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1. Introduction

Neutrino physics has made remarkable progress since the discovery of neutrino mass and
mixing in 1998 [1], with the reactor angle, unknown before 2012, accurately measured by Daya
Bay [2]. The oscillation parameters are determined from global fits to be in the three sigma ranges
given in Table 1 [3] where the meaning of the angles is given in Table 2.

NuFIT 5.2
θ12 [◦] 31.3→ 35.7
sin2

θ12 0.27→ 0.34
θ13 [◦] 8.2→ 8.9
sin2

θ13 0.020→ 0.024
θ23 [◦] 40→ 52
sin2

θ23 0.405→ 0.62
δ [◦] 0→ 44 & 108→ 360
∆m2

21 [10−5eV2] 6.2→ 8.3
∆m2

31 [10−3eV2] 2.4→ 2.6

Table 1: The nu-fit 5.2 results with approximate three
sigma ranges without SK atmospheric data for the nor-
mal ordered (NO) case, favoured by current data [3].
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Table 2: Neutrino mixing angles may be rep-
resented as Euler angles relating the states in
the charged lepton mass basis (νe,νµ ,ντ ) to the
mass eigenstate basis states (ν1,ν2,ν3).

The measurement of the reactor angle had a major impact on models of neutrino mass and
mixing as reviewed in [4, 5, 6, 7, 62] (for earlier reviews see e.g. [9, 10, 11]).

2. Quark vs Lepton Mixing

The PMNS mixing matrix is (in the PDG parametrisation):

Uli =

 c12c13 s12c13 s13e−iδ

−s12c23− c12s13s23eiδ c12c23− s12s13s23eiδ c13s23

s12s23− c12s13c23eiδ −c12s23− s12s13c23eiδ c13c23

 (2.1)

where l = e,µ,τ labels the charged lepton mass eigenstates and i = 1,2,3 labels the three neutrino
mass eigenstates, and s13 = sinθ13, etc. A similar parameterisation applies to the CKM matrix, but
with (very) different angles for quarks and leptons. In the case of Majorana neutrinos, the PMNS
matrix also involves the Majorana phase matrix: PM = diag(1,ei α21

2 ,ei α31
2 ) which post-multiplies

the above matrix.
It is interesting to compare quark mixing, which is small,

sq
12 = λ , sq

23 ∼ λ
2, sq

13 ∼ λ
3 (2.2)

where the Wolfenstein parameter is λ = 0.226±0.001, to lepton mixing, which is large,1

s13 ∼ λ/
√

2, s23 ∼ 1/
√

2, s12 ∼ 1/
√

3. (2.3)

1As in section 1 lepton parameters are denoted without a superscript l.
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The smallest lepton mixing angle θ13 (the reactor angle), is of order the largest quark mixing
angle θ

q
12 = θC = 13.0◦ (the Cabibbo angle, where sinθC = λ ). There have been attempts to relate

quark and lepton mixing angles such as postulating a reactor angle θ13 = θC/
√

2 [12, 13, 14]
and the CP violating lepton phase δ ∼ −π/2 (c.f. the well measured CP violating quark phase
δ q ∼ (π/2)/

√
2).

3. Simple patterns of lepton mixing

Before the measurement of θ13, various simple ansatzes for the PMNS matrix were proposed
involving a zero reactor angle and bimaximal atmospheric mixing, s13 = 0 and s23 = c23 = 1/

√
2,

leading to a PMNS matrix of the form,

U0 =

 c12 s12 0
− s12√

2
c12√

2
1√
2

s12√
2
− c12√

2
1√
2

 , (3.1)

where the solar angle θ12 may take various values and the zero subscript reminds us that this form
has θ13 = 0 (and θ23 = 45◦).

For tri-bimaximal (TB) mixing [15, 16, 17], one assumes a solar angle s12 = 1/
√

3, c12 =√
2/3 (θ12 = 35.26◦) in Eq. (3.1),

UTB =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 . (3.2)

For bimaximal (BM) mixing (see e.g. [18, 19, 20, 21] and references therein), one has maximal
solar angle s12 = c12 = 1/

√
2 (θ12 = 45◦) into Eq. (3.1),

UBM =


1√
2

1√
2

0

−1
2

1
2

1√
2

1
2 −1

2
1√
2

 . (3.3)

For golden ratio (GRa) mixing [22, 23, 24, 25, 26], the solar angle is given by tanθ12 = 1/φ ,
where φ = (1+

√
5)/2 is the golden ratio which implies θ12 = 31.7◦. There are two alternative

versions where cosθ12 = φ/2 and θ12 = 36◦ [27] which we refer to as GRb mixing, and GRc where
cosθ12 = φ/

√
3 and θ12 ≈ 20.9◦. Finally another possibility is the hexagonal mixing (HEX) with

solar angle θ12 = π/6 [28, 29].
All these proposals are typically enforced by finite discrete symmetries such as A4,S4,S5 (for

a discussion see e.g. [4]). For example S4 can lead to TB mixing as depicted in Fig. 1.
After the reactor angle was measured, which excluded all these ansatze, there were various

proposals to maintain the notion of predictivity of the leptonic mixing parameters. Indeed the
measurement of the reactor angle opens up the possibility to predict the CP phase δ , which is not
directly measured so far and remains poorly determined even indirectly. Two approaches have
been developed, in which some finite symmetry (typically a subgroup of A4,S4,S5) can enforce a
particular structure of the PMNS matrix consistent with a non-zero reactor angle, leading to solar
and atmospheric sum rules, as depicted in Fig. 2, and discussed further in the following sections.
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Figure 1: A schematic diagram that illustrate the way that the two subgroups ZU
2 ×ZS

2 and ZT
3 of a finite

group work in the charged lepton and neutrino sectors in order to enforce a particular pattern of PMNS
mixing. In this example, the group S4 leads to TB mixing.

