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Strong localisation via the so-called Anderson localisation is possible over different kinds of mass
chains in theory space. This localisation can be used to generate tiny neutrino masses and mixing
angles. We show that in the limit of strong disorder, these models predict hierarchial neutrino
masses and anarchical mixing angles. This is true for all geometries which can be local, non-local
or mixed. On the other hand, if one considers weak disorder scenarios, localisation in mixing
angles can also be obtained for certain models centered around the present experimental values.
These models can serve new models to explain neutrino mixing patterns.
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1. Introduction

It is now well established that the data from solar and atmospheric neutrino oscillations can be
explained by tiny neutrino masses within the range of (10−3 − 1) eV depending on the hierarchies
of the masses one chooses. In comparison with other fermion masses, the neutrino mass range is
at least six orders of magnitude smaller compared to the lightest, ı.e, the electron mass. Neutrino
oscillation data also fixes the mixing between in the leptonic sector to be large compared to the
small CKM mixing in the quark sector.

Non-zero neutrino masses require the Standard Model to be extended either in terms of new
particles and/or some additional symmetries. The mechanism to generate non-zero neutrino masses
also depends on whether neutrinos are Majorana or Dirac. The lowest dimension effective theory
beyond the Standard Model has Majorana neutrino mass operators at dimensional five level[1].
Concrete UV Models have typically been the famous seesaw models which have been discovered
several decades ago[2],[3],[4],[5],[6],[7] (for recent reviews on these models and their implications
please see [8],[9]). In these mechanisms, a heavy mass is used to suppress the weak scale to
generate a tiny neutrino mass. An alternative approach to generate the suppression is to use the
loop factor as in various radiative mechanisms[10],[11],[12]. For a review of various such models,
please see [13]. In addition to these mechanisms, there are several other viable models in literature
[14],[15],[16].

In the present work, we will focus on a novel mechanism recently suggested in [17]. This
mechanism imports the ideas of Anderson localisation[18] of condensed matter physics to four
dimensions and uses localisation in theory(field) space to generate tiny neutrino masses. It should
be noted that this mechanism crucially depends on "disorder" or “randomness” in couplings/masses.
While such randomness in masses/couplings is assumed in the present work, there are sources of
such randomness in more fundamental theories. For example, in effective theories based on String
theories, the randomness can be attributed to the variation of the couplings on the landscape[19].
In field theories, other examples exist where randomness is due to the presence of dark sectors with
large symmetries[20].

In the present work we show concrete models of Dirac and Majorana neutrino masses using the
Anderson localisation mechanism [21]. We show that these classes of models have some universal
features in the strong localisation limit. In this case, neutrino masses tend to be hierarchical with
anarchical mixing angles irrespective of the underlying geometry in theory space. In the weak
localisation regime, depending on the geometry, we show there exist models where in addition
to the masses, the mixing angles can also be "localised" in the theory space. Along the way, we
compare our results with clockwork models and their variations. The rest of the paper is organised
as follows. In the next section, we show the efficiency of Anderson localisation with respect to
other similar models like clockwork, random clockwork etc. In section 3), we present the results
for the strong localisation regime, for three geometric models. In section 4) concrete examples in
the weak localisation regime are presented where it is shown that mixing angles can be "localised"
at their experimental values. We close with an outlook and further work in section 5).
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2. Efficiency of Randomness: A comparison of Anderson mechanism with
clockwork and its variations

Consider the following Lagrangian consisting of 𝑁 chiral fermions, where 𝐿𝑖 (𝑅𝑖) represents
left(right) handed fields. The total lagrangian including the kinetic terms is represented by Eq.(1),
where H represents mass terms that follow the underlying geometry in the theory space.

