of electromagnetic field [72]. In particular,
we show that the coupling between fluid vorticity and magnetization via an electromagnetic field
gives rise to effects similar to that of Einstein-de Haas and Barnett.

We use the following conventions for the metric tensor and Levi-Civita symbol: 𝑔𝜇𝜈 =

diag(+1,−1,−1,−1) and 𝜖0123 = −𝜖0123 = 1. We also use natural units with 𝑐 = ℏ = 𝑘𝐵 = 1.

2. Kinetic theory derivation of equations of motion

We consider the classical distribution function of particles with spin in an extended phase-space
of space-time position 𝑥 ≡ 𝑥𝜇, four-momentum 𝑝 ≡ 𝑝𝜇, and intrinsic angular momentum 𝑠 ≡ 𝑠𝜇𝜈 ,
𝑓 ≡ 𝑓 (𝑥, 𝑝, 𝑠) [39]. The dynamics of 𝑓 is determined by the following kinetic equation [72](

𝑝𝛼 𝜕

𝜕𝑥𝛼
+ 𝑚 F 𝛼 𝜕

𝜕𝑝𝛼
+ 𝑚 S𝛼𝛽 𝜕

𝜕𝑠𝛼𝛽

)
𝑓 = 𝐶 [ 𝑓 ] , (1)

and likewise for anti-particles with the replacement 𝑓 → 𝑓 . In Eq. (1), the four-momentum
𝑝𝜇 = (𝐸𝑝, 𝒑) is on the mass shell, with 𝐸𝑝 =

√︁
𝑚2 + 𝒑2 difining the particle energy and 𝑚 denoting

the particle mass, and 𝐶 [ 𝑓 ] is the collision kernel.
In the above equation, F 𝛼 = 𝑑𝑝𝛼/𝑑𝜏 and S𝛼𝛽 = 𝑑𝑠𝛼𝛽/𝑑𝜏 (where 𝜏 denotes the proper time

along the world line) are, respectively, force and torque experienced by a particle moving under
influence of electromagnetic field. For composite particles they have the forms

F 𝛼 =
q

𝑚
𝐹𝛼𝛽𝑝𝛽 + 1

2

(
𝜕𝛼𝐹𝛽𝛾

)
𝑚𝛽𝛾 , (2)

S𝛼𝛽 = 2 𝐹𝛾 [𝛼 𝑚𝛽 ]
𝛾 −

2
𝑚2

(
𝜒 − q

𝑚

)
𝐹𝜙𝛾 𝑠

𝜙[𝛼 𝑝𝛽 ] 𝑝𝛾 , (3)
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where 𝐹𝜇𝜈 denotes the electromagnetic field strength tensor and 𝑚𝛼𝛽 = 𝜒𝑠𝛼𝛽 is the magnetic
dipole moment of particles with 𝜒 playing the role of the gyromagnetic ratio [73]. The expressions
for the first and second term on the right-hand side of Eq. (2) represent well-known Lorentz and
Mathisson force, respectively [73]. On the other hand, the form of the torque in Eq. (3) is less
understood. Hence, in this work, we choose to neglect it.

The number current 𝑁𝜆, the energy-momentum tensor 𝑇𝜆𝜇

f , and the spin current 𝑆𝜆,𝜇𝜈 of the
fluid are expressed, respectively, through the zeroth, first, and “spin” moment of the distribution
function [43]

𝑁𝜆 =

∫
𝑝,𝑠

𝑝𝜆
(
𝑓 − 𝑓

)
, (4)

𝑇
𝜆𝜇

f =

∫
𝑝,𝑠

𝑝𝜆𝑝𝜇
(
𝑓 + 𝑓

)
, (5)

𝑆𝜆,𝜇𝜈 =

∫
𝑝,𝑠

𝑝𝜆𝑠𝜇𝜈
(
𝑓 + 𝑓

)
, (6)

while the polarization-magnetization tensor is given by the formula

𝑀𝜇𝜈 = 𝑚

∫
𝑝,𝑠

𝑚𝜇𝜈
(
𝑓 − 𝑓

)
. (7)

In the above equations we used the shorthand notation
∫
𝑝,𝑠

≡
∫
𝑑𝑃𝑑𝑆 with 𝑑𝑃 ≡ 𝑑3𝑝/[𝐸𝑝 (2𝜋)3]

and 𝑑𝑆 ≡ 𝑚/(𝜋 ‘) 𝑑4𝑠 𝛿(𝑠 · 𝑠 + ‘2) 𝛿(𝑝 · 𝑠), where the length of the spin vector, ‘2 = 1
2

(
1 + 1

2

)
= 3

4 ,
is defined by the eigenvalue of the Casimir operator.