Figure 2: In order to generate a non-zero (13) PMNS element, one or more of the generators S,T,U must
be broken. In the left panel we depict T breaking leading to charged lepton mixing corrections and possible
solar sum rules. In the right panel, U is broken, while either S or SU is preserved leading to neutrino mixing
corrections and atmospheric sum rules.

4. Solar sum rules

The first approach, which leads to solar sum rules, is to assume that the above patterns of
mixing still apply to the neutrino sector, but receive charged lepton mixing corrections due to the
PMNS matrix being the product of two unitary matrices, which in our convention is written as
UeLU†

νL , where U†
νL is assumed to take the BM, TB or GR form, while UeL differs from the unit

matrix. If UeL involves negligible 13 charged lepton mixing, then it is possible to generate a non-
zero 13 PMNS mixing angle, while leading to correlations amongst the physical PMNS parameters,
known as solar mixing sum rules [30, 31, 32, 33]. This scenario may be enforced by a subgroup of
A4,S4,S5 which enforces the Uν structure [4] while allowing charged lepton corrections.

From the above discussion we see that the physical PMNS matrix in Eq.2.1 is given by
UPMNS = UeUν , where we write Ue = UeL and Uν = U†

νL . Now suppose that Uν = U0 is the

3
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matrix in Eq.3.1, while Ue corresponds to small but unknown charged lepton corrections. This
was first discussed in [30, 31, 32, 33] for the case of TB neutrino mixing where the following
sum rule involving the lepton mixing parameters, including crucially the CP phase δ , was first
derived [30, 31, 32, 33] :

θ12 ≈ 35.26o +θ13 cosδ . (4.1)

For trimaximal mixing θ12 ≈ 35.26o (where 35.26o = sin−1 1√
3
) this sum rule predicts cosδ ≈ 0

consistent with δ ≈ 90o or 270o, with the former being disfavoured by the global fits.
To derive this sum rule, let us consider the case of the charged lepton mixing corrections

involving only (1,2) mixing, so that the PMNS matrix is given by [33],

UPMNS =

 ce
12 −se

12e−iδ e
12 0

se
12eiδ e

12 ce
12 0

0 0 1




cν
12 sν

12 0
− sν

12√
2

cν
12√
2

1√
2

sν
12√
2
− cν

12√
2

1√
2

=


· · · · · · − se

12√
2
e−iδ e

12

· · · · · · ce
12√
2

sν
12√
2
− cν

12√
2

1√
2

 (4.2)

Comparing Eq. 4.2 to the PMNS parametrisation in Eq.2.1, we identify the exact sum rule re-
lations [33], in terms of the elements |Ue3|, |Uτ1|, |Uτ2|, |Uτ3| identified above. The first element
|Ue3| =

se
12√
2

implies a reactor angle θ13 ≈ 9◦ if θe ≈ θC (see e.g. the models in [12]). The second
and third elements, |Uτ1|, |Uτ2| after eliminating θ23, yield a new relation between the PMNS pa-
rameters, θ12, θ13 and δ . Expanding to first order, such charged lepton mixing corrections to TB
neutrino mixing gives the approximate solar sum rule relations in Eq.4.1 [30].

The above derivation assumes only θ e
12 charged lepton corrections. However it is possible to

derive an accurate sum rule which is valid for both θ e
12 and θ e

23 charged lepton corrections (while
keeping θ e

13 = 0). Indeed, using a similar matrix multiplication method to that employed above
leads to the exact results [34]

Uτ1 = sν
12(s

ν
23ce

23− cν
23se

23eiδ e
23), Uτ2 =−cν

12(s
ν
23ce

23− cν
23se

23eiδ e
23),

|Uτ1|
|Uτ2|

=
sν

12
cν

12
= tν

12. (4.3)

This relation is easy to understand if we consider only one charged lepton angle θ e
12 to be non-zero,

then the third row of the PMS matrix in Eq. (4.2) is unchanged, so the elements Uτi are uncorrected.
However, the last relation in Eq. 4.3 clearly holds even if both θ e

12 and θ e
23 are non-zero due to a

cancellation in the ratio Uτ1
Uτ2

. However it fails if θ e
13 6= 0 [35].

The last relation in Eq. 4.3 can be translated into a prediction for cosδ as [34]2

cosδ =
tanθ23 sinθ 2

12 + sinθ 2
13 cosθ 2

12/ tanθ23− (sinθ ν
12)

2
(
tanθ23 + sinθ 2

13/ tanθ23
)

sin2θ12 sinθ13
, (4.4)

where only the parameter sinθ ν
12 is model dependent and we have respectively sinθ ν

12 = 1/
√

3,
sinθ ν

12 = 1/
√

2, tanθ ν
12 = 1/ϕ and θ ν

12 = π/5, cosθ ν
12 = ϕ/

√
3 and θ ν

12 = π/6 for mixing based on
TBM, BM, GRa, GRb, GRc and HEX where ϕ = (1+

√
5)/2.

