



# Analysis of semileptonic $B \rightarrow a_1(1260)\ell^- \bar{\nu}_\ell$ process within SMEFT framework

# Manas Kumar Mohapatra<sup>*a*,\*</sup> and Rukmani Mohanta<sup>*a*</sup>

<sup>a</sup>School of Physics, University of Hyderabad, Hyderabad - 500046, India

*E-mail:* manasmohapatra12@gmail.com, rmsp@uohyd.ac.in

Motivated by the prospects of the ongoing B meson experiments, we study the exclusive  $B \rightarrow a_1(1260)\ell^-\bar{\nu}_\ell$  process within the Standard model effective field theory formalism. The new physics parameters are constrained by using the experimental branching fractions of the (semi)leptonic  $B \rightarrow \ell \bar{\nu}$  and  $B \rightarrow (\pi, \rho, \omega)\ell \bar{\nu}$  processes (where  $\ell = e, \mu, \tau$ ) which undergoes  $b \rightarrow u\ell \bar{\nu}$  quark level transitions. We then study a comprehensive angular coefficient analysis of the exclusive  $B \rightarrow a_1(1260)\ell^-\bar{\nu}_\ell$  process in the Standard model and in the presence of various new physics operators.

16th International Conference on Heavy Quarks and Leptons (HQL2023) 28 November-2 December 2023 TIFR, Mumbai, Maharashtra, India

#### \*Speaker

<sup>©</sup> Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

#### 1. Introduction

The discrepancy between the SM prediction and the experimental measurement have been observed in various  $b \rightarrow u\ell v$  quark level transition decays. The measurement of the branching ratio of the leptonic  $B \rightarrow \tau v$  process, observed in Ref. [1] by Belle and BaBar collaborations [2], is not in good agreement with the SM values. An upper bound on the branching fraction of  $B \rightarrow \pi \tau v$ was reported to be  $2.5 \times 10^{-4}$  by Belle collaboration[3]. Additionally, the branching ratios of the exclusive  $B \rightarrow \mu v$  and  $B \rightarrow (\pi, \rho, \omega)\mu v$  decays still show mild deviations from their SM results. Inspired by these differences of the measurement values from the SM expectations, we study the  $B \rightarrow a_1 \ell v$  mode in this work. The observations by BaBar and Belle collaborations [4] in the charmless hadronic  $B^0 \rightarrow a_1(1260)\pi$  decay channel helps us to probe the detailed theoretical study in exclusive semileptonic  $B \rightarrow a_1 \ell v$  decay mode. In principle, the  $B \rightarrow a_1 \ell v$  decay mode can be easily access in *B* factory experiments in near future. In this work, our aim is to explore the consequences of a model independent effective theory formalism so called the Standard model effective field theory (SMEFT) approach on the exclusive semileptonic  $B \rightarrow a_1 \ell v$  decay mode. We mainly study the angular coefficient structure in the SM as well as in the presence of SMEFT NP operators.

## 2. Theoretical Framework

The SMEFT Lagrangian at dim - 6 level can be expressed as [5]:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}}^{(4)} + \frac{1}{\Lambda^2} \sum_i C_i O_i,$$

where  $\mathcal{L}_{SM}^{(4)}$  is the SM Lagrangian and  $\Lambda$  is the NP scale. The relevant SMEFT dimension - six operators contriutiong to  $b \rightarrow u\ell v$  processes  $O_i$  can be obtained by integrating out the heavy NP particles. The EFT WCs in terms of the dim - 6 SMEFT operators, the above Wilson coefficients get modified and can be expressed as follows

$$C_{V_L}^{(\ell)} = -\frac{V_{ud}}{V_{ub}} \frac{v^2}{\Lambda^2} \left[ \tilde{C}_{\ell q}^{(3)} \right]_{\ell \ell 13}, \qquad \qquad C_{V_R}^{(\ell)} = \frac{1}{2V_{ub}} \frac{v^2}{\Lambda^2} \left[ \tilde{C}_{\phi ud} \right]_{13}, \qquad (1)$$