L = L𝑘𝑖𝑛 −
𝑁∑︁

𝑖, 𝑗=1
𝐿𝑖H𝑖, 𝑗𝑅 𝑗 + ℎ.𝑐. (1)

In a general manner, encompassing several models, H can be represented as follows, with 𝐾 an
integer taking values {0, 1}:

H𝑖, 𝑗 =𝜖𝑖𝛿𝑖, 𝑗 − 𝑡𝑖 (𝛿𝑖+1, 𝑗 + 𝐾𝛿𝑖, 𝑗+1) (2)

In Eq.(2), when 𝐾 = 0 we recover the well-known Clockwork model[22] with 𝜖𝑖 = 𝑚 and
𝑡𝑖 = 𝑞𝑚. When 𝐾 = 1, we have the two-sided or double clockwork with similar assumptions on 𝜖
and 𝑡[23]1. Interesting variations happen when 𝜖𝑖 and 𝑡𝑖 are made random when 𝐾 = 0 [24] and
𝐾 = 1 [17]. The random clockwork model (𝐾 = 0) is when these parameters are chosen randomly
in a range rather than being universal[24]. The particularly interesting case of 𝐾 = 1 and random
𝜖𝑖 has been studied in [17] which is also the topic of this work. In this work, it has been shown that
when 𝜖𝑖 are randomly varied in an interval such as [2𝑡, 2𝑡 +𝑊], where𝑊 is a parameter, the model
exhibits Anderson-like localisation of its wave functions. The localisation is so effective that it can
lead to exponential hierarchies in the couplings.

The mass matrix for the fermionic fields {𝐿𝑖 , 𝑅𝑖}with K = 1 in Eq.(2), in the basis (𝐿1, 𝐿2, ...𝐿𝑁 ,

𝑅1, 𝑅2, ...𝑅𝑁 ) is a symmetric2 anti-diagonal block matrix

𝑀𝑚𝑎𝑠𝑠 =

[
0 𝑀𝐴

𝑀𝐴 0

]
where the 𝑀𝐴 elements are given as 𝑀𝐴

𝑖 𝑗
= 𝐿𝑖𝑀𝐴

𝑖 𝑗
𝑅 𝑗 and the matrix has the form

𝑀𝐴 =



𝜖1 −𝑡 0 ... 0
−𝑡 𝜖2 −𝑡 ... 0
0 −𝑡 𝜖3 ... 0
... ... ... ... ...

0 ... ... −𝑡 𝜖𝑁


Choosing the overscale to be O(1) TeV, let us consider that 𝜖𝑖 are random O(1) entries within a
range given by 𝜖𝑖 ∈ [−2𝑊, 2𝑊] and 𝑡 to be universal. To be concrete we choose 𝑡 to be 1/4 TeV,𝑊
to be 4 TeV and the number of sites, 𝑁 = 8. The resulting eigenvectors are plotted in Fig.(1). In the
left panel of the figure, we show the eigenvectors along the sites without introducing randomness
in 𝜖𝑖 . For concreteness, we choose 𝜖𝑖 = 𝑊 . In the right panel, we treat 𝜖𝑖 to be random in the range
mentioned above.

1This limit is very similar to the deconstruction models.
2We will assume all the masses are real in this work.
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Figure 1: - Mass modes 𝜒𝑖 of Local lattice with uniform sites 𝜖𝑖 = W & 𝑡𝑖 = 𝑡 (left) and random sites 𝑡𝑖 = 𝑡
& 𝜖𝑖 ∈ [-2W, 2W] (right).

Figure 2: Figure shows the median of the Log of Absolute of minimum component 0-mode of CW and
lightest mode of disorder models achieved 𝜉0 with N = 14 sites for 50 runs with 1000 trials.

As can be seen clearly, the random choice turns the unlocalised wavefunctions in the uniform
case into ones that are completely localised at a certain site in the random case. It also demonstrates
that all the wavefunctions are localised.

It can further be demonstrated that the Anderson localisation is an efficient method of local-
isation compared to other similar models like clockwork and its variations, where the zero also
typically gets localised. To show this, let us consider a parameter 𝜉𝑚𝑖𝑛0 , defined as:

𝜉𝑚𝑖𝑛0 = 𝑚𝑖𝑛{𝜉𝑖0}, ∀ 𝑖 ∈ [1, 𝑁] .