To leading order in θ13, Eq.4.4 for the case of TB neutrino mixing returns the sum rule in
Eq.4.1. There has been much activity in exploring the phenomenology of various such solar mixing
sum rules (see e.g. [34, 37]). On the other hand, for a GUT example with θ e

12 ∼ θC/3 and θ e
13 ∼ θC

which violates the solar mixing sum rules see [38].
2For an alternative derivation of an equivalent sum rule see [36].
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Figure 3: Summary of exact solar sum rule predictions derived from Eq. (4.4) for different types of neutrino
mixing. For example, in the top left hand panel, we present the sum rule prediction for TBM for cosδ , as a
function of sin2

θ12, for the different choices of sinθ23 given in the legend. The width of the diagonal bands
are given by the 3σ range of sinθ13. The horizontal (green) and vertical (yellow) bands are the 1σ ranges for
cosδ and sin2

θ12, respectively, while the 3σ range for sin2
θ12 in Table 1 defines the entire range shown in

the plot. Similar plots for BM, GRa, GRb, GRc and HEX are presented respectively on the top right, center
right, center left, bottom left, bottom right panels.

In Figure 3 we present the exact sum rules prediction arising from charged lepton corrections
as in Eq. (4.4) for TBM, BM, GRa, GRb, GRc and HEX and the constraints from the fit of the
neutrino oscillation data [39]. We require cosδ to fall in the physical range −1 < cosδ < 1 and
we present it in the y-axis 3. In all panels the x-axis is sin2

θ12 and the different colour bands are

3Note that the 3σ excluded region δ = 45◦−107◦ does not mean that cosδ = 0.71→−0.29 is excluded since the
entire range δ = 180◦− 360◦ is allowed and hence the entire range of cosδ is allowed. This highlights a weakness of
the sum rules which only predict cosδ and not δ itself.
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sampled in the allowed sin2
θ23 region. The width of the band is given by allowing sin2

θ13 to vary
in its 3σ range. The yellow and green bands are the 1σ range respectively of sin2

θ12 and cosδ .
For TBM mixing (top-left panel), where sinθ ν

12 = 1/
√

3 in the neutrino sector, the charged
lepton corrections lead to consistent results in all parameter space, with the prediction for cosδ

being consistent with the leading order prediction in Eq. 4.1 cosδ ≈ 0 for trimaximal mixing
sin2

θ12 ≈ 0.33. For BM mixing (top-right panel), where θ ν
12 = 45◦, the sum rule predicts cosδ

almost outside the physical range and so is close to being excluded at 3σ and only low values of
sin2

θ12 and high values of sin2
θ12 are still viable. Similarly for GRc mixing (bottom-left panel),

with cosθ ν
12 = ϕ/3, the viable parameter space is very tight, only for maximal values of sinθ13 and

minimal values of sinθ12 and sinθ23 we can obtain physical results for the CP phase. The yellow
and green bands 1σ ranges favour GRa and GRb mixing in the centre panels. For both these mod-
els we see that the prediction of cosδ are in the negative plane. For GRa (center-left panel), with
tanθ ν

12 = 1/ϕ , the whole parameter space leads to physical prediction of cosδ . For GRb (center-
right panel), with θ ν

12 = π/5 mixing, larger values sinθ23 are excluded for small values of sin2
θ12.

We finally notice that TBM and HEX are the only models predicting positive values of cosδ and
HEX (bottom-right panel), with θ ν

12 = π/6 in particular the only predicting values of cosδ & 0.2.
In summary, of the mixing patterns studied, GRa and GRb are favoured by the current 1σ

ranges, while BM and GRc are strongly disfavoured and only consistent with the far corners of
the parameter space with a prediction of |cosδ | ≈ 1. The other mixings TBM and HEX are also
allowed.

5. Atmospheric sum rules

We now turn to atmospheric sum rules, where it is assumed that the physical PMNS mixing
matrix takes the BM, TB or GR form but only in its first or second column, while the third column
necessarily departs from these structures due to the non-zero 13 angle. Such patterns again lead
to correlations amongst the physical PMNS parameters, known as atmospheric mixing sum rules.
This scenario may be enforced by a subgroup of A4,S4,S5 which enforces the one column Uν

structure [4] while forbidding charged lepton corrections.
For example, let us consider again G = S4 and the TB mixing in Eq. (3.2). If we break S and

U but preserve SU the first column of the TB matrix is preserved and we have the so-called TM1
mixing pattern [40, 41]

UTM1 ≈


√

2
3 − −

− 1√
6
− −

1√
6
− −

 , (5.1)

For TM1 where the first column of TB matrix is conserved we have

|Ue1|=
√

2
3
,
∣∣Uµ1

∣∣= |Uτ1|=
1√
6
, (5.2)

and given the parametrisation in Equation (2.1) we have

|Ue1|= |c12c13|,
∣∣Uµ1

∣∣= |s12c23− c12s13s23eiδ |, |Uτ1|= |s12s23− c12s13c23eiδ |. (5.3)