$$C_{S_L}^{(\ell)} = -\frac{1}{2V_{ub}} \frac{v^2}{\Lambda^2} \left[ \tilde{C}_{\ell equ}^{(1)} \right]_{\ell \ell 31}^*, \qquad C_{S_R}^{(\ell)} = -\frac{V_{ud}}{2V_{ub}} \frac{v^2}{\Lambda^2} \left[ C_{\ell edq} \right]_{\ell \ell 31}^*, \qquad (2)$$

$$C_T^{(\ell)} = -\frac{1}{2V_{ub}} \frac{v^2}{\Lambda^2} \left[ \tilde{C}_{\ell e q u}^{(3)} \right]_{\ell \ell 3 1}^*.$$
(3)

The four dimesional differential decay distribution amplitude is given as follows

$$\begin{aligned} \frac{d^4 \Gamma(\bar{B} \to a_1(\to \rho_{\parallel(\perp)}\pi)\ell^-\bar{v}_\ell)}{dq^2 \, d\cos\theta \, d\phi \, d\cos\theta_V} &= \mathcal{N}_{a_1}^{\parallel(\perp)} |\vec{p}_{a_1}| \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \left\{ I_{1s,\parallel(\perp)}^{a_1} \sin^2\theta_V + I_{1c,\parallel(\perp)}^{a_1} \left(3 + \cos 2\theta_V\right) \right. \\ &+ \left( I_{2s,\parallel(\perp)}^{a_1} \sin^2\theta_V + I_{2c,\parallel(\perp)}^{a_1} \left(3 + \cos 2\theta_V\right) \right) \cos 2\theta \\ &+ I_{3,\parallel(\perp)}^{a_1} \sin^2\theta_V \sin^2\theta \cos 2\phi + I_{4,\parallel(\perp)}^{a_1} \sin 2\theta_V \sin 2\theta \cos\phi \\ &+ I_{5,\parallel(\perp)}^{a_1} \sin 2\theta_V \sin\theta \cos\phi \\ &+ \left( I_{6s,\parallel(\perp)}^{a_1} \sin^2\theta_V + I_{6c,\parallel(\perp)}^{a_1} \left(3 + \cos 2\theta_V\right) \right) \cos\theta \\ &+ I_{7,\parallel(\perp)}^{a_1} \sin 2\theta_V \sin\theta \sin\phi \right\} . \end{aligned}$$

The symbol  $\perp$  and  $\parallel$  refer to the transverse and longitudinal polarizations of  $\rho$  meson. The angular coefficient functions in the SM and NP can be obtained from Ref. [6].

## 3. Constraint on the new physics couplings

Using the data of the  $B \to (\mu, \tau)\nu$ ,  $B \to \pi(\mu, \tau)\nu$  and  $B \to (\rho, \omega)(\mu, \tau)\nu$  decays, we perform a naive  $\chi^2$  analysis to constraint the NP SMEFT coefficient. We obtained the SMEFT new physics couplings where the input parameters are considered from the Ref. [1]. We study the presence of only the (vector+scalar± tensor) operator in this analysis. The SMEFT couplings are given below.

| SMEFT couplings                                                                                                                                | Best fit ( $\mu$ mode)  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| $[\tilde{C}_{\ell q}^{(3)}]_{\ell \ell 13}, ([\tilde{C}_{\ell q}^{(3)}]_{\ell \ell 13}, [\tilde{C}_{\ell e q u}^{(1)}]_{\ell \ell 31})$        | 0.013, (0.016, 0.001)   |
| $[\tilde{C}^{(3)}_{\ell equ}]_{\ell \ell 31}, ([\tilde{C}^{(3)}_{\ell q}]_{\ell \ell 13}, [\tilde{C}_{\ell edq}]_{\ell \ell 31})$              | -0.0008, (0.015, 0.004) |
| $[\tilde{C}_{\ell e q u}^{(1)}]_{\ell \ell 3 1}, ([\tilde{C}_{\ell q}^{(3)}]_{\ell \ell 1 3}, [\tilde{C}_{\ell e q u}^{(3)}]_{\ell \ell 3 1})$ | -0.004, (0.113, 0.003)  |
| $[\tilde{C}_{\ell e d q}]_{\ell \ell 31}, ([\tilde{C}^{(1)}_{\ell e q u}]_{\ell \ell 31}, [\tilde{C}^{(3)}_{\ell e q u}]_{\ell \ell 31})$      | 0.005, (-0.004, -0.001) |
| $([\tilde{C}_{\ell e d q}]_{\ell \ell 31}, [\tilde{C}^{(3)}_{\ell e q u}]_{\ell \ell 31})$                                                     | (0.006, -0.001)         |
| $([\tilde{C}^{(1)}_{\ell equ}]_{\ell \ell 31}, [\tilde{C}_{\ell edq}]_{\ell \ell 31})$                                                         | (0.002, 0.0015)         |