Presuming that the microscopic interactions preserve fundamental conservation laws the fol-
lowing moments of the collision kernel should vanish:∫

𝑝,𝑠

𝐶 [ 𝑓 ] = 0,
∫
𝑝,𝑠

𝑝𝜇𝐶 [ 𝑓 ] = 0,
∫
𝑝,𝑠

𝑠𝜇𝜈𝐶 [ 𝑓 ] = 0. (8)

Using these properties and Eqs. (4)-(7) one may show that the zeroth, first and “spin” moment of
the kinetic equation (1) (assuming no torque) lead, respectively, to the following equations

𝜕𝜇𝑁
𝜇 = 0, 𝜕𝜈𝑇

𝜇𝜈

f = 𝐹
𝜇
𝛼𝐽

𝛼
f + 1

2
(𝜕𝜇𝐹𝜈𝛼) 𝑀𝜈𝛼, 𝜕𝜆𝑆

𝜆,𝜇𝜈 = 0, (9)

where 𝐽𝜇f = q𝑁𝜇 is a charge current with q denoting the electric charge of the particles. Equations (9)
constitute the basis for the framework of spin-magnetohydrodynamics.

Assuming Landau’s definition of four-velocity 𝑢 of the fluid, 𝑇 𝜇𝜈

f 𝑢𝜈 = 𝜖𝑢𝜇, where 𝜖 is the
energy density, the particle current, and the stress-energy tensor are given by

𝑁𝜇 = 𝑛𝑢𝜇 + 𝑛𝜇, 𝑇
𝜇𝜈

f = 𝜖𝑢𝜇𝑢𝜈 − (𝑃 + Π) Δ𝜇𝜈 + 𝜋𝜇𝜈 (10)

where 𝑛 is the net particle number density, 𝑛𝜇 particle number diffusion, 𝑃 is the pressure, Π and
𝜋𝜇𝜈 are the bulk and shear viscous pressures, and Δ𝜇𝜈 = 𝑔𝜇𝜈 − 𝑢𝜇𝑢𝜈 . Since we are interested in
the formulation of magnetohydrodynamics with spin in the non-resistive limit, we have

𝐹𝜇𝜈 = 𝜖 𝜇𝜈𝛼𝛽𝑢𝛼𝐵𝛽 , (11)

where 𝐵𝜇 is the magnetic field four-vector satisfying the well-known Maxwell equations, see
Ref. [72]. The field strength tensor and polarization-magnetization tensors are related to each other
by 𝐻𝜇𝜈 − 𝑀𝜇𝜈 = 𝐹𝜇𝜈 , where 𝐻𝜇𝜈 is the induction tensor.
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3. Dynamics of dissipative currents

To derive constitutive relations for dissipative quantities in Eqs. (10), we consider the kinetic
equation (1), with the collision term treated in relaxation-time approximation (RTA) [74](

𝑝𝛼 𝜕

𝜕𝑥𝛼
+ 𝑚 F 𝛼 𝜕

𝜕𝑝𝛼

)
𝑓 = − (𝑢 · 𝑝)

𝑓 − 𝑓eq

𝜏eq
≡ − (𝑢 · 𝑝) 𝛿 𝑓

𝜏eq
, (12)

where 𝑓eq is the equilibrium distribution function and relaxation time 𝜏eq is assumed to be indepen-
dent of particle momentum and energy. Note that, within the RTA, the zeroth and first moments
(see, respectively, the first and second equation in (8)) of the right-hand side of Eq. (12) vanish
when Landau frame and matching conditions are used. Moreover, imposing the matching condition
[43]

𝑢𝜆𝛿𝑆
𝜆,𝜇𝜈 ≡ 𝑢𝜆

(
𝑆𝜆,𝜇𝜈 − 𝑆

𝜆,𝜇𝜈
eq

)
= 0, (13)

where 𝛿𝑆𝜆,𝜇𝜈 is the dissipative part of the spin current, also the spin moment (see the third equation
in (8)) vanishes.

Herein, we assume the equilibrium distribution to have the Fermi-Dirac form,

𝑓eq =

{
1 + exp

[
𝛽(𝑢 ·𝑝) − 𝜉 − 1

2
𝜔𝜇𝜈𝑠

𝜇𝜈

]}−1
, (14)

and similarly for anti-particles with 𝜉 → −𝜉, where 𝜉 ≡ 𝜇𝛽 and 𝛽 ≡ 1/𝑇 . Here, 𝜔𝜇𝜈 plays the role
of Lagrange multiplier corresponding to spin conservation [37] and is related to spin polarization
observable via Pauli-Lubanski four-vector [38, 39]. Considering the limit of small polarization, we
can keep only terms up to linear in 𝜔𝜇𝜈 and write