It should be noted that 𝜉𝑚𝑖𝑛0 picks the minimum of the zero mode eigenvector for the clockwork
models and the lightest mode in the random models. In Fig.(2) we show the values of the 𝜉𝑚𝑖𝑛0 in
the random clockwork model as well as various other random models. The number of sites, 𝑁 is
chosen to be 14. The parameters chosen for various cases are presented in Table (1). As can be
seen from the figure, randomness is much stronger when both the 𝑡 and 𝜖𝑖 parameters are chosen to
be random.

3. Strong Disorder: Neutrino Masses and Mixing

In condensed matter systems, there is a particularly interesting scenario where the disorder is
significantly large in the 𝜖 terms. This is called the strong disorder limit and it coincides with the limit
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Table 1: Parameters considered for Clockwork and both-sided Hamiltonian with W = 5 TeV and t = 1 TeV.

Scenario K 𝜖𝑖 (TeV) 𝑡𝑖 (TeV)
Clockwork 0 [2t, 2t+2W] [-t, t]
Random Site 1 [2t, 2t+2W] 𝑡

2
Random Coupling 1 W [-t, t]
Random Site & Coupling 1 [2t, 2t+2W] [-t, t]

𝜖𝑖 (𝑊) ≫ 𝑡 in the Hamiltonian H in Eq.(2). In this work, we show that in this limit, there are some
universal features regarding neutrino masses and mixing angles independent of the underlying
geometry of the theory space defining the mass matrix of Eq.(1). We consider three particular
geometries which are sort of extreme cases in terms of the "locality" of the "hopping"/"interaction"
terms. The three cases we consider are (i) Completely local (ii) Completely non-local (iii) partially
non-local. The case of completely local is the one where the hopping terms or 𝑡 terms are restricted
to be only nearest neighbour ones as in Ref.[25]. The case of completely non-local is considered
in Ref.[26] where in addition to nearest neighbour mass terms, mass terms with all other possible
sites are also considered with reducing weight depending on the distance from the sites. Finally,
the semi-local has so far not been considered in the literature as far as we know. Of all possible
choices, we consider a particularly interesting choice of the Petersen graph as a partially non-local
where in addition to the local mass terms, only a particular set of non-local terms are allowed as
per the geometry of the graph in theory space. In the following, we will discuss the results from the
three cases assuming three neutrino flavors. More details can be found in [21].

All three cases share the same Hamiltonian as in Eq.(1) as before but now extended to three
flavors, as we will need at least three Anderson localisations at work.

L𝑁𝑃 = 𝐿𝑘𝑖𝑛 −
𝑁∑︁

𝑖, 𝑗=1
𝐿𝛼
𝑖
H 𝛼,𝛽

𝑖, 𝑗
𝑅
𝛽

𝑗
+ ℎ.𝑐. (3)

The chiral fields of the above lagrangian with now interact with the Standard Model neutrino fields
to generate tiny neutrino masses determined by the matrix:

L𝐼𝑛𝑡. = 𝑌 𝑎,𝛼 �̄�𝑎𝐿𝐻𝑅𝛼1 + 𝑌𝑏,𝛽 �̄�𝑏𝑅𝐻𝐿
𝛽

𝑁
+ ℎ.𝑐. (4)

where a, b, 𝛼 and 𝛽 are flavor indices and 𝑅1 and 𝐿𝑁 are the modes in Eq.(3).
We will now present the distributions of neutrino masses and mixing angles for the three

geometries mentioned above. 1) Firstly the completely local case is specified only by nearest
neighbour "hopping" or interaction terms as given by Eq.(2) with 𝐾 = 1.

