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We present a novel implementation of a genuinely 4th-order accurate finite volume scheme for
multidimensional classical and special relativistic magnetohydrodynamics (MHD) in both ideal
[1] and resistive [2] regimes based on the constrained transport (CT) formalism in the PLUTO
code [3, 4]. Our scheme is rooted over the method originally proposed by McCorquodale and
Colella [5] but introduces several novel aspects when compared to its predecessors, yielding a
more efficient computational tool. Among the most relevant ones, our scheme exploits pointwise
to pointwise reconstructions (rather than one-dimensional finite volume ones). It employs all the
generalized upwind averaging techniques of the upwind constrained-transport (UCT) method of
Mignone and Del Zanna [6] to evaluate the electromotive force (EMF) at zone edges, with the
addition of a new relativistic UCT-GFORCE average, and ensures robustness through sophisticated
limiting strategies that include both a discontinuity detector and an order reduction procedure.
We thoroughly tested such method, producing results that confirm its efficiency compared to
traditional low order schemes.
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1. Introduction

The modeling of astrophysical plasmas is nowadays demanding for more efficient and accurate
numerical schemes for solving the equations of ideal and resistive, classical and special relativistic
magnetohydrodynamics (MHD, RMHD, Res-RMHD). Physical interest is increasingly directed to-
wards the investigation of highly nonlinear flows featuring both smooth and discontinuous solutions,
with a great deal of attention being devoted to enhance the accuracy of the underlying numerical
methods while retaining stability and computational efficiency. Concurrently, the investigation
of relativistic plasma dynamics holds crucial importance in understanding the complex nature of
high-energy astrophysical phenomena. Under typical astrophysical conditions, the ideal framework
well describes processes occurring on rapid time scales. Nevertheless, the evolving flow dynamics
can cause the formation of local regions with steep gradients, such as current sheets, where the
influence of resistivity can no longer be ignored. It appears then clear the necessity of numerical
simulations of astrophysical plasmas beyond the ideal magnetohydrodynamics (MHD) assumptions
that take into account the contribution of finite plasma conductivity.

In the last decade several efforts have been made to design higher than 2nd-order numerical
methods both for Finite Difference (FD), and Finite Volume (FV) approaches. 4th-order schemes,
in fact, can reach unprecedented performances overstepping the limits of traditional 2nd-order
frameworks because of their intrinsic lower dissipation properties. In a resistive framework, a
decrease in numerical dissipation means that we can probe the dynamical impact of more realistic
(i.e. lower) values of physical magnetic dissipation, which needs to dominate over the numerical
one in any reliable Res-RMHD model [7]. In addition, smooth solutions are improved at much
faster rates, yielding enhanced convergence and henceforth a computational efficiency that increases
with the dimensionality of the problem and with resolution.

2. The 4th-order method

Our 4th-order accurate numerical scheme targets any time-dependent hyperbolic system of
equations of the form

𝜕𝑈

𝜕𝑡
+ ∇ · 𝐹 = 𝑆(𝑈) , (1)

with𝑈 state vector of conservative quantities, 𝐹 flux tensor, and 𝑆(𝑈) the source terms (if present).
In the FV fashion, a semi-discrete method of lines approximates Eq. 1, yielding

𝑑 ⟨𝑈⟩𝒄
𝑑𝑡

= −
(
�̂�𝑥,x 𝑓

− �̂�𝑥,x 𝑓 −ê𝑥

Δ𝑥
+
�̂�𝑦,y 𝑓

− �̂�𝑦,y 𝑓 −ê𝑦

Δ𝑦
+
�̂�𝑧,z 𝑓

− �̂�𝑧,z 𝑓 −ê𝑧

Δ𝑧

)
+ ⟨𝑆⟩𝒄 . (2)

where ⟨𝑈⟩𝒄 is the cell volume average of the conservative quantity𝑈 (e.g.,𝑈 = {𝜌, 𝜌v, E,B}), �̂�𝑥,x 𝑓

is the surface average of the 𝑥-component of the flux over a face perpendicular to the 𝑥-direction,
�̂�𝑥,x 𝑓 −ê𝑥 is the surface average of the same component over the opposite side of the cell, (similarly
for the other flux terms along the 𝑦- and 𝑧-directions), and ⟨𝑆⟩𝒄 is the cell volume average of the
source terms. At 2nd-order accuracy, point values can be interchanged with volume or surface
averages before the mapping to primitive values. This property, however, does no longer hold for
higher order schemes, where one has to distinguish the cell-centered point value from its volume
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average and, likewise, the face-centered flux from its surface average. In our scheme we take into
account this aspect by means of the conversion relations