6
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By comparing these last two equations we obtain two atmospheric sum rules for TM1 mixing, for

example, c12c13 =
√

2
3 and |s12c23− c12s13s23eiδ |= 1√

6
. The first equation predicts θ12 in terms of

the accurately measured θ13. The second equation can be expanded to yield a prediction for cosδ

in terms of the other parameters. The corresponding equation for |Uτ1| yields equivalent results.
The above atmospheric sum rules give powerful constraints on the mixing parameters which

may or may not be consistent with present data, and can be tested by future neutrino data. For
example, the first atmospheric sum rule for TM1 can be expressed as

c2
12 =

2
3c2

13
, s2

12 =
(1−3s2

13)

3(1− s2
13)

(5.4)

which predicts sin2θ12 in terms of the accurately measured sin2
θ13, as shown in Fig. 4, where it

is easy to understand why it is . 1
3 . The second atmospheric sum rule for TM1 [40] yields, after

eliminating θ12,

cosδ =−
cot2θ23(1−5s2

13)

2
√

2s13

√
1−3s2

13

. (5.5)

If instead S is unbroken the second column is preserved and we have the second mixing pattern
TM2 [40, 42]

UTM2 ≈


−
√

1
3 −

−
√

1
3 −

− −
√

1
3 −

 . (5.6)

For TM2 where the second column of TB matrix is conserved we have

|Ue2|=
∣∣Uµ2

∣∣= |Uτ2|=
1√
3
, (5.7)

and given the parametrisation in Equation (2.1) we have

|Ue2|= |s12c13|,
∣∣Uµ2

∣∣= |c12c23− s12s13s23eiδ |, |Uτ2|= |− c12s23− s12s13c23eiδ |. (5.8)

By comparing these last two equations we obtain two atmospheric sum rules for TM2 mixing, for

example, s12c13 =
√

1
3 and |c12c23− s12s13s23eiδ |= 1√

3
.

As before, the above atmospheric sum rules give powerful constraints on the mixing param-
eters which may or may not be consistent with present data, and can be tested by future neutrino
data. For example, the first atmospheric sum rule for TM2 can be expressed as

s2
12 =

1
3c2

13
=

1
3(1− s2

13)
, (5.9)

which predicts sin2θ12 in terms of the accurately measured sin2
θ13, as shown in Fig. 4, where it

is easy to understand why it is & 1
3 . The second atmospheric sum rule for TM2 [40] yields, after

eliminating θ12,

cosδ =
2c13 cot2θ23 cot2θ13√

2−3s2
13

. (5.10)

7
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Figure 4: Summary of exact atmospheric sum rule predictions which predict the solar angle for different
types of lepton mixing corresponding to a preserved column of the PMNS matrix, with only a mild depen-
dence on the reactor angle. The pink, blue, red, orange and black curves are respectively the predictions for
the surviving TM1, TM2, GRa1, GRa2 and GRb1 mixing patterns (with GRa1 just outside and TM2 just
inside the 3σ allowed region in green). Other possibilities not plotted are further outside the allowed region.
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Figure 5: Summary of exact atmospheric sum rule predictions which predict cosδ in terms of the other
mixing angles for different types of lepton mixing corresponding to a preserved column of the PMNS matrix.
We present with the blue band the exact sum rule prediction for TM2 for cosδ letting sin2

θ13 vary in its
3σ range. In orange and purple we present the exact the sum rule predictions for GRa2 and TM1. Only the
viable mixing patterns are plotted. The yellow and grey regions are respectively the 1σ range of sinθ23 and
cosδ , while the plot covers the whole 3σ range. These predictions can be further tested at future neutrino
experiments [43].
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For the other mixing patterns BM, GRa, GRb, GRc, HEX the discussion is similar where
we call BM1 and BM2 the atmospheric sum rules respectively derived by preserving the first and
second column of BM, and similarly for the other mixing patterns. However BM1, BM2, GRa1,
GRb2, GRc1, GRc2, HEX1 and HEX2 are excluded by the solar mixing prediction. Only four
possibilities survive the solar mixing prediction, namely TM1, TM2, GRa2 and GRb1, and these
are plotted in Fig. 4.

In Figure 5 we show the exact atmospheric sum rules for cosδ for the models that are still
allowed from Figure 4. However GRb1 mixing does not appear in the plot because it predicts
unphysical values of cosδ .

In summary, only TM1, TM2 and GRa2 survive the atmospheric sum rules (with TM2 on the
edge of solar angle exclusion as discussed above).

6. The Littlest Seesaw

The sequential dominance (SD) [44, 45] of right-handed neutrinos (RHNs) proposes that the
mass spectrum of heavy Majorana neutrinos is strongly hierarchical, where the RHN with mass
Matm is responsible for the atmospheric neutrino mass, that with mass Msol gives the solar neutrino
mass, and a third largely decoupled RHN gives a suppressed lightest neutrino mass. It leads to
an effective two right-handed neutrino (2RHN) model [46, 47] with a natural explanation for the
physical neutrino mass hierarchy, with normal ordering m3 > m2 where the lightest neutrino is
approximately massless, m1 ≈ 0 (being exactly massless in the 2RHN limit).