In the Fig.(3) we show the distributions for neutrino masses and mixing angles. The number of
sites, 𝑁 is chosen to be 8 and 𝜖𝑖 are varied between [−2𝑊, 2𝑊] with𝑊 = 5 TeV and 𝑡𝑖 = 𝑡 = 0.1
TeV. It should be noted that the parameters 𝑌 in Eq.(4) can also influence the results. Choosing
them to be O(1) we notice that there are two possible cases to generate intergenerational mixing (a)
site-mixing: 𝑌 are flavor diagonal and 𝐻𝛼,𝛽 are flavor off-diagonal and (b) Yukawa mixing: 𝑌 are
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Figure 3: Figure shows the mass distribution histogram (left) and mixing angle histogram (right) for 100000
runs produced in local theory space for site mixing with W = 5 TeV, t = 0.1 TeV and N = 8.

flavor off-diagonal and 𝐻𝛼,𝛽 are flavor diagonal. In Fig.(3), we present results assuming case (a)
site mixing. As can be seen from the figure (left) neutrino masses turn out to be hierarchical and
(right) the mixing angles are anarchical. The choice results with Yukawa mixing are quantitatively
different but qualitative features remain the same.

3.1 Non-Local Hamiltonian

We now move to the case of completely non-local Hamiltonians, by which we mean that the
hopping terms are permitted between any two sites not just the nearest neighbouring ones. A
particular example of this type was presented for scalars mass matrix in Ref [26],[27], in which
the strength of the hopping terms decays with the intersite distance. We will incorporate a similar
Hamiltonian to our case however now applied to fermions. It should be noted that this Hamiltonian
also exhibits Anderson localisation as the local case. The relevant Fermionic lagrangian is given by

L𝑙𝑜𝑛𝑔−𝑟𝑎𝑛𝑔𝑒 = 𝐿𝐾𝑖𝑛 −
𝑁∑︁

𝑖, 𝑗=1
𝐿𝑖𝜖𝑖, 𝑗𝑅 𝑗 −

𝑁∑︁
𝑖, 𝑗=1

𝐿𝑖
𝑡

𝑏 |𝑖− 𝑗 |
(
1 − 𝛿𝑖, 𝑗

)
𝑅 𝑗 + ℎ.𝑐. (5)

The total Dirac mass matrix including the long-range Hamiltonian in the basis of fermionic fields
𝐿𝑖 , 𝑅 𝑗 is given by

𝑀𝑙𝑜𝑛𝑔−𝑟𝑎𝑛𝑔𝑒 =



𝜖1
𝑡
𝑏

𝑡

𝑏2 ... 𝑡

𝑏𝑁−1
𝑡
𝑏

𝜖2
𝑡
𝑏

... 𝑡

𝑏𝑁−2
𝑡

𝑏2
𝑡
𝑏

𝜖3 ... 𝑡

𝑏𝑁−3

... ... ... ... ...
𝑡

𝑏𝑁−1 ... ... 𝑡
𝑏

𝜖𝑁

,


where we have assumed 𝑡𝑖 = 𝑡 and 𝑏 > 1 parameterises the decaying factor. For our numerical
results, we use similar values for 𝑁, 𝜖𝑖 and 𝑡. We choose 𝑁 = 14 and 𝜖𝑖 ∈ [−2𝑊, 2𝑊] with W =
5 TeV. 𝑏 is chosen to be 5 whereas 𝑡𝑖 = 𝑡 = 0.1 TeV. For the case (a) site mixing the results are
presented in Fig.(4). As can be seen, the results are very similar to the local case with neutrino
masses predominantly hierarchical (left) and the mixing angles completely anarchical.
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Figure 4: Figure shows the mass distribution histogram (left) and mixing angle histogram (right) for 100000
runs produced in non-local theory space for site mixing with W = 5 TeV, t = 0.1 TeV, b = 5 and N = 14.

3.2 Petersen Hamiltonian

The above two cases can be considered extreme cases in terms of locality/non-locality of the
hopping terms. It would be interesting to consider graphs that are somewhere in the middle in
terms of connectivity. The Petersen graph has connectivity more than the local graph but less than
the non-local graph. The graph is interesting in general graph theory as well as in network theory.
Lagrangians with such connections in theory space have not been studied before in literature. The
Lagrangian for Petersen graph for a general number of sites, assuming 𝑁 is even, is given by

