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1. Introduction

The main topic of this talk is the dynamics of strongly-coupled chiral gauge theories in four
dimensions. This talk is based on several recent works [1]-[10] and on some earlier ones [11]-[14].

There are several good motivations for these efforts:

(1) We are living in a world with a nontrivial chiral structure (e.g., chiral DNA spirals);

(2) At a microscopic level, the standard model of the fundamental interactions 𝑆𝑈 (3)𝑄𝐶𝐷 ×
𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 gauge theory is a chiral theory;

(3) Possible GUT extensions of the standard model are all chiral.

Although the 𝑆𝑈 (2)𝐿×𝑈 (1)𝑌 Glashow-Weinberg-Salam model is a chiral gauge theory, it is weakly
coupled and is well understood in perturbation theory. But it also means that it is at best a very
good low-energy effective theory.

Surprisingly little is known today about the phases of strongly-coupled chiral gauge theories,
after many years of studies [15]-[28]. This is to be contrasted with the case of vectorlike gauge
theories, where we have a far better grasp of the strong gauge dynamics. Quantum Chromodynamics
(QCD) has been under intense theoretical and experimental investigations over 50 years, with many
solid results established. Also many exact results are known about the gauge dynamics of N = 2
supersymmetric gauge theories (which are all vectorlike), since the discovery of the Seiberg-Witten
solutions [29, 30] [31]-[35].

We propose thus the problem:

Understand better the dynamics of strongly-coupled (especially, chiral) gauge theories

as a challenge to all theoretical physicists. We take as our theoretical laboratories - or the battle
ground - the following classes of 𝑆𝑈 (𝑁) gauge theories, with fermions in various (anomaly-free)
representations:

(i) 𝜓𝑖 𝑗 , 𝜂𝐵
𝑖
, (𝑖, 𝑗 ,= 1, 2, . . . , 𝑁 , 𝐵 = 1, 2, . . . , 𝑁 + 4), that is,

⊕ (𝑁 + 4) ¯ (1)

plus possible 𝑝 pairs of Dirac fermions in the fundamental representations (known as the
generalized Bars-Yankielowicz (BY) models),

(ii) 𝜒[𝑖 𝑗 ] , 𝜂
𝐵 𝑗 , 𝐵 = 1, 2, . . . , (𝑁 − 4),

⊕ (𝑁 − 4) ¯ (2)

plus possible 𝑝 pairs of Dirac fermions in the fundamental representations (called often as
the generalized Georgi-Glashow (GG) models),
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(iii) 𝜓 {𝑖 𝑗 } , 𝜒[𝑖 𝑗 ] , 𝜂
𝐴
𝑖
, 𝐴 = 1, 2, . . . , 8 ,

⊕

¯

⊕ 8 ¯
. (3)

(sometimes referred to as the 𝜓𝜒𝜂 model),

(iv) 𝑁−4
𝑘
𝜓 {𝑖 𝑗 } ⊕ 𝑁+4

𝑘
𝜒̄[𝑖 𝑗 ]

𝑁 − 4
𝑘

⊕ 𝑁 + 4
𝑘

¯

, (4)

(v) 𝜓’s in a self-conjugate, antisymmetric representation, (e.g., for 𝑆𝑈 (6)),

, (5)

(vi) 𝑁 𝑓 𝜂 ⊕ 𝜂’s (QCD)

(vii) 𝑁 𝑓 𝜆 (adjoint QCD),

and some others, to start with.
A well-known tool of the analysis - the ’t Hooft anomaly matching conditions -, unfortunately

is not sufficiently stringent [2],[17]-[26]. For this reason we appeal to a more powerful approach,
mainly based on the generalized symmetries and associated anomalies [3]-[9].

2. Anomalies and dynamics: phases of chiral gauge theories

The main tool of the following analyses is the idea of the generalized symmetries [36]-[40].
The first step is to go from the conventional 0-form symmetries, acting on local fields, to 𝑘-form
symmetries, acting on line, surface, etc. operators. The idea of 1-form symmetry is actually familiar
from the example of the so-called center symmetry in 𝑆𝑈 (𝑁) Yang-Mills (YM) theory. It acts on
the Polyakov loop,

𝑒
𝑖
∮
𝛾
𝐴 → Ω𝑁 𝑒

𝑖
∮
𝛾
𝐴
, Ω𝑁 = 𝑒2𝜋𝑖/𝑁 1 ∈ Z𝑁 . (6)

The vanishing (or nonvanishing) of the vacuum expectation value (VEV)

〈𝑒𝑖
∮
𝛾
𝐴〉 (7)

can be used as a criterion of the confinement (or Higgs) phase, respectively. Below we shall
concentrate on the use of 1-form symmetries.