𝑓eq = 𝑓0 +
1
2
𝜔𝜇𝜈𝑠

𝜇𝜈 𝑓0(1 − 𝑓0), (15)

where 𝑓0 ≡ {1 + exp [𝛽(𝑢 ·𝑝) − 𝜉]}−1.
The dissipative quantities defined in Eqs. (10) and (13) are given in terms of the non-equilibrium

corrections to the distribution function,

𝑛𝜇 =

∫
𝑝,𝑠

𝑝⟨𝜇⟩
(
𝛿 𝑓 − 𝛿 𝑓

)
, Π =

∫
𝑝,𝑠

(
−1

3

)
𝑝⟨𝜇⟩ 𝑝⟨𝜇⟩

(
𝛿 𝑓 + 𝛿 𝑓

)
, (16)

𝜋𝜇𝜈 =

∫
𝑝,𝑠

𝑝⟨𝜇𝑝𝜈⟩
(
𝛿 𝑓 + 𝛿 𝑓

)
, 𝛿𝑆𝜆,𝜇𝜈 =

∫
𝑝,𝑠

𝑝𝜆𝑠𝜇𝜈
(
𝛿 𝑓 + 𝛿 𝑓

)
, (17)

where used the notation 𝑋 ⟨𝜇⟩ ≡ Δ
𝜇
𝛼𝑋

𝛼 and 𝑋 ⟨𝜇𝜈⟩ ≡ Δ
𝜇𝜈

𝛼𝛽
𝑋𝛼𝛽 .

To obtain the relativistic Navier-Stokes expressions for the dissipative quantities, using Eq. (12)
we evaluate the non-equilibrium corrections to the phase-space distribution functions up to first-
order in hydrodynamic gradients. In this way, for particles we get

𝛿 𝑓1 = −
𝜏eq

(𝑢 ·𝑝)

[
𝑝𝛼𝜕𝛼 + 𝑚 𝜒

2

(
𝜕𝛼𝐹𝛽𝛾

)
𝑠𝛽𝛾𝜕

(𝑝)
𝛼

]
𝑓eq

+
𝜏eq

(𝑢 ·𝑝) q𝐹
𝛼𝛽𝑝𝛽𝜕

(𝑝)
𝛼

[
𝜏eq

(𝑢 ·𝑝)

{
𝑝𝜌𝜕𝜌 +

𝑚 𝜒

2
(
𝜕𝜌𝐹𝜙𝜅

)
𝑠𝜙𝜅𝜕

(𝑝)
𝜌

}
𝑓eq

]
, (18)
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where, 𝜕 (𝑝)
𝛼 ≡ 𝜕

𝜕𝑝𝛼 is the partial derivative with respect to particle momenta. Anti-particle analogue
of 𝛿 𝑓1 may be obtained from Eq. (18) by the replacement 𝑓 → 𝑓 , 𝜉 → −𝜉, q → −q and, 𝜒 → −𝜒.

Substituting the non-equilibrium corrections to distribution functions in Eqs. (16)-(17), we get
the following general form of constitutive relations for the currents 𝑋𝜇1...𝜇𝑠 ∈ {𝑛𝜇,Π, 𝜋𝜇𝜈 , 𝛿𝑆𝜆,𝜇𝜈}
at first order in gradients

𝑋𝜇1...𝜇𝑠 =𝜏eq

[
𝛽
𝜇1...𝜇𝑠
𝑋Π

𝜃 + 𝛽
𝜇1...𝜇𝑠𝛼
𝑋𝑎

¤𝑢𝛼 + 𝛽
𝜇1...𝜇𝑠𝛼
𝑋𝑛

(∇𝛼𝜉) + 𝛽
𝜇1...𝜇𝑠𝛼𝛽
𝑋𝐹

(
∇𝛼𝐵𝛽

)
(19)

+ 𝛽
𝜇1...𝜇𝑠𝛼𝛽
𝑋𝜋

𝜎𝛼𝛽 + 𝛽
𝜇1...𝜇𝑠𝛼𝛽
𝑋Ω

Ω𝛼𝛽 + 𝛽
𝜇1...𝜇𝑠𝛼𝛽𝛾
𝑋Σ

(
∇𝛼𝜔𝛽𝛾

) ]
,

where we used the notation: 𝜃 ≡ 𝜕𝛼𝑢
𝛼, ¤𝑋 ≡ 𝑢𝛼𝜕𝛼𝑋 , ∇𝜇 ≡ 𝜕 ⟨𝜇⟩ , 𝜎𝜇𝜈 ≡ 𝜕 ⟨𝜇𝑢𝜈⟩ and Ω𝜇𝜈 ≡

(𝜕𝜇𝑢𝜈 − 𝜕𝜈𝑢𝜇)/2. The explicit expressions for the tensorial transport coefficients 𝛽 may be found
in Ref. [72]. Here it is sufficient to note that the dissipative currents are affected by various
hydrodynamic gradients, including those of magnetic field.