𝐿𝑃𝑒𝑡𝑒𝑟𝑠𝑒𝑛 = 𝐿𝐾𝑖𝑛 −
𝑁∑︁

𝑖, 𝑗=1
𝐿𝑖𝜖𝑖, 𝑗𝑅 𝑗 −

𝑁/4∑︁
𝑖, 𝑗=1

𝐿𝑖
𝑡

𝑏 |𝑖− 𝑗 |
(
𝛿𝑖, 𝑗+𝑁/4 + 𝛿𝑖+𝑁/4, 𝑗

)
𝑅 𝑗

−
𝑁/2∑︁
𝑖, 𝑗=1

𝐿𝑖
𝑡

𝑏 |𝑖− 𝑗 |
(
𝛿𝑖, 𝑗+𝑁/2 + 𝛿𝑖+𝑁/2, 𝑗

)
𝑅 𝑗 −

𝑁∑︁
𝑖, 𝑗=𝑁/2+1

𝐿𝑖
𝑡

𝑏 |𝑖− 𝑗 |
(
𝛿𝑖, 𝑗+1

)
𝑅 𝑗

−
𝑁∑︁

𝑖, 𝑗=𝑁/2+1
𝐿𝑖

𝑡

𝑏 |𝑖− 𝑗 |
(
𝛿𝑖+1, 𝑗

)
𝑅 𝑗 + ℎ.𝑐. (6)

In the above, we have assumed that the weights of non-local hopping terms decay with respect to the
distance between them, similar to the case of completely non-local structure. The corresponding
Dirac mass matrix for N=8 fields in the basis of 𝐿𝑖 , 𝑅 𝑗 takes the following form

𝑀𝑃𝑒𝑡𝑒𝑟𝑠𝑒𝑛 =



𝜖1 0 𝑡

𝑏2 0 𝑡

𝑏4 0 0 0
0 𝜖2 0 𝑡

𝑏2 0 𝑡

𝑏4 0 0
𝑡

𝑏2 0 𝜖3 0 0 0 𝑡

𝑏4 0
0 𝑡

𝑏2 0 𝜖4 0 0 0 𝑡

𝑏4
𝑡

𝑏4 0 0 0 𝜖5
𝑡
𝑏

0 𝑡

𝑏3

0 𝑡

𝑏4 0 0 𝑡
𝑏

𝜖6
𝑡
𝑏

0
0 0 𝑡

𝑏4 0 0 𝑡
𝑏

𝜖7
𝑡
𝑏

0 0 0 𝑡

𝑏4
𝑡

𝑏3 0 𝑡
𝑏

𝜖8


It is evident that the matrix has a different structure compared to the one in Eq.(3.1). Given that

7
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Figure 5: Mass modes of Petersen graph with uniform sites 𝜖𝑖 = W (left) and random sites 𝜖𝑖 ∈ [−2𝑊, 2𝑊]
(right) for N = 8, W = 5 TeV, t = 1/4 TeV and b = 2.

Figure 6: Figure shows the mass distribution histogram (left) and mixing angle histogram (right) for 100000
runs produced in non-local theory space for site mixing with W = 5 TeV, t = 0.5 TeV, b = 3 and N = 14.

the eigenfunctions of this matrix have not been studied in the literature, we found it important
to demonstrate the localisation features of this lagrangian. In Fig.5, we showed the localisation
features in the wavefunctions and compared to the case where the parameters are uniform instead of
random. The numerical values of the parameters are chosen to be 𝑁 = 8,𝑊 = 5 TeV, 𝑏 =2, and 𝑡 =
0.25 TeV. As can be seen from the figure, in the uniform case (all 𝜖𝑖 = 𝑊), the wave functions have
a kink-like form, with half (other half) of them having the maxima (minima) at the first four sites
(last four) sites. This is quite interesting and could have potential implications in various areas of
physics. In the right graph, we see that localisation is achieved in this case too in the strong disorder
limit.

Without much further ado, we now move to present the results from neutrino masses and
mixing angles. We consider 𝑁 = 12 sites with 𝜖𝑖 ∈ [-2W,2W] and 𝑡𝑖 = t with W = 5 TeV, b = 5 and
t = 0.1 TeV. As before we present results for the case of site-mixing, i.e, mixing in the 𝐻𝛼,𝛽. The
Yukawa couplings are considered to be diagonal unit matrix. The results are plotted in Fig.6. The
results confirm our assertions that in general in the strong disorder scenario, neutrino masses tend
to be hierarchical with anarchical mixing angles.