The second step is to consider the “gauging" of the 1-form discreteZ𝑁 symmetry. The gauging
of 1-form discrete Z𝑁 symmetry proceeds by introducing the 2-form gauge fields (𝐵 (2)

c , 𝐵 (1)
c

)
,

𝑁𝐵
(2)
c = 𝑑𝐵

(1)
c , (8)
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and coupling them to the 𝑆𝑈 (𝑁) gauge fields 𝑎 appropriately. This is done by embedding it into a
𝑈 (𝑁) gauge field 𝑎̃ as

𝑎̃ = 𝑎 + 1
𝑁
𝐵
(1)
c (9)

and requiring the invariance under the 1-form gauge transformation,

𝐵
(2)
c → 𝐵

(2)
c + 𝜆c , 𝐵

(1)
c → 𝐵

(1)
c + 𝑁𝜆c ,

𝑎̃ → 𝑎̃ + 𝜆c , (10)

where 𝜆c is the (1-form) gauge function such that∮
𝜆c =

2𝜋ℓ
𝑁

, (𝑛 ∈ Z, ℓ ∈ Z) . (11)

The third important step is the idea of color-flavor locked 1-form discrete Z𝑁 symmetry.
Consider an 𝑆𝑈 (𝑁) gauge theory with a set of the massless matter Weyl fermions {𝜓𝑘 }. In
general, the center Z𝑁 symmetry is broken by the presence of the fermions (unless the fermions
are all in the adjoint representation of 𝑆𝑈 (𝑁)). However the situation changes if some global,
nonanomalous𝑈 (1) symmetries,𝑈𝑖 (1), 𝑖 = 1, 2, . . ., are there, which are gauged (in the usual sense
by the introduction of external gauge fields 𝐴𝜇

𝑖
). In those cases the color Z𝑁 ⊂ 𝑆𝑈 (𝑁) and the

𝑈𝑖 (1) transformations can compensate each other, restoring the symmetry.
As one encircles a closed loop 𝐿 in spacetime, the fields transform as

P𝑒𝑖
∮
𝐿
𝑎 → 𝑒

2𝜋𝑖
𝑁 P𝑒𝑖

∮
𝐿
𝑎 ; 𝜓𝑘 → 𝑒

2𝜋𝑖N𝑘

𝑁 𝜓𝑘 , Z𝑁 ⊂ 𝑆𝑈 (𝑁) ; (12)

Π𝑖 𝑒
𝑖
∮
𝐿
𝐴𝑖 →

(
𝑒2𝜋𝑖

∑
𝑖,𝑘 𝑞

(𝑖)
𝑘

)
Π𝑖 𝑒

𝑖
∮
𝐿
𝐴𝑖 ; 𝜓𝑘 → 𝑒2𝜋𝑖

∑
𝑖,𝑘 𝑞

(𝑖)
𝑘 𝜓𝑘 , 𝑈𝑖 (1) ; (13)

where 𝑎 ≡ 𝑎𝐴𝜇 𝑡
𝐴 𝑑𝑥𝜇 is the 𝑆𝑈 (𝑁) gauge field; N𝑘 is the 𝑁-ality of the 𝑘th fermion, 𝑞 (𝑖)

𝑘
is the

charge of 𝜓𝑘 under 𝑈𝑖 (1). The factor 𝑒𝑖
∮
𝐿
𝐴𝑖 is nothing but the Aharonov-Bohm phase for the 𝑖-th

fermion.
We recall that the center symmetry is formally defined as a path-ordered sequence of local

𝑆𝑈 (𝑁) gauge transformations along the loop: the fermions must also be transformed in order to
keep the action invariant. After encircling the loop and coming back to the original point, the gauge
field is transformed by a nontrivial periodicity with a Z𝑁 factor, dragging the fermions fields to
transform as in (12). It would invalidate their periodic boundary condition (i.e., their uniqueness
at each spacetime point). This is the reason why the presence of a fermion, such as the one in the
fundamental representation, breaks the center symmetry itself 1.

When the conditions ∑︁
𝑖

𝑞
(𝑖)
𝑘

= −N𝑘

𝑁
, ∀𝑘 (14)

are satisfied, however, a new, color-flavor locked center symmetry (12), (13), can be defined,
accompanying the color Z𝑁 center transformations with appropriate𝑈𝑖 (1) gauge transformations.

1In the case of the Polyakov loop defined in the Euclidean spacetime, the fermions are required to satisfy antiperiodic
boundary condition, but the conclusion is the same.
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As the ordinary Z𝑁 center transformation, such a color-flavor combined Z𝑁 center symmetry
is still just a global 1-form symmetry.

Finally, we put all these ideas together, and introduce the gauging of the color-flavor locked 1-
form symmetry and studying possible topological obstructions in doing so (the generalized ’t Hooft’s
anomalies) [36]-[46], [3]-[9]. As in the case of conventional gauging of 0-form symmetries, the
idea of gauging is that of identifying the field configurations connected by the given symmetry
transformations, and of eliminating the double counting. However, as one is now dealing with a
1-form symmetry, the associated gauge transformations are parametrized by a 1-form Abelian 2

gauge function, 𝜆 = 𝜆𝜇 (𝑥)𝑑𝑥𝜇; see (10).