**Table 1:** Best fit values of SMEFT coefficients at  $m_b$  scale, under the contraints from  $b \rightarrow u \ell v$  modes.

# 4. Angular coefficients analysis: $B \rightarrow a_1 (\rightarrow \rho_{||} \pi) \mu \bar{\nu}$

We focus on the longitudinal analysis of  $B \to a_1(1260)\ell\bar{\nu}$  process. The coefficient functions  $I_{(1s,||)}^{a_1}, I_{(2s,||)}^{a_1}, I_{(3,||)}^{a_1}, I_{(4,||)}^{a_1}, I_{(6s,||)}^{a_1}$ , and  $I_{(1c,||)}^{a_1}$  are independent of the tensor coefficient  $\tilde{C}_T$ , providing the only the scalar and vector effects. The  $I_{(6s,||)}^{a_1}$  displays a significant deviation in the presence of NP couplings whereas the others lies within  $1\sigma$  of the SM contribution. The effect of scalar, vector and tensor couplings on  $I_{(5,||)}^{a_1}$  are distinguished slightly at low  $q^2$  region. However,





**Figure 1:** The  $q^2$  dependency of the angular coefficients of  $B \rightarrow a_1(\rho_{||}\pi)\mu\bar{\nu}$  decay mode in SM (cyan), scalar+vector (magenta) [NP-T] and scalar+vector + tensor contribution (yellow) [NP+T].

the impact without tensor are clearly remarked from the SM contribution though the central value aways from the  $1\sigma$  bound of SM. In bottom-right panel of Fig. 1, the variation of  $I_{(6s,||)}^{a_1}$  w.r.t  $q^2$  with tensor coefficient provides a large deviation from the SM.

#### 5. Conclusion

The theoretical study of  $B \to a_1(1260)\ell\bar{\nu}$  process requires an assessment of the accuracy of hadronic uncertainties. The  $B^0 \to a_1^{\pm}\pi^{\mp}$  mode observed by BABAR and Belle Collaboration indicates to study the semileptonic decays in future.

## References

- [1] ParticleDataGroup:2022pths, Review of Particle Physicsg, PTEP 2022 (2022) 083C01
- [2] Kronenbitter, B. and others, Measurement of the branching fraction of  $B^+ \rightarrow \tau^+ \nu_{\tau}$  decays with the semileptonic tagging method, Phys. Rev. D 92, 051102(R)
- [3] Lees, J. P. and others, Search for  $B^0 \to \pi^- \tau^+ \nu_\tau$  with hadronic tagging at Belle, Phys.Rev.D 93 (2016) 3, 032007
- [4] Hamer, P. and others, Search for  $B^0 \to \pi^- \tau^+ \nu_\tau$  with hadronic tagging at Belle, Phys.Rev.D 88 (2013) 3, 031102
- [5] Greljo, Admir, Salko and others, *SMEFT restrictions on exclusive*  $b \rightarrow u\ell v$  decays, *JHEP 11* (2023) 023
- [6] Colangelo and others, Probing New Physics with  $\bar{B} \to \rho(770) \ell^- \bar{v}_\ell$  and  $\bar{B} \to a_1(1260) \ell^- \bar{v}_\ell$ , Phys.Rev.D 100 (2019) 7, 075037