A very predictive minimal seesaw model with two right-handed neutrinos and one texture zero
is the so-called constrained sequential dominance (CSD) model [30, 48, 49, 50, 51, 52, 53, 54, 55,
56]. The CSD(n) scheme assumes the flavour basis (i.e. diagonal RHN and charged lepton mass
matrices) and a Dirac neutrino mass matrix of the form, 4

mD =

 0 a
e na
e (n−2)a

 ,

 0 a
e (n−2)a
e na

 (6.1)

where e,a are complex mass matrix elements, n is a real number and the first option is denoted
“normal”, the second one being “flipped”. For example the CSD(3) (also called Littlest See-
saw model) [49, 50, 51, 52, 53], CSD(4) models [54, 55] and CSD(2.5) [57] can give rise to
phenomenologically viable predictions for lepton mixing parameters and the two neutrino mass
squared differences ∆m2

21 and ∆m2
31, corresponding to special constrained cases of lepton mixing

which preserve the first column of the TB mixing matrix, namely TM1 and hence satisfy atmo-
spheric mixing sum rules. As was observed, modular symmetry remarkably suggests CSD(1+

√
6)

≈ CSD(3.45) [58, 59, 60, 61, 62]. We define the Littlest Seesaw (LS) as CSD(∼ 3) since n∼ 3 is
the preferred phenomenological choice.

4In the flavour basis, the form of mD can be multiplied by phases acting on the left-handed electroweak lepton
doublets Le,Lµ ,Lτ (compensated by equal phases acting on the right-handed charged leptons) without changing the
physics. For example, the first, second or third rows of mD can be independently multiplied by −1, as can the first or
second columns due to RHN rephasings of −1 (but not more general phases for RHN Majorana masses).
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For the “normal” case of CSD(n), after the seesaw mechanism the light effective neutrino
Majorana mass matrix in the diagonal charged lepton basis is given by

mν = ma

 0 0 0
0 1 1
0 1 1

+mbeiη

 1 n n−2
n n2 n(n−2)

n−2 n(n−2) (n−2)2

 , (6.2)

where the two real mass parameters are

ma =
|e|2

Matm
mb =

|a|2

Msol
, (6.3)

and the only relevant phase is η = 2arg(a/e). The “flipped” case gives a mass matrix similar to
Eq. 6.2 but with the second and third rows and columns interchanged.

Interestingly, the mass matrix in Eq.6.2 and the flipped version both predict TM1 mixing 5,
and hence CSD(n) already satisfies the two sum rules in Eqs. 5.4, 5.5 for any choice of n and the
parameters mb/ma and η . However since there are only three real input parameters responsible for
the entire PMNS matrix and the neutrino mass ratios, it is more predictive, as we now discuss.

In the diagonal charged lepton mass basis which we are using, the PMNS mixing matrix is fully
specified by the choice of n and the parameters mb/ma and η . Indeed it is possible to derive exact
analytic results for all the neutrino masses and the PMNS mixing parameters [50] in terms of these
parameters, for “normal” case. The expressions are a little complicated, but the key observation is
that sinθ13, tanθ23, sinδ and ∆m2

21/∆m2
31 = m2

2/m2
3 are predicted, in addition to the TM1 sum rule

predictions for sinθ12 and cosδ , all in terms of the three real parameters n, mb/ma and η . Note
that CSD(n) predicts not just cosδ as in the sum rules, but also sinδ , and hence δ is fully predicted
without ambiguity. However the predictions for the “flipped” (f) case are related to those of the
“normal” (n) case by θ

f
23 = 90◦− θ n

23 and δ f = δ n + 180◦ which flips the octant and reflects the
phase.

It is debatable whether n should be regarded as a continuous free parameter since it may be
fixed via models based on S4 symmetry [50, 51]. From this point of view the only free parameters
are mb/ma and η which together fix everything in the neutrino sector. Indeed the best measured pa-
rameters are sinθ13 and ∆m2

21/∆m2
31 = m2

2/m2
3 and these two parameters may be used to accurately

fix the two inputs mb/ma and η for any given choice of n, as shown in Fig. 6 for three values of
2 < n < 4 since the contours would not intersect for values of n outside this range. Thus the sweet
spot is n ∼ 3 and this case is called the “Littlest Seesaw” (LS). For each value of n there are thus
sharp predictions for θ23 and δ which go beyond the TM1 sum rule predictions for θ12 and cosδ .
This is illustrated In Table 3 where we focus on n = 1+

√
6 ≈ 3.45, which can be realised with

modular symmetry [58, 59, 60, 61, 62]. For both “normal” and “flipped” cases there are two possi-
ble 3σ ranges of atmospheric angle, one in the first octant and one in the second octant, depending
on η . Renormalisation group corrections to the LS results have been shown to be generally quite
small [63, 64, 65], since the neutrino masses are hierarchical and normal ordered with m1 = 0.

5This is because the first column of the TBM mixing matrix in Eq. 5.1 is an eigenvector of the neutrino mass matrix
in Eq. 6.2 with zero eigenvalue corresponding to the lightest physical neutrino mass being zero.
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n=3n=2.5 n=1+√6

Figure 6: The results for the LS models with n≈ 3. The input parameters η and r = mb/ma are constrained
to a good degree of accuracy by only two experimental observables, namely θ13 and the mass ratio m2

2/m2
3.