2.1 (Z2)𝐹 anomaly

One of the most significant results found is a (Z2)𝐹 anomaly [3]-[7],[9]: a quantum anomaly
associated with the nontrivial classical fermion parity symmetry,

𝜓𝑖 → −𝜓𝑖 , ∀𝑖 , (15)

found in all BY and GG models (see (1), (2)), with even 𝑁 and even 𝑝. We call these type I BY
and/or GG models, and refer to all others (either 𝑁 or 𝑝 or both, odd) as type II models. In the
standard quantization, (15) is conserved both classically, and quantum-mechanically, i.e., it is non
anomalous. The standard calculation of the possible anomaly (say, à la Fujikawa), yields

Δ𝑆 =
∑︁
𝑖

𝑐𝑖 ×
1

8𝜋2

∫
Σ4

𝑑4𝑥 tr 𝐹𝜇𝜈 𝐹̃𝜇𝜈 × (±𝜋) = 2𝜋Z , (16)

where ∑︁
𝑖

𝑐𝑖 = 2Z ≠ 0 , (17)

and the partition function is invariant. The fact that (15) is respected, in the type I models, by the
instantons because the sum of the contributions from different fermions

∑
𝑖 𝑐𝑖 is a nonvanishing,

but even, integer, and not because it is zero (as in the type II models), is fundamental.
In fact, in type I models, the symmetry group has a disconnected structure (before dividing out

by a common Z𝑁 factor). For instance, in the 𝜓𝜂 models, it is

𝑆𝑈 (𝑁)𝑐 × 𝑆𝑈 (𝑁 + 4) ×𝑈 (1)𝜓𝜂 × Z2

Z𝑁
. (18)

The calculation of theZ𝑁 anomaly, by gauging the color-flavor locked 1-formZ𝑁 symmetry gives,
in all type I models, the result (a master formula)

Δ𝑆Mixed anomaly = (±𝜋) ·
∑︁

fermions

(
(𝑑 (𝑅)N (𝑅)2 − 𝑁 · 𝐷 (𝑅)

) 1
8𝜋2

∫
Σ4

(
𝐵
(2)
c

)2
= ±𝜋 , (19)

where 𝑑 (𝑅) is the dimension of the representation 𝑅, N(𝑅) its 𝑁-ality, and 𝐷 (𝑅) its Dynkin index.
The partition function changes sign under (15): it is anomalous [4]-[7].

2Here we remember the crucial aspect of higher form symmetries: they are all Abelian. This is the reason why the
color-flavor locked 1-form symmetries are possible.
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fields 𝑆𝑈 (𝑁)c 𝑆𝑈 (𝑁 + 4) 𝑈 (1)𝜓𝜂 (Z2)𝐹
𝜓 (·) 𝑁+4

2 +1

𝜂
¯ −𝑁+2

2 −1

B𝐴𝐵 (·) −𝑁2 −1

Table 1: The charges of UV and IR fermions with respect to the unbroken symmetry groups, in a putative confining,
chirally symmetric vacuum, contemplated in some earlier literature. B𝐴𝐵 are the hypothetical massless baryons,
∼ 𝜓𝜂𝐴𝜂𝐵 . That they satisfy the conventional anomaly-matching conditions can be checked by studying simple arithmetic
equations involving various triangle diagrams, (𝑆𝑈 (𝑁 +4))3, (𝑆𝑈 (𝑁 +4))2−𝑈 (1)𝜓𝜂 , (𝑈 (1)𝜓𝜂)3,𝑈 (1)𝜓𝜂 −𝐺𝑟𝑎𝑣𝑖𝑡𝑦2.
See [5] for explicit exposition of these anomaly-matching arithmetics in all BY and GG models.

In the IR, the assumed massless composite fermions (see Table 1) cannot support such an
anomaly, as they are color singlets and not coupled to the 𝐵 (2)

c field. It means that the confining,
flavor symmetric vacuum contemplated in some earlier literature [16]-[19] cannot be dynamically
realized in the infrared.

This conclusion was challenged by Tong and others [45]. The subtle point noted already in
[4] is that the color-flavor locked Z2 transformation corresponds to the background fields winding
simultaneously as (in the case of the 𝜓𝜂 model) 3∮

𝐵
(1)
c = 2𝜋 ,

∮
𝐴0 = 𝜋 (20)

(the latter corresponding to (15)). But the latter implies a singular Z2 vortex configuration, a
possible technical (ethical?) issue.

The authors of [45] propose, instead, to use a regular 𝑈𝜓𝜂 (1) field 𝐴0 and the consequent
color-flavor locked (𝐵 (1)

c , 𝐵
(2)
c ) field such that∮

𝐴0 = 2𝜋 ,
∮

𝐵
(1)
c = 4𝜋 , (21)

i.e., with twice the ’t Hooft flux. Hence there is no Z2 anomaly (see (8) and (19))!
The problem with this argument is that the flux (21) corresponds to a trivial element of Z2

holonomy group,
𝜓𝑖 → 𝜓𝑖 , ∀𝑖 : (22)

a trivial (i.e., no) transformation. That this "transformation" is found to be nonanomalous is certainly
a good news, but the significance of such a statement is not entirely clear 4.