8
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Figure 7: Figure shows the distribution of masses produced and histogram of mixing angle for 100000 runs
produced for Yukawa mixing with parameters as in table (middle) and site mixing couplings (right) with W
= 5 TeV.

4. Weak Disorder: Neutrino Masses and Mixing

In the weak disorder limit, 𝜖𝑖 ∈ [𝑊 − 𝑡,𝑊 + 𝑡] the geometry of the graph plays an important
role. We have studied several theory spaces encompassing all three kinds of scenarios for hopping
terms (a) completely local (b) completely non-local and (c) mixed as in the Petersen graph. In each
case, both site mixing and Yukawa mixing have been considered. The general features of the Weak
disorder limit for neutrino masses and mixing angles are:

• localisation is typically not very strong and the resultant hierarchies are significantly lower.
This impacts the neutrino mass scales. However, both hierarchical and inverse hierarchical
neutrino masses are possible due to "precision pruning" [21].

• Mixing is crucially dependent on whether one chooses "site mixing" or Yukawa mixing. Site
Mixing can lead to semi-anarchial or dual localisation mixing angles whereas in Yukawa
mixing, it is possible to get stable neutrino mixing angles for a choice of Yukawa couplings
which are all O(1).

• Explicit examples can be found where neutrino masses and mixing angles are localised and
fit in the experimental values.

We now present results for neutrino masses and mixing angles for all three cases (a) local mixing
(b) non-local mixing and (c) Petersen graph. In Fig.7, we show the results for the three cases.
All the three examples show stable distributions for neutrino mixing angles centred around the
experimental values. The explicit values of the Yukawa couplings chosen for the three cases are
listed below in Table 2.

5. Outlook

We presented a new class of models for neutrino masses and mixing based on "Anderson" like
localization in theory space. We have considered two limiting cases of the parameters which are
the strong disorder and weak disorder limits. The qualitative features in both the limits are quite
distinctive. In the strong disorder case, irrespective of the underlying geometry some universal
features can be drawn for neutrino masses and mixing angles: hierarchical masses and anarchical
mixing angles. We considered three different geometries: a) completely local b) completely non-
local and finally c) mixed, where we considered Petersen Graph. In all these cases, in strong disorder
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Table 2: Parameters considered for the above scenario unless mentioned, where 𝑊 = 5 TeV, 𝑏 = 7 and
𝑡 = 0.2 TeV

Scenario N 𝜖𝑖 𝑡𝑖 Yukawa Couplings (𝑌𝛼,𝛽)

Local 9 [W-t, W+t] t


1 0.5 0.4

0.5 1 0.3
0.5 0.9 1


Non-local 14 [W-t, W+t] t


1 0.4 0.3

0.2 1 0.7
0.8 0.6 1


Petersen 12 [W-t, W+t] t


1 0.3 0.2

0.3 1 0.1
0.4 0.6 1


limit, the neutrino masses are hierarchical and mixing angles are anarchical. The weak disorder
limit is far more complex and geometry-dependent. However, it is possible to have geometries
where the mixing angles are "localised" around the experimental values. More details can be found
in [21].

6. Acknowledgements

AS thanks CSIR, Govt. of India for SRF fellowship No. 09/0079(15487)/2022-EMR-I. SKV is
supported by SERB, Govt. of India Grants numbered, CRG/2021/007170 and MTR/2022/000255.

References

[1] Steven Weinberg. Baryon-and lepton-nonconserving processes. Physical Review Letters,
43(21):1566, 1979.

[2] Peter Minkowski. 𝜇→ e𝛾 at a rate of one out of 109 muon decays? Physics Letters B,
67(4):421–428, 1977.

[3] Tsutomu Yanagida. Horizontal gauge symmetry and masses of neutrinos. Conf. Proc. C,
7902131:95–99, 1979.

[4] M Gell-Mann, P Ramond, and R Slansky. Supergravity ed p van nieuwenhuizen and dz
freedman. Amsterdam: North-Holland) p, 315:79–18, 1979.