𝑄𝒄 = ⟨𝑄⟩𝒄 −
Δ ⟨𝑄⟩𝒄

24
, ⟨𝑄⟩𝒄 = 𝑄𝒄 +

Δ𝑄𝒄

24
(3)

originally introduced by McCorquodale & Colella [5], using the Laplacian operator Δ𝑄𝒄 ≡ Δ𝑥𝑄𝒄 +
Δ𝑦𝑄𝒄 +Δ𝑧𝑄𝒄 , with components given by Δ𝑖𝑄𝒄 ≡

(
𝑄𝒄−ê𝑖 − 2𝑄𝒄 +𝑄𝒄+ê𝑖

)
, and 𝑖 = 𝑥, 𝑦, 𝑧. In Eq.(3),

⟨𝑄⟩𝒄 represents any component of ⟨𝑈⟩𝒄 , and likewise for its pointwise counterpart 𝑄𝒄 . From the
first relation in Eq.(3) we can retrieve the ensemble of primitive variables𝑉𝒄 (e.g.,𝑉 = {𝜌, v, 𝑝,B}).
Spatial reconstruction at cell interfaces is then performed, for the first time in the literature of FV
schemes, by a version of the MP5 [8] and the WENOZ [9] algorithms based on pointwise values
that lower the algorithmic complexity of the overall scheme by retaining the 4th-order accuracy
with fewer operations per step and without even enlarging the stencil size [1]. Moreover, this new
feature is reducing the number of Riemann problems to be solved per direction, leading to a more
efficient and cost-effective scheme. Occasionally, Eq. 3 may introduce negative values in density
and energy resulting in the growth of numerical instabilities. Robustness is ensured with a local
discontinuity detector to distinguish smooth solutions from discontinuous ones when determining
the function local point value from its cell average. The upwind fluxes obtained by solving the
Riemann problem are then surface-averaged by means of the transverse Laplacian operators Δ𝑥

⊥

�̂�𝑥,x 𝑓
= 𝐹x 𝑓

+
Δ𝑥
⊥𝐹x 𝑓

24
. (4)

Regarding temporal integration, we employ a semi-discrete approach based on a five-stage 4th-order
explicit strong stability preserving Runge-Kutta method (eSSPRK(5,4), [10]) for ideal frameworks,
and an implicit-explicit (IMEX) strong stability preserving (SSP) Runge Kutta (RK) scheme of the
third order (IMEX(4,3,3), [11]) for the Res-RMHD one, coping with the stiff relaxation term in
Ampere’s law, which poses very strict constraints on the time step.

The solenoidal condition of the magnetic field is fulfilled by means of a high-order formulation
of the generalized upwind constrained transport (UCT, [6]) algorithm, which ensures a divergence-
free magnetic field up to machine accuracy, and works well with any generic upwind average.
Source terms are added analogously after suitable averaging via the Laplacian operators.

3. Numerical tests

3.1 The 3D circularly polarized ideal Alfvén waves

We assessed the convergence of the method by considering the oblique propagation of circularly
polarized Alfvén waves, which are exact non-linear solutions of the (R)MHD equations. This test
revealed that the measured convergence rates match the expected order of accuracy as shown in the
left panel of Fig. 1. One of the advantages of adopting 4th- (or higher) order schemes is that, for
problems without sharp gradients, the increase of accuracy brought by the scheme leads to a saving
in computational time for fixed accuracy. Let 𝜖𝑝 = 𝐶𝑁−𝑝 (𝑝 = 2, 4) be the final numerical error,
with 𝑝 order of the scheme and 𝐶 an unknown constant of ∝ 𝑂 (1). For a fixed accuracy 𝜖𝑝 it is
possible to demonstrate, after some straightforward algebra, that 2nd- and 4th-order schemes will
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Figure 1: 𝐿1-norm errors (left panel) and numerical diffusion (right panel) for the 3D circularly polarized
Alfvén wave test in the MHD regime (solid lines) and RMHD (dashed-dotted lines) as functions of the grid
resolution 𝑁𝑥 with 2nd- and 4th-order numerical schemes. The dashed lines give the ideal convergence slope
(left panel) and a reference slope for the numerical diffusion (right panel).