The cure for this technical issue (the need to use the singular Z2 vortex like configuration) of
the original work on the (Z2)𝐹 anomaly [4, 5, 7], can be found [9] by starting with a model with
an extra Dirac-like pair of the fermions. Consider the 𝜓𝜂 model, with an additional Dirac pair 𝑞, 𝑞
fermions, and a singlet scalar field 𝜙, with the Yukawa coupling (let us call it the “X-ray model),

Δ𝐿 = 𝑔 𝜙 𝑞 𝑞 + ℎ.𝑐. , 〈𝜙〉 = 𝑣 � Λ𝜓𝜂 . (23)

3𝐴0 is the background gauge field for the anomaly-free𝑈𝜓𝜂 (1) global symmetry group.
4Another observation made in [45] is that (15) is a part of the proper Lorentz group. Again, this is true and is well

known, but is not a point which can be used to try to invalidate the argument of [4]: see Sec. 2.2 bellow.
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𝑆𝑈 (𝑁)𝑐 𝑆𝑈 (𝑁 + 4) 𝑈 (1)𝜓𝜂 𝑈 (1)𝑉 𝑈0(1) 𝑈̃ (1)
𝜓 (·) 𝑁+4

2 0 1 𝑁+4
2

𝜂
¯ −𝑁+2

2 0 −1 −𝑁+2
2

𝑞 (·) 0 1 1 𝑁+2
2

𝑞
¯ (·) 0 −1 1 −𝑁+2

2
𝜙 (·) (·) 0 0 −2 0

Table 2: The fields and charges of the 𝑋-ray model with respect to the nonanomalous symmetries.

Before the VEV of 𝜙 forms (i.e., in the UV) the model has a nonanomalousymmetry

𝑆𝑈 (𝑁)𝑐 × 𝑆𝑈 (𝑁 + 4) × 𝑈̃ (1) ×𝑈0(1)
Z𝑁

(24)

where the charges of the fermions are listed in Table 2. Note that this time the color-flavor locked
Z𝑁 symmetry is in the intersection among the nonanomalous, continuous, symmetry groups,

𝑆𝑈 (𝑁𝑐) ∩ {𝑈 (1)𝜓𝜂 ×𝑈0(1)} (25)

hence no difficulties arise in introducing the dynamical and background gauge fields associated
with these symmetry factors (cfr. (18)).

The calculation of the mixed anomalies [9] yields

(i) 𝑈̃ (1) −
(
𝐵
(2)
c

)2
anomaly:

𝛿𝑆𝛿𝛼 =
𝐶̃

8𝜋2

∫
Σ4

(𝐵 (2)
c )2 𝛿𝛼 , 𝐶̃ = −𝑁

3(𝑁 + 3)
2

≠ 0 . (26)

The 𝑈̃ (1) symmetry is broken (i.e., gets anomalous) by the generalized 1-form gauging of
the Z𝑁 .

(ii) 𝐴0 − (𝐵 (2)
c )2 anomaly:

An analogous calculation leads to the 𝑈0(1) anomaly due to the 1-form gauging of the Z𝑁
symmetry,

𝛿𝑆𝛿𝛼0 =
𝐶0

8𝜋2

∫
Σ4

(𝐵 (2)
c )2 𝛿𝛼0 , 𝐶0 = 𝑁2(𝑁 + 3) . (27)

This appears to imply that the 𝑈0(1) symmetry is also broken by the 1-form gauging of the
Z𝑁 symmetry. However, the scalar VEV 〈𝜙〉 = 𝑣 breaks spontaneously the𝑈0(1) symmetry
toZ2 (see Table 2). It means that, in contrast to (26), the generic variation 𝛿𝛼0 cannot be used
in (27) to examine the generalized anomaly-matching check. For that purpose, we can use
only the nonanomalous 5 and unbroken symmetry operation, i.e., variations corresponding
to a nontrivial Z2 transformation 𝛿𝛼0 = ±𝜋 (see Table 2). Taking into account the nontrivial
’t Hooft flux

1
8𝜋2

∫
Σ4

(𝐵 (2)
c )2 =

𝑛

𝑁2 , 𝑛 ∈ Z , (28)

5In the sense of the standard strong anomaly.
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and the crucial coefficient of the anomaly,𝐶0 = 𝑁2(𝑁+3), it is seen that the partition function
changes sign, for even 𝑁 . We thus reproduce exactly the Z2 anomaly first found in [4]. This
anomaly cannot be reproduced (matched) by the low-energy, massless baryons, as they are
not coupled to 𝐵 (2)

c .

To conclude, the mixed anomaly (Z2)𝐹 − [Z𝑁 ]2 means that confinement and the full global
chiral symmetries (no condensates) are not compatible, in type I BY and GG models: one or both
must be abandoned. The dynamical Higgs phase discussed below seems to be fully consistent.

