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The detection of hard X-ray emission from the kilo-parsec scale jet of active galactic nuclei
cannot be interpreted as the synchrotron emission mechanism from the electron distri-
bution responsible for the radio/optical emission. The X-ray emission when interpreted
as the inverse-Compton scattering of cosmic microwave background photons (IC/CMB
process), the Compton spectral component will peak at GeV energy. The non-detection
of significant gamma-ray flux from these large-scale jets by Fermi disfavoured this model,
particularly at low redshifts. Alternately, synchrotron emission from a different electron
population is suggested. However, the X-ray emissions from the jet of AGN at high red-
shift are usually interpreted as IC/CMB process, due to the increase in cosmic microwave
background (CMB) photon density. But, recent Fermi y-ray flux upper limit estimates
on jet emission from the high redshift source J1510+5702 questions the validity of the
IC/CMB model. In this work, we consider a model where the multi-spectral component
(MSC) emissions from the large-scale jets of AGN is explained using accelerated and
advected electron distributions [1]. The synchrotron emission from these two electron

distribution is capable of interpreting the MSC jet emission from the jet of J1510+5702.
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1. Introduction

The jets from active galactic nuclei (AGN) can reach distances of kpc to Mpc and
contain bright emission regions known as knots [2]. These knots, resolved in radio and
optical wavebands were observed in X-ray as well with the advent of Chandra. The radio-
to-optical emission from the knots is generally attributed to the synchrotron process [3, 4],
whereas the X-ray emission process is modelled either as inverse Compton scattering of
soft target photons or synchrotron emission. This is based on the value of optical-to-X-
ray spectral index (a,,) in comparison to radio-to-optical spectral index (a,,) [5]. For
Qox > Qry, the X-ray emission is explained as the high energy extent of synchrotron
emission responsible for radio-optical emission. On the other hand, when @, < @;,, itis
attributed to inverse Compton emission or synchrotron emission from a different/second
electron population [3, 6-8].

Synchrotron Self Compton (inverse Compton process associated with the synchrotron
photons themselves) is disfavored as a possible mechanism of X-ray emission since it
demands a magnetic field that deviates largely from the equipartition condition [2, 4].
X-ray knots when modeled using the IC/CMB emission mechanism suggest the spectral
component to peaks at y-ray energies and predicts that the jets of nearby AGN can be
detectable by the Fermi space telescope operating at y-ray energies [9]. However, Fermi y-
ray observation of 3C 273 during 2008-2013 resulted only in flux upper limits, contradicting
the predicted detectable flux [10]. A similar result was obtained for many other sources
[11, 12], which disfavours the IC/CMB model and advocates the presence of a second
electron population which is responsible for the observed X-ray emission from the knots.

The IC/CMB interpretation of X-ray emission for misaligned AGN jets is still preferred
at high redshifts, due to the increase in CMB energy density (Ucyp o< (1+ 2)*) [13]. Hence,
the study of the large-scale jet at high redshifts can be used as a tool to validate this [14—16].
The resolved X-ray jet of PKS J1421-0643 (at z = 3.69) and PSO J030947.49+271757.31
(z = 6.1) were modelled with the IC/CMB interpretation [17, 18]. Recently, Breiding et al.
[19] examined the IC/CMB interpretation for 45 extra-galactic X-ray jets. They found that
the IC/CMB model is questioned in 27 Multi-Spectral Component (MSC) X-ray jets due
to over-prediction for the observed MeV-to-GeV y-ray flux. Their sample had three jets
located at higher redshifts (z > 3.5). Out of these three sources, the IC/CMB interpretation
of X-ray emission from J1510+5702 and J1421-0643 is ruled out considering the estimated
y-ray flux upper limits.

In our previous study [1], we explore the possible origin of the second electron
population to interpret the MSC emission from the large-scale jet of AGN. We particularly
considered a scenario where the high-energy electrons from the sites of particle acceleration
advect into the jet medium, resulting in the formation of two spatially separated electron
populations. In this study, we apply this model to a high redshift source J1510+5702 to
explain the MSC jet emission. This is the highest redshift source for which the IC/CMB
interpretation of X-ray emission is ruled out through gamma-ray flux upper limit estimates.



High energy emission from large scale jets of AGN Amal A. Rahman

2. The two-population model

The model considered in our study is explained in detail in [ 1]. According to this model,
synchrotron emission from a a broken power-law electron distribution of particles confined
to the acceleration region interprets the high energy (X-ray) emission. The accelerated
electrons leave this region and advect out losing energy in the process. This results in
a particle distribution with an excess of low-energy particles. The synchrotron emission
associated with this particle distribution explains the lower energy emission (radio) in the
jet.

3. J1510+5702

Siemiginowska et al. [20] and Yuan et al. and [21] first reported the kilo-parsec scale
X-ray emission from the quasar J1510+5702, which is located at a redshift of 4.3. The
X-ray emission feature, located a few arcsecs away from the quasar core, was previously
interpreted as IC/CMB radiation. This source appeared in the Fermi/LAT 4FGL 8-year
point source catalog and this data was used to estimate the flux upper limits in gamma rays
[19]. The study finds that IC/CMB model is ruled out for interpreting the X-ray emission
considering the gamma-ray flux upper limit estimates.