The 3σ allowed region for θ13 and the mass ratio are respectively the blue and orange band. The area of
intersection is the allowed parameter space for η and r. From the left to the right we assume, n = 2.5, 3 and
1+
√

6≈ 3.45.

n = 1+
√

6 η = 2.42±0.16 η = 3.87±0.16
θ12 [

◦] 34.36+0.18
−0.21 34.36+0.18

−0.21

normal θ23 [
◦] 41.4+2.6

−2.6 41.5+2.6
−2.6

normal δ [◦] 253.8+11.7
−13.8 105.7+13.7

−11.6

flipped θ23 [
◦] 48.6+2.6

−2.6 48.5+2.6
−2.6

flipped δ [◦] 74.8+11.7
−13.8 285.8+13.7

−11.6

Table 3: The LS predictions for n= 1+
√

6≈ 3.45 where the two most accurately measured observables, θ13

and the mass squared ratio m2
2/m2

3, are used to accurately determine the two input parameters r = mb/ma =

0.072±0.004 for two η ranges as shown above, corresponding to the right panel of Fig. 6. This then leads
to highly constrained predictions for the less accurately determined observables θ12, θ23 and δ , which may
be compared to the current experimental ranges as shown in Table 1. All results are given to 3σ accuracy.

7. Conclusion

In conclusion we have discussed solar neutrino mixing sum rules, arising from charged lepton
corrections to Tri-bimaximal (TB), Bi-maximal (BM), Golden Ratios (GRs) and Hexagonal (HEX)
neutrino mixing, and saw that GRa and GRb are favoured, TBM and HEX are allowed, but BM and
GRc are strongly disfavoured. We also discussed atmospheric neutrino mixing sum rules, arising
from preserving one of the columns of the above types of mixing, and saw that only TM1, TM2 and
GRa2 survive, with TM2 on the edge of solar angle exclusion. We also studied CSD(n) with n∼ 3
(also known as the Littlest Seesaw (LS)) as an ultraviolet completion of the successful TM1. It is
possible to realise CSD(n) and fix n from theory, for example modular symmetry yields n ≈ 3.45.
Then θ13 and ∆m2

21/∆m2
31 may be used to fix the two input parameters, resulting in predictions for

θ23, in addition to the TM1 atmospheric neutrino mixing sum rule predictions for θ12 and cosδ .

11



P
o
S
(
C
O
R
F
U
2
0
2
3
)
1
1
9

Neutrino physics Stephen F. King

References

[1] Special Issue on “Neutrino Oscillations: Celebrating the Nobel Prize in Physics 2015” Edited by
Tommy Ohlsson, Nucl. Phys. B 908 (2016) Pages 1-466 (July 2016),
http://www.sciencedirect.com/science/journal/05503213/908/supp/C.

[2] D. Adey et al. [Daya Bay], Phys. Rev. Lett. 121 (2018) no.24, 241805
doi:10.1103/PhysRevLett.121.241805 [arXiv:1809.02261 [hep-ex]].

[3] I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, JHEP 01
(2019), 106 doi:10.1007/JHEP01(2019)106 [arXiv:1811.05487 [hep-ph]].

[4] S. F. King and C. Luhn, Rept. Prog. Phys. 76 (2013), 056201 doi:10.1088/0034-4885/76/5/056201
[arXiv:1301.1340 [hep-ph]].

[5] S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys. 16 (2014), 045018
doi:10.1088/1367-2630/16/4/045018 [arXiv:1402.4271 [hep-ph]].

[6] S. F. King, J. Phys. G 42 (2015), 123001 doi:10.1088/0954-3899/42/12/123001 [arXiv:1510.02091
[hep-ph]].

[7] F. Feruglio and A. Romanino, Rev. Mod. Phys. 93 (2021) no.1, 015007
doi:10.1103/RevModPhys.93.015007 [arXiv:1912.06028 [hep-ph]].

[8] G. J. Ding and S. F. King, [arXiv:2311.09282 [hep-ph]].

[9] S. F. King, Rept. Prog. Phys. 67 (2004), 107-158 doi:10.1088/0034-4885/67/2/R01
[arXiv:hep-ph/0310204 [hep-ph]].

[10] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82 (2010), 2701-2729
doi:10.1103/RevModPhys.82.2701 [arXiv:1002.0211 [hep-ph]].

[11] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor. Phys.
Suppl. 183 (2010), 1-163 doi:10.1143/PTPS.183.1 [arXiv:1003.3552 [hep-th]].

[12] H. Minakata and A. Y. Smirnov, Phys. Rev. D 70 (2004), 073009 doi:10.1103/PhysRevD.70.073009
[arXiv:hep-ph/0405088 [hep-ph]].

[13] S. F. King, Phys. Lett. B 718 (2012), 136-142 doi:10.1016/j.physletb.2012.10.028 [arXiv:1205.0506
[hep-ph]].

[14] S. Antusch, C. Gross, V. Maurer and C. Sluka, Nucl. Phys. B 877 (2013), 772-791
doi:10.1016/j.nuclphysb.2013.11.003 [arXiv:1305.6612 [hep-ph]].

[15] P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 530 (2002), 167
doi:10.1016/S0370-2693(02)01336-9 [arXiv:hep-ph/0202074 [hep-ph]].