2.2 Dynamical Higgs phase

That the conventional ’t Hooft anomaly-matching condition is also consistent with a dynamical
Higgs phase characterized by certain bifermion condensates in the BY and GG models is well
known. For instance, in the 𝜓𝜂 model, a possible bifermion condensate is [17]

〈𝜓 {𝑖 𝑗 }𝜂𝐴𝑗 〉 = 𝐶 𝛿𝑖𝐴 , 𝑖, 𝐴 = 1, 2, . . . , 𝑁 , (29)

which breaks the color and flavor symmetries as

𝐺 → 𝐺 ′ = 𝑆𝑈 (𝑁)𝐶𝐹 × 𝑆𝑈 (4)𝐹 ×𝑈 ′(1) . (30)

The low-energy theory is described by a set of massless composite fermions (“baryons") and of
massless (Nambu-Goldstone) bosons. The baryons listed in Table 77 saturate the conventional ’t
Hooft anomaly-matching conditions with respect to the unbroken symmetry group.

fields 𝑆𝑈 (𝑁)cf 𝑆𝑈 (4)f 𝑈 (1) ′ (Z2)𝐹
UV 𝜓

𝑁 (𝑁+1)
2 · (·) 𝑁 + 4 1

𝜂𝐴1
¯ ⊕

¯

𝑁2 · (·) −(𝑁 + 4) −1

𝜂𝐴2 4 · ¯
𝑁 · −𝑁+4

2 −1

IR B [𝐴1𝐵1 ]

¯
𝑁 (𝑁−1)

2 · (·) −(𝑁 + 4) −1

B [𝐴1𝐵2 ] 4 · ¯
𝑁 · −𝑁+4

2 −1

Table 3: The charges of the UV and IR fermions with respect to the unbroken symmetry groups, in the color-flavor
locked, dynamical Higgs phase of the 𝜓𝜂 model. 𝐴1 or 𝐵1 stand for 1, 2, . . . , 𝑁 , 𝐴2 or 𝐵2 the rest of the flavor indices,
𝑁 + 1, . . . , 𝑁 + 4.

Unlike the case of the confining, chiral symmetric vacuum (Table 1), in the dynamical Higgs
phase here the conventional ’t Hooft anomaly-matching is totally obvious, as after the Dirac pair of
fermions get massive and decouple, the set of the remaining massless fermions are identical in UV
and in IR. (See Table 3.)

And unlike the case of the confining, chiral symmetric vacuum (Table 1), here in the dynamical
Higgs phase there is no difficulty in the matching of the 1-form, mixed ’t Hooft anomalies, (Z2)𝐹 −
(Z𝑁 )2. The vacuum breaks spontaneously both 𝑆𝑈 (𝑁)c and 𝑈 (1)𝜓𝜂 . The color-flavor locked
1-form Z𝑁 is broken in the IR.

8
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A subtle, possibly confusing point is that the 0-form (Z2)𝐹 symmetry itself does not need to
be, and indeed is not, spontaneously broken, as all bifermion condensates are invariant under (15).
In fact, as the fermion parity coincides with an angle 2𝜋 space rotation, a spontaneous breaking
of (Z2)𝐹 would have been a disaster: the spontaneous breaking of the Lorentz invariance. Which
does not occur.

In this respect, even though the mixed anomaly (Z2)𝐹 − [Z𝑁 ]2 found in [4] and in [5, 7],[9],
may look at first sight similar to the mixed anomaly 𝐶𝑃 − [Z𝑁 ]2 in the pure 𝑆𝑈 (𝑁) Yang-Mills
theory at 𝜃 = 𝜋 [40], the way the mixed anomaly manifests itself at low energies is different. In the
latter case, the new anomaly is consistent with, or implies, the phenomenon of the double vacuum
degeneracy and the consequent spontaneous 𝐶𝑃 breaking à la Dashen [47] 6.

2.3 Strong anomaly and phases

In all anomaly-matching argument à la ’t Hooft, conventional or generalized, we consider only
the symmetries which are anomaly-free, i.e., which are not broken by the nonperturbative, strong-
interaction effects. The breaking of the axial 𝑈𝐴(1) symmetry in QCD, broken by the instantons,
is a famous example of such a "strong anomaly". Actually, the strong anomaly should not be
considered as a simple loss of a symmetry, but as a particular manifestation of a classical symmetry
through the strong dynamics. Recently it was shown [5] that the consideration of the strong anomaly
gives rather a clear indication about the possible phase of a wide class (BY and GG) of chiral gauge
theories.