4. Results and Discussion

We applied the electron acceleration and advection model described above to reproduce
the MSC jet emission from the kilo-parsec scale jet of J1510+5702. The synchrotron
emission from the broken power-law distribution confined within region R < RO successfully
interprets the X-ray flux. Whereas, the advected electron distribution from the region R >
RO constitutes the low energy electron distribution and the synchrotron emission from this
population reproduces the observed radio fluxes. The superposition of the radiated spectra
from the two zones gives a composite spectrum and can explain the optical observations
as well. In Fig. 1 (left), the MSC observations of the jet of J1510+5702 along with model
curves are plotted. On the right, we show the observed radio—optical-X-ray fluxes from
the knot A for 3C 273 [1] for comparison. The model fit parameters are tabulated in Table.
1.

The IC/CMB model predicts that the radio and X-ray spectral indices match because of
an identical electron distribution responsible for emission at these energy bands. However,
the X-ray spectral index of the jet in J1510+5702 is harder than the radio. Hence, the
IC/CMB spectrum does not align with the observed X-ray spectral index of the jet (see Fig
A8 [19]). This suggests the second population of electrons as the possible origin of X-ray
emission. The model considered in our study assumes the dominant electron distributions
responsible for radio and X-ray emission to be different. This can result in different spectral
indices in radio and X-ray energies.



High energy emission from large scale jets of AGN Amal A. Rahman

J151045702 —e— " 3C273knotA e

Fermi Upper Limit v 15 Fermi Upper Limit v
-12 f ’
v -12 - v

& o

-13 vy v
5 Yoo § _12s M
2 @
> =g
o8 -14 8 -13

> >

E = 13.5
& -15 - &
- -

8 1‘0 1‘2 14 ,1‘6 1‘8 2‘0 2‘2 2‘4 26 8 1‘0 1‘2 1‘4 1‘6 1“8 éO é2 é4 26

Log v (Hz) Log v (Hz)
Figure 1: Left figure shows the observed SED of the jet of J1510+5702 along with model curves.
The purple solid circle, inverted red triangle and butterfly diagram correspond to radio, optical
upper limit and X-ray flux values. Green dot-dash line represents the synchrotron emission from
accelerated electron population, red dashed line represents synchrotron emission from advected
electron population and blue solid line represent total synchrotron emission (accelerated+advected
electron population). The black dashed line corresponds to IC/CMB spectrum and Fermi upper
limits are denoted by black inverted triangles. The figure in right represent the observed SEDs of
the knots A of 3C 273 along with the model curves.

Knot RO Rsize Bin(lo_SG) w 7b(107) Vad P q r
J1510+5702 Jet | 0.17 | 5.0 0.8 1.14 27.7 1.0 1.68 4.0 1.02
3C273Knot A | 0.12 | 2.9 1.5 2.08 7.5 20120 |40 1.3

Table 1: Fit parameters of radio-optical-X-ray spectrum. Ry and R, . are the size of inner region

and the size of the knot in kpc units; w = g;:‘ where Bj, and B, represent the magnetic field
strength at R < Rg and R > Ry respectively. The quantities vy, V44, P, q and I' represent the break
energy, advection velocity, power law indices of broken power law distribution of particles and bulk
Lorentz factor respectively.

The IC/CMB model demands significant jet speed to explain the X-ray emission which
in turn predicts one-sided jets due to relativistic de-beaming of the counter jet. However,
the detection of the counter jet in Pictor A disfavors the IC/CMB origin of the X-ray
emission [22]. Our model considers a slow jet at kilo-parsec scales assuminging that the
jetloses most of its kinetic energy in the initial parsec scale region. Moreover, no significant
positional changes in the emission regions are noticed for the jets at kpc scale. The model
also considers two regions (acceleration and advection) with different but comparable
magnetic fields. The magnetic field in the acceleration region can be slightly larger
because the acceleration process can amplify the magnetic field in the region. Moreover,
any mechanism that can significantly modify the magnetic field in the acceleration (shock)
and advection regions are still unknown.

The redshift dependence of X-ray to radio luminosity of blazars was studied by many
[23-26]. The IC/CMB contribution towards this effect was also examined [27, 28]. A
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study done on 17 highly radio loud quasars at z > 4 showed 3 times enhancement in X-ray
emission when compared to similar sources at lower redshifts [29]. One of the prominent
radiation fields present at the large-scale jet of AGN is CMB radiation. The increase in
CMB energy density with redshift should be evident in the IC/CMB spectrum if it is the
emission governing the X-ray emission in large-scale jets. However, the gamma-ray upper
limits rule out the IC/CMB predictions. The model proposed in the work has the potential
to interpret the MSC jet emission from the lower redshift sources (3C273) as well as
the high redshift source for which the IC/CMB model is ruled out. Dedicated Chandra
observations along with infra-red and optical observations for more high redshift sources
can provide clues on the proposed model and in validating the IC/CMB model for the X-ray
emission from large-scale jets.
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