[16] Z. z. Xing, Phys. Lett. B 533 (2002), 85-93 doi:10.1016/S0370-2693(02)01649-0
[arXiv:hep-ph/0204049 [hep-ph]].

[17] X. G. He and A. Zee, Phys. Lett. B 560 (2003), 87-90 doi:10.1016/S0370-2693(03)00390-3
[arXiv:hep-ph/0301092 [hep-ph]].

[18] V. D. Barger, S. Pakvasa, T. J. Weiler and K. Whisnant, Phys. Lett. B 437 (1998), 107-116
doi:10.1016/S0370-2693(98)00880-6 [arXiv:hep-ph/9806387 [hep-ph]].

[19] S. Davidson and S. F. King, Phys. Lett. B 445 (1998), 191-198 doi:10.1016/S0370-2693(98)01442-7
[arXiv:hep-ph/9808296 [hep-ph]].

12



P
o
S
(
C
O
R
F
U
2
0
2
3
)
1
1
9

Neutrino physics Stephen F. King

[20] G. Altarelli, F. Feruglio and L. Merlo, JHEP 05 (2009), 020 doi:10.1088/1126-6708/2009/05/020
[arXiv:0903.1940 [hep-ph]].

[21] D. Meloni, JHEP 10 (2011), 010 doi:10.1007/JHEP10(2011)010 [arXiv:1107.0221 [hep-ph]].

[22] A. Datta, F. S. Ling and P. Ramond, Nucl. Phys. B 671 (2003), 383-400
doi:10.1016/j.nuclphysb.2003.08.026 [arXiv:hep-ph/0306002 [hep-ph]].

[23] Y. Kajiyama, M. Raidal and A. Strumia, Phys. Rev. D 76 (2007), 117301
doi:10.1103/PhysRevD.76.117301 [arXiv:0705.4559 [hep-ph]].

[24] L. L. Everett and A. J. Stuart, Phys. Rev. D 79 (2009), 085005 doi:10.1103/PhysRevD.79.085005
[arXiv:0812.1057 [hep-ph]].

[25] F. Feruglio and A. Paris, JHEP 03 (2011), 101 doi:10.1007/JHEP03(2011)101 [arXiv:1101.0393
[hep-ph]].

[26] G. J. Ding, L. L. Everett and A. J. Stuart, Nucl. Phys. B 857 (2012), 219-253
doi:10.1016/j.nuclphysb.2011.12.004 [arXiv:1110.1688 [hep-ph]].

[27] W. Rodejohann, Phys. Lett. B 671 (2009), 267-271 doi:10.1016/j.physletb.2008.12.010
[arXiv:0810.5239 [hep-ph]].

[28] C. H. Albright, A. Dueck and W. Rodejohann, Eur. Phys. J. C 70 (2010), 1099-1110
doi:10.1140/epjc/s10052-010-1492-2 [arXiv:1004.2798 [hep-ph]].

[29] J. E. Kim and M. S. Seo, JHEP 02 (2011), 097 doi:10.1007/JHEP02(2011)097 [arXiv:1005.4684
[hep-ph]].

[30] S. F. King, JHEP 08 (2005), 105 doi:10.1088/1126-6708/2005/08/105 [arXiv:hep-ph/0506297
[hep-ph]].

[31] I. Masina, Phys. Lett. B 633 (2006), 134-140 doi:10.1016/j.physletb.2005.10.097
[arXiv:hep-ph/0508031 [hep-ph]].

[32] S. Antusch and S. F. King, Phys. Lett. B 631 (2005), 42-47 doi:10.1016/j.physletb.2005.09.075
[arXiv:hep-ph/0508044 [hep-ph]].

[33] S. Antusch, P. Huber, S. F. King and T. Schwetz, JHEP 04 (2007), 060
doi:10.1088/1126-6708/2007/04/060 [arXiv:hep-ph/0702286 [hep-ph]].

[34] P. Ballett, S. F. King, C. Luhn, S. Pascoli and M. A. Schmidt, JHEP 12 (2014), 122
doi:10.1007/JHEP12(2014)122 [arXiv:1410.7573 [hep-ph]].

[35] S. Antusch, K. Hinze and S. Saad, JHEP 08 (2022), 045 doi:10.1007/JHEP08(2022)045
[arXiv:2205.11531 [hep-ph]].

[36] D. Marzocca, S. T. Petcov, A. Romanino, M. C. Sevilla, JHEP 1305 (2013) 073 [arXiv:1302.0423];

[37] I. Girardi, S. T. Petcov, A. V. Titov, Nucl. Phys. B 894 (2015) 733 [arXiv:1410.8056 [hep-ph]].

[38] M. H. Rahat, P. Ramond and B. Xu, Phys. Rev. D 98 (2018) no.5, 055030
doi:10.1103/PhysRevD.98.055030 [arXiv:1805.10684 [hep-ph]].

[39] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, JHEP 09 (2020), 178
doi:10.1007/JHEP09(2020)178 [arXiv:2007.14792 [hep-ph]].

[40] C. H. Albright and W. Rodejohann, Eur. Phys. J. C 62 (2009), 599-608
doi:10.1140/epjc/s10052-009-1074-3 [arXiv:0812.0436 [hep-ph]].