[5] SL Glashow. The future of elementary particle physics. In Quarks and Leptons: Cargèse
1979, pages 687–713. Springer, 1980.

[6] Rabindra N Mohapatra and Goran Senjanović. Neutrino mass and spontaneous parity non-
conservation. Physical Review Letters, 44(14):912, 1980.

10



P
o
S
(
H
Q
L
2
0
2
3
)
0
2
5

Neutrino masses and mixing driven by Randomness Sudhir K. Vempati

[7] J. Schechter and José W. F. Valle. Neutrino masses in su(2)⊗u(1) theories. Physical Review
D, 22(9):2227, 1980.

[8] André De Gouvêa. Neutrino mass models. Annual Review of Nuclear and Particle Science,
66:197–217, 2016.

[9] Sacha Davidson, Enrico Nardi, and Yosef Nir. Leptogenesis. Phys. Rept., 466:105–177, 2008.

[10] Ernest Ma. Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Physical
Review D, 73(7):077301, 2006.

[11] A Zee. Quantum numbers of majorana neutrino masses. Nuclear Physics B, 264:99–110,
1986.

[12] KS Babu. Model of “calculable” majorana neutrino masses. Physics Letters B, 203(1-2):132–
136, 1988.

[13] KS Babu and Chung Ngoc Leung. Classification of effective neutrino mass operators. Nuclear
Physics B, 619(1-3):667–689, 2001.

[14] Colin D Froggatt and Holger Bech Nielsen. Hierarchy of quark masses, cabibbo angles and
cp violation. Nuclear Physics B, 147(3-4):277–298, 1979.

[15] S. F. King. Neutrino mass models. Rept. Prog. Phys., 67:107–158, 2004.

[16] Steven Weinberg. The problem of mass. Transactions of the New York Academy of Sciences,
38(1 Series II):185–201, 1977.

[17] Nathaniel Craig and Dave Sutherland. Exponential hierarchies from anderson localization in
theory space. Physical Review Letters, 120(22):221802, 2018.

[18] P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109:1492–1505,
Mar 1958.

[19] Vĳay Balasubramanian, Jan de Boer, and Asad Naqvi. Statistical Predictions From Anarchic
Field Theory Landscapes. Phys. Lett. B, 682:476–483, 2010.

[20] Keith R. Dienes, Jacob Fennick, Jason Kumar, and Brooks Thomas. Dynamical Dark Matter
from Thermal Freeze-Out. Phys. Rev. D, 97(6):063522, 2018.

[21] Aadarsh Singh and Sudhir Vempati. Disordered neutrino flavours. Coming Soon, To be
Published.

[22] Gian F Giudice and Matthew McCullough. A clockwork theory. Journal of High Energy
Physics, 2017(2):1–39, 2017.

[23] Aadarsh Singh. Neutrino mass from precision-prune cancellation models and clockwork
variants. Coming Soon Yet to be Published.

11



P
o
S
(
H
Q
L
2
0
2
3
)
0
2
5

Neutrino masses and mixing driven by Randomness Sudhir K. Vempati

[24] Fernando Abreu de Souza and Gero von Gersdorff. A random clockwork of flavor. Journal
of High Energy Physics, 2020(2):1–35, 2020.

[25] N. Craig and D. Sutherland. Exponential hierarchies from anderson localization in theory
space. Physical Review Letters, 120(22):221802, 2018.

[26] A. Tropper and J. J. Fan. Randomness-assisted exponential hierarchies. Physical Review D,
103(1):015001, 2021.

[27] Pavel A Nosov, Ivan M Khaymovich, and VE Kravtsov. Correlation-induced localization.
Physical Review B, 99(10):104203, 2019.

12


	Introduction
	Efficiency of Randomness: A comparison of Anderson mechanism with clockwork and its variations
	Strong Disorder: Neutrino Masses and Mixing
	Non-Local Hamiltonian
	Petersen Hamiltonian

	Weak Disorder: Neutrino Masses and Mixing
	Outlook
	Acknowledgements