In QCD (e.g., with 𝑁𝐹 = 2), the global flavor 𝑆𝑈𝐿 (2) × 𝑆𝑈𝑅 (2) ×𝑈𝑉 (1) ×𝑈𝐴(1) symmetries
are broken by the biquark condensate,

〈𝑈〉 = 〈𝜓𝑅𝜓𝐿〉 ∼ Λ ≠ 0 (31)

to 𝑆𝑈𝑉 (2) ×𝑈𝑉 (1). For small quark masses, there must be four light Nambu-Goldstone bosons,
but in Nature we observe only three pions (of 𝑆𝑈𝐴(2) breaking). Where is the fourth NG boson?
A possible fourth NG boson, 𝜂, has actually mass

𝑚𝜂 � 𝑚𝜋 (32)

(the𝑈 (1) problem).
The basic answer is given by ’t Hooft: the axial𝑈 (1) current satisfies an anomalous divergence

equation

𝜕𝜇𝐽
(𝐴)
𝜇 = 𝑁 𝑓

𝑔2

32𝜋2 𝐹𝜇𝜈 𝐹̃
𝜇𝜈 , with

∫
𝑑4𝑥

𝑔2

32𝜋2 𝐹𝜇𝜈 𝐹̃
𝜇𝜈 = Z , (33)

where Z is the integer instanton number.
An efficient way to represent the strong anomaly effects is that of writing a low-energy effective

action, containing the term reproducing the correct𝑈𝐴(1) symmetry breaking [52]-[55],

𝐿 = 𝐿0 + 𝐿̂ , 𝐿̂ =
𝑖

2
𝑞(𝑥) log det𝑈/𝑈† + 𝑁

𝑎0𝐹
2
𝜋

𝑞(𝑥)2 ; (34)

6That this occurs in 𝑆𝑈 (𝑁) Yang-Mills theory at 𝜃 = 𝜋 has been known for some time, from the QCD Effective
Lagrangian analysis [48, 49] and also from soft supersymmetry breaking perturbation [50, 51] of the exact Seiberg-
Witten solutions [29, 30] of pure N = 2 supersymmetric Yang-Mills theory. Still, it is remarkable that the same result is
reproduced by a symmetry consideration, based on the generalized mixed-anomaly matching requirement.

9
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where 𝐿0 is the standard chiral Lagrangian describing the massless pions,

𝑈 = 𝑈0 𝑒
𝑖 𝜋𝑎 (𝑥)𝑡𝑎/𝐹𝜋 (35)

and
𝑞(𝑥) = 𝑔2

32𝜋2 𝐹𝜇𝜈 𝐹̃
𝜇𝜈 . (36)

Such an effective Lagrangian correctly reproduces the anomalous𝑈𝐴(1) variation,

Δ𝑆 = 2𝑁 𝑓 𝛼
∫

𝑑4𝑥
𝑔2

32𝜋2 𝐹𝜇𝜈 𝐹̃
𝜇𝜈 , 𝜓𝐿,𝑅 → 𝑒±𝑖𝛼𝜓𝐿,𝑅 , (37)

and would give a mass ∝ Λ to 𝑚𝜂 .
The question is: does a (multi-valued) logarithmic function make sense as an effective La-

grangian?
The answer is: yes, it does, if 𝑈 acquires a nonvanishing VEV, and if (34) is regarded as a

function of the pion field 𝜋(𝑥), i.e., as an expansion,

𝑈 = 〈𝑈〉𝑒𝑖 𝜋𝑎 (𝑥)𝑡𝑎/𝐹𝜋 = 〈𝑈〉(1 + 𝑖𝜋𝑎 (𝑥)𝑡𝑎/𝐹𝜋 + . . .) . (38)

Now, the idea is to invert the logic, and say that an effective action (34) with the logarithmic,
anomaly term, requires that the chiral composite 𝑈 ∼ 𝜓̄𝑅𝜓𝐿 to get a nonvanishing VEV, (31).
In other words, the strong anomaly implies the spontaneous symmetry breaking of the chiral
𝑆𝑈𝐿 (2) × 𝑆𝑈𝑅 (2) ×𝑈𝑉 (1) ×𝑈𝐴(1) symmetry to the diagonal, vector subgroup, 𝑆𝑈𝑉 (2) ×𝑈𝑉 (1).

We now apply the same idea to chiral gauge theories, where the form of the strong anomaly
is known but not the dynamical, infrared phase. For concreteness, let us take the “𝜒𝜂 model" (see
(2)), with fermions,

⊕ (𝑁 − 4) ¯
. (39)

The form of the strong anomaly is known:

𝑖

2
𝑞(𝑥) log(𝜒𝜂)𝑁−4𝜒𝜒 + h.c. , (40)

(𝑞(𝑥) is the topological density defined in (36)) where

(𝜒𝜂)𝑁−4𝜒𝜒 ≡ 𝜖𝑖1𝑖2...𝑖𝑁 𝜖𝑚1𝑚2...𝑚𝑁−4 (𝜒𝜂)𝑖1𝑚1 (𝜒𝜂)𝑖2𝑚2 . . . (𝜒𝜂)𝑖𝑁−4𝑚𝑁−4 𝜒𝑖𝑁−3𝑖𝑁−2 𝜒𝑖𝑁−1𝑖𝑁 .