13



P
o
S
(
C
O
R
F
U
2
0
2
3
)
1
1
9

Neutrino physics Stephen F. King

[41] C. Luhn, Nucl. Phys. B 875 (2013), 80-100 doi:10.1016/j.nuclphysb.2013.07.003 [arXiv:1306.2358
[hep-ph]].

[42] S. F. King and C. Luhn, JHEP 09 (2011), 042 doi:10.1007/JHEP09(2011)042 [arXiv:1107.5332
[hep-ph]].

[43] P. Ballett, S. F. King, C. Luhn, S. Pascoli and M. A. Schmidt, Phys. Rev. D 89 (2014) no.1, 016016
doi:10.1103/PhysRevD.89.016016 [arXiv:1308.4314 [hep-ph]].

[44] S. F. King, Phys. Lett. B 439 (1998), 350-356 doi:10.1016/S0370-2693(98)01055-7
[arXiv:hep-ph/9806440 [hep-ph]].

[45] S. F. King, Nucl. Phys. B 562 (1999), 57-77 doi:10.1016/S0550-3213(99)00542-8
[arXiv:hep-ph/9904210 [hep-ph]].

[46] S. F. King, Nucl. Phys. B 576 (2000), 85-105 doi:10.1016/S0550-3213(00)00109-7
[arXiv:hep-ph/9912492 [hep-ph]].

[47] P. H. Frampton, S. L. Glashow and T. Yanagida, Phys. Lett. B 548 (2002), 119-121
doi:10.1016/S0370-2693(02)02853-8 [arXiv:hep-ph/0208157 [hep-ph]].

[48] S. Antusch, S. F. King, C. Luhn and M. Spinrath, Nucl. Phys. B 856 (2012), 328-341
doi:10.1016/j.nuclphysb.2011.11.009 [arXiv:1108.4278 [hep-ph]].

[49] S. F. King, JHEP 07 (2013), 137 doi:10.1007/JHEP07(2013)137 [arXiv:1304.6264 [hep-ph]].

[50] S. F. King, JHEP 02 (2016), 085 doi:10.1007/JHEP02(2016)085 [arXiv:1512.07531 [hep-ph]].

[51] S. F. King and C. Luhn, JHEP 09 (2016), 023 doi:10.1007/JHEP09(2016)023 [arXiv:1607.05276
[hep-ph]].

[52] P. Ballett, S. F. King, S. Pascoli, N. W. Prouse and T. Wang, JHEP 03 (2017), 110
doi:10.1007/JHEP03(2017)110 [arXiv:1612.01999 [hep-ph]].

[53] S. F. King, S. Molina Sedgwick and S. J. Rowley, JHEP 10 (2018), 184
doi:10.1007/JHEP10(2018)184 [arXiv:1808.01005 [hep-ph]].

[54] S. F. King, Phys. Lett. B 724 (2013), 92-98 doi:10.1016/j.physletb.2013.06.013 [arXiv:1305.4846
[hep-ph]].

[55] S. F. King, JHEP 01 (2014), 119 doi:10.1007/JHEP01(2014)119 [arXiv:1311.3295 [hep-ph]].

[56] F. Björkeroth and S. F. King, J. Phys. G 42 (2015) no.12, 125002
doi:10.1088/0954-3899/42/12/125002 [arXiv:1412.6996 [hep-ph]].

[57] P. T. Chen, G. J. Ding, S. F. King and C. C. Li, J. Phys. G 47 (2020) no.6, 065001
doi:10.1088/1361-6471/ab7e8d [arXiv:1906.11414 [hep-ph]].

[58] G. J. Ding, S. F. King, X. G. Liu and J. N. Lu, JHEP 12 (2019), 030 doi:10.1007/JHEP12(2019)030
[arXiv:1910.03460 [hep-ph]].

[59] G. J. Ding, S. F. King and C. Y. Yao, Phys. Rev. D 104 (2021) no.5, 055034
doi:10.1103/PhysRevD.104.055034 [arXiv:2103.16311 [hep-ph]].

[60] I. de Medeiros Varzielas, S. F. King and M. Levy, JHEP 02 (2023), 143
doi:10.1007/JHEP02(2023)143 [arXiv:2211.00654 [hep-ph]].

[61] F. J. de Anda and S. F. King, JHEP 06 (2023), 122 doi:10.1007/JHEP06(2023)122 [arXiv:2304.05958
[hep-ph]].

14



P
o
S
(
C
O
R
F
U
2
0
2
3
)
1
1
9

Neutrino physics Stephen F. King

[62] G. J. Ding and S. F. King, [arXiv:2311.09282 [hep-ph]].

[63] T. Geib and S. F. King, Phys. Rev. D 97 (2018) no.7, 075010 doi:10.1103/PhysRevD.97.075010
[arXiv:1709.07425 [hep-ph]].

[64] S. F. King, J. Zhang and S. Zhou, JHEP 12 (2016), 023 doi:10.1007/JHEP12(2016)023
[arXiv:1609.09402 [hep-ph]].

[65] S. F. King and N. N. Singh, Nucl. Phys. B 591 (2000), 3-25 doi:10.1016/S0550-3213(00)00545-9
[arXiv:hep-ph/0006229 [hep-ph]].

15