4. Discussion

Based on the above formalism we make some important observations and conclusions:

1. Relativistic Barnett and Einstein-de Haas effects. Plugging equilibrium distribution func-
tions into Eq. (7) one may show that the equilibrium magnetization tensor reads [72]

𝑀
𝜇𝜈
eq = 𝑎1 𝜔

𝜇𝜈 + 𝑎2 𝑢
[𝜇𝑢𝛾𝜔

𝜈 ]𝛾 . (20)

Since in global equilibrium, the spin polarization tensor𝜔 corresponds to the thermal vorticity
tensor 𝜛 [18, 19, 24, 37–39, 52, 54], from Eq. (20) we conclude that the vorticity of the fluid
is related to its magnetization. Hence, Eq. (20) leads to relativistic analogs of the well-known
Barnett [7] and Einstein-de Haas [6] effects.

2. Spin polarization due to the coupling between thermal vorticity and electromagnetic field.
Using Eq. (13), one may derive the following evolution equation for 𝜔𝜇𝜈

¤𝜔𝜇𝜈 =D [𝜇𝜈 ]
Π

𝜃 +D [𝜇𝜈 ]𝛾
𝑎 ¤𝑢𝛾 +D [𝜇𝜈 ]𝛾

n
(
∇𝛾𝜉

)
+D [𝜇𝜈 ]𝜌𝜅

𝐵

(
∇𝜌𝐵𝜅

)
(21)

+ D [𝜇𝜈 ]𝜌𝜅
𝜋 𝜎𝜌𝜅 + D [𝜇𝜈 ]𝜌𝜅

Ω
Ω𝜌𝜅+D [𝜇𝜈 ]𝜙𝜌𝜅

Σ

(
∇𝜙𝜔𝜌𝜅

)
,

where the tensorial coefficients, D, contain equilibrium quantities, see Ref. [72]. From
Eq. (21) we observe that among different gradient terms, there is a coupling of spin polariza-
tion tensor to the fluid vorticity represented by Ω. The coefficient DΩ multiplying this term
vanishes when the electromagnetic field is absent which implies that the conversion between
spin polarization and vorticity proceeds via coupling with electromagnetic field.

3. Dissipative gradient terms. Demanding the positivity of the divergence of the entropy current
(given by the Boltzmann H-theorem) one can show that only the following gradient terms in
Eqs. (19) are dissipative

Π = −𝜁𝜃, 𝑛𝜇 = 𝜅𝜇𝛼 (∇𝛼𝜉) , 𝜋𝜇𝜈 = 𝜂𝜇𝜈𝛼𝛽𝜎𝛼𝛽 , (22)
𝛿𝑆𝜇,𝛼𝛽 = Σ𝜇𝛼𝛽𝜆𝛾𝜌

(
∇𝜆𝜔𝛾𝜌

)
, (23)

where, comparing Eq. (19) and Eqs. (22)-(23), the dissipative transport coefficients read:
𝜁 = −𝜏eq𝛽ΠΠ, 𝜅𝜇𝛼 = 𝜏eq𝛽

⟨𝜇⟩𝛼
𝑛𝑛 , 𝜂𝜇𝜈𝛼𝛽 = 𝜏eq𝛽

⟨𝜇𝜈⟩𝛼𝛽
𝜋𝜋 and Σ𝜆𝜇𝜈𝛼𝛽𝛾 = 𝜏eq𝐵

𝜆, [𝜇𝜈 ]𝛼𝛽𝛾
Σ

.
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5. Summary and outlook

In this work, we reviewed a recently developed framework of relativistic dissipative non-
resistive magnetohydrodynamics for spin-polarized particles. Using the relativistic kinetic equation
for the distribution function in an extended phase space of space-time position, momentum, and
spin with the kinetic kernel treated in the relaxation time approximation, we calculated equations of
motion for dissipative currents at first-order in gradients. The resulting equations of motion contain
various transport coefficients, both dissipative and non-dissipative, which were distinguished using
the positivity of the entropy production law. We have shown the emergence of the coupling
between the magnetization and the vorticity of the fluid, which constitutes a mechanism leading to
relativistic analogs of the Einstein-de Hass and Barnett effects. Furthermore, our analysis reveals
that the relationship between magnetic fields and spin polarization occurs at the gradient level. In
the context of relativistic heavy-ion collisions, our model offers a new perspective on explaining the
splitting of the polarization signal for Λ and anti-Λ particles commonly attributed to the interaction
between the magnetic field and the intrinsic magnetic moments of the emitted particles.
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No. DST/INSPIRE/04/2017/000038. This research was supported in part by the Polish National
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