(41)

Now such a strong-anomaly effective action implies

〈𝜒𝜂〉 ≠ 0 , 〈𝜒𝜒〉 ≠ 0 : (42)

i.e., the system is in the dynamical Higgs phase [6, 56].
Note that the confining, chirally symmetric phase, with no condensates, and the massless

“baryons", B ∼ 𝜒𝜂𝜂, as the only infrared degrees of freedom, fails the “matching" of the strong
anomaly. The strong anomaly effective action above cannot be written in terms of B ′𝑠, as the
fermion zero mode counting (in the instanton background) fails.

10
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It can be shown that the strong-anomaly consideration favors the dynamical Higgs phase,
against the confining symmetric phase with no condensate formation, in all BY and GG models
[6], in agreement with the indication coming from the studies of the generalized anomaly matching
(especially, the Z2 anomalies) studied in Sec. 2.1.

Such an agreement is not really a coincidence. Both are consequences of taking into account
appropriately the effects of the strong anomalies (i.e., topologically nontrivial, nonperturbative
effects of the strong 𝑆𝑈 (𝑁) gauge dynamics).

2.4 Dynamical Abelianization

Another interesting result found concerns the “𝜓𝜒𝜂" (and some other) model, with fermions,

𝜓 {𝑖 𝑗 } , 𝜒[𝑖 𝑗 ] , 𝜂𝐴𝑖 , 𝐴 = 1, 2, . . . 8 , (43)

or

⊕

¯

⊕ 8 × ¯
. (44)

It is asymptotically free, the first coefficient of the beta function being,

𝑏0 =
1
3
[11𝑁 − (𝑁 + 2) − (𝑁 − 2) − 8] = 9𝑁 − 8

3
. (45)

The model has a global 𝑆𝑈 (8) symmetry as well as two𝑈 (1) symmetries,

𝑈̃ (1) : 𝜓 → 𝑒2𝑖𝛼𝜓 , 𝜒 → 𝑒−2𝑖𝛼𝜒 , 𝜂 → 𝑒−𝑖𝛼𝜂 , (46)

and
𝑈 (1)𝜓𝜒 : 𝜓 → 𝑒𝑖

𝑁−2
𝑁∗ 𝛽𝜓 , 𝜒 → 𝑒−𝑖

𝑁+2
𝑁∗ 𝛽𝜒 , 𝜂 → 𝜂 , (47)

where
𝑁∗ = 𝐺𝐶𝐷 (𝑁 + 2, 𝑁 − 2) and 𝛼, 𝛽 ∈ (0, 2𝜋) . (48)

The problem is to understand how these symmetries and what kind of phase, are realized at low
energies.

We adopt the following strategy: our initial investigation of this model [1, 2] has shown that
the conventional ’t Hooft anomaly matching algorithm allows, among few others, the dynamical
Abelanization. The idea is to study whether the consequences of this dynamical assumption expected
in the infrared are consistent with the indications of possible generalized ’t Hooft anomalies, in the
ultraviolet. These provide stronger constraints than the conventional anomaly-matching algorithm.

We assume that bifermion condensates in the adjoint representation

〈𝜓𝑖𝑘 𝜒𝑘 𝑗〉 = Λ3 ©­­«
𝑐1

. . .

𝑐𝑁

ª®®¬
𝑖

𝑗

, 〈𝜓𝑖 𝑗𝜂𝐴𝑗 〉 = 0 , (49)

𝑐𝑛 ∈ C ,
∑︁
𝑛

𝑐𝑛 = 0 , 𝑐𝑚 − 𝑐𝑛 ≠ 0 , 𝑚 ≠ 𝑛 , (50)

11
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(with no other particular relations among 𝑐 𝑗’s) form in the infrared, and induce the symmetry
breaking

𝑆𝑈 (𝑁) → 𝑈 (1)𝑁−1 . (51)

a phenomenon well-known in the N = 2 supersymmetric gauge theories 7. In [6] a detailed study
was made of all aspects of symmetry realization in low energies, including the effects of the strong
anomalies. In particular, analysis of the consistency with the gauging (and the associated ’t Hooft
anomalies) of the 1-form color-flavor locked Z𝑁 symmetry (see Table 4 below) give convincing
evidence that the assumption of the dynamical Abelianization is a correct one. (See also [57]).

𝑈̃ (1) 𝑈 (1)𝜓𝜒 (Z𝑁+2)𝜓 (Z𝑁−2)𝜒 𝑆𝑈 (8)𝜂 Z𝑁 ∗ Z4/𝑁 ∗

Mixed Anomalies X X X X X X X

Dyn. Abel. X X X X X X X

Table 4: Dynamical Abelianization postulate of the present work is confronted with the implications of the mixed
anomalies. X for a conserved symmetry, X for a broken symmetry. The discrete Z𝑁 ∗ symmetry is defined in [6].