achieve 𝜖2 ∼ 𝜖4 with 𝑁4 ∼
√
𝑁2 grid points. As shown in Fig. 1, the fixed accuracy of 10−4 is

reached at 𝑁3
2 = 5123 for the 2nd-order, and at 𝑁3

4 = 343 for the 4th-order, resulting in a reduction
of the computational time by a factor ∼ 104. Another advantage of using a more accurate scheme
is the reduction of the numerical dissipation due to the round-off errors introduced by the grid
discretization. By measuring the diffusion intrinsic to the numerical scheme that inevitably damps
the Alfvén waves Alfvén waves ([12] we estimated an overall decay rate of ∼ 𝑁−4.9 for the 4th-order
scheme versus only ∼ 𝑁−3.0 for the 2nd-order (right panel of Fig. 1).

3.2 The relativistic current sheet

In our scheme we use a high-order formulation of the Upwind Constrained Transport method
employing all the EMF averages of [6] with the additional introduction of a new UCT-GFORCE
average in the RMHD framework to ensure ∇ ·B = 0. Pointwise reconstructions reduce the number
of transverse ghost zones to reconstruct the electric field at edges, resulting in a more efficient UCT
algorithm. The ideal relativistic current sheet shiwn in Fig. 2 reproduces the one by [13], but with
a more accurate and less dissipative solver (GFORCE rather than a linear solver).

3.3 The 3D MHD blast wave

The novel scheme ensures robustness by means of a sophisticated limiting strategy as demon-
strated by the severe blast configuration shown in Fig. 3 initially presented by Balsara & Spicer
[14], where 𝐵0 = 100/

√
4𝜋, 𝑝out = 1, and 𝑝in = 103. The limiter acts in two stages of the algorithm:

1. during the conversion ⟨𝑈𝑐⟩ ⇒ 𝑈𝑐 for a "reverting to 2nd-order" procedure based on either a
Jameson’s shock sensor [15] or by a more sensitive indicator that takes into account higher
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1Figure 2: Coloured maps for the density snapshots of the classical (top panel) and relativistic (bottom panel) current
sheet.
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Figure 3: MHD 3D blast wave problem at 𝑡 = 0.1. The left panels show density (top, in logarithmic scale), and
magnetic energy (bottom) at 𝑧 = 0. The right panels instead show the density (top) and magnetic energy density (bottom)
on the major (red line) and minor (black line) diagonals.
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Figure 4: Snapshots of the gas pressure 𝑝 (upper panels), and profiles of 𝐸𝑧 (lower panels) for the resistive rotor test at
its final time 𝑡 = 0.3. Each column reproduces the test performed with different resistivities 𝜂, from the nearly ideal case
𝜂 = 10−6 (left-hand panels), the intermediate case 𝜂 = 10−3 (central panels), and the resistive case 𝜂 = 10−1 (right-hand
panels).

order derivatives’ ratio [16];

2. during reconstruction at interfaces by means of an order reduction procedure that selects a
linear reconstruction when oscillations are generated.

This test has so far been feasible only with 2nd-order schemes.

3.4 The Res-RMHD rotor

This test consists of a high density disk rotating at relativistic speed with an angular velocity
of 𝜔 = 8.5 code units in a uniform ambient medium. As shown in Fig. 4, we performed a set
of simulations with increasing resistivities 𝜂 = 10−6, 10−3, 10−1 to explore the capabilities of the
scheme in dealing with progressively stiffer terms and assess that the complex pattern of shocks
and torsional Alfvén waves is correctly reproduced.

4. Conclusions

With the present work we presented a genuinely 4th-order accurate finite volume scheme for
both ideal and resistive (R)MHD accounting several innovative aspects that yield an accurate, robust
and efficient computational tool. Among the most relevant innovations there is the introduction
of pointwise to pointwise reconstruction operations that ease up the structure of the scheme, the
generalization of the UCT-GFORCE average to relativistic MHD, and the introduction of a limiter
that allows the 4th-order scheme to carry out severe tests. Future developments will include the
extension of the scheme to non-Cartesian geometries such as cylindrical and spherical reference
frames, and in General-Relativistic frameworks.
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