2.5 More general dynamical symmetry breaking patterns

There are many systems other than the 𝜓𝜒𝜂 model (43) in which a bifermion condensate in the
adjoint representation can form. An interesting class of models are those (see (4)) with fermions in
second-rank tensor representations,

𝑁−4
𝑘
𝜓 {𝑖 𝑗 } ⊕ 𝑁+4

𝑘
𝜒̄[𝑖 𝑗 ] . (52)

It is plausible that a bifermion condensate

〈𝜓𝜒〉 ≠ 0 (53)

forms, but it may not necessarily imply the dynamical Abelianization (as we assumed for the 𝜓𝜒𝜂
model). The condensate can have the form [10],

〈𝜓𝜒〉 = diag. (𝑐11𝑛1 , 𝑐21𝑛2 , . . .) ,
∑︁
𝑖

𝑐𝑖𝑛𝑖 = 0 , (54)

leading to a dynamical color symmetry breaking,

𝑆𝑈 (𝑁) → 𝑆𝑈 (𝑛1) × 𝑆𝑈 (𝑛2) × · · ·
∏
𝑘

𝑈𝑘 (1) . (55)

In particular, we wish to know whether some of these nonAbelian subgroups can be infrared-free,
i.e., can survive in the infrared. Such a question is relevant because the standard model of the
fundamental interactions is based on a gauge theory having precisely the gauge group of this type.

7In contrast to N = 2 susy theories, here the scalar in the adjoint representation 𝜙 ∼ 𝜓𝜒 appears as a dynamical,
composite field.
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2.5.1 𝑁 = 5, 𝑘 = 1 model

For instance, consider the model (52) with 𝑁 = 5, 𝑘 = 1, with fermions

⊕ 9 ·

¯

. (56)

A possible pattern is
𝐺𝑐 = 𝑆𝑈 (5) → 𝑆𝑈 (3) × 𝑆𝑈 (2) ×𝑈 (1) . (57)

The global symmetry is broken as

𝐺𝐹 = 𝑆𝑈 (9) ×𝑈0(1) → 𝑆𝑈 (8) ×𝑈0(1) ′ . (58)

𝑈0(1) ′ is the combination

𝑒

𝑖𝛼
©­«

18/8 0
0 −1

ª®¬ ∈ 𝑆𝑈 (9) with 𝑒𝑖𝛽𝑄0 , (59)

that is, with
− 𝛼 + 𝛽( 9

𝑁 + 2
− 1
𝑁 − 2

) = 0 , 𝛼 = 4
2𝑁 − 5
𝑁2 − 4

𝛽 . (60)

The fermions, decomposed in the representations of the unbroken subgroup are shown in
Table 5. The fermions participating in the condensate, 𝜓𝑖𝐽 𝜒9

𝐽𝑖
, become massive, and leave the

fields 𝑆𝑈 (3) 𝑆𝑈 (2) 𝑈 (1) 𝑆𝑈 (9) 𝑈0(1)
UV 𝜓𝑖 𝑗 (·) 4 (·) 9

𝑁+2
𝜓𝑖𝐽 −1 (·) 9

𝑁+2
𝜓𝐽𝐾 (·) −6 (·) 9

𝑁+2

𝜒𝐴
𝑖 𝑗

¯

= (·) −4 − 1
𝑁−2

𝜒𝐴
𝑖𝐽

¯ 1 − 1
𝑁−2

𝜒𝐴
𝐽𝐾

(·) (·) 6 − 1
𝑁−2

Table 5: 𝜓𝜒 model, 𝑁 = 5, 𝑘 = 1. 𝐴 = 1, 2, . . . , 9, 𝑖, 𝑗 = 1, 2, 3; 𝐽, 𝐾 = 4, 5.

massless fermions in Table 6. The “low-energy" 𝑆𝑈 (3) group turns out to be asymptotically
free (evolve to stronger interactions in the IR, leading to further dynamical symmetry breaking or
confinement), whereas the 𝑆𝑈 (2) is infrared free: are still asymptotically free:

𝛽𝑆𝑈 (3) = 11 · 3 − 5 − 9 · 1 − 8 · 1 · 2 > 0 , (61)

𝛽𝑆𝑈 (2) = 11 · 2 − 4 − 8 · 3 · 1 < 0 . (62)

This could be interesting, in principle. After all, the standard 𝑆𝑈 (3) × 𝑆𝑈 (2) × 𝑈 (1) model
contains also an asymptotically-free sub-gauge group 𝑆𝑈 (3) and the infrared-free 𝑆𝑈 (2) × 𝑈 (1)
part. Unfortunately the matter content is not quite the same, although one can notice intriguing
similarities.

13
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fields 𝑆𝑈 (3) 𝑆𝑈 (2) 𝑈 (1) 𝑆𝑈 (8) 𝑈0(1) ′

IR 𝜓𝑖 𝑗 (·) 4 (·) 2(𝑁 − 2)
𝜓𝐽𝐾 (·) −6 (·) 2(𝑁 − 2)

𝜒9
𝑖 𝑗

¯

= (·) −4 (·) −2(𝑁 − 2)

𝜒𝐵
𝑖 𝑗

¯

= (·) −4 −1

𝜒𝐵
𝑖𝐽

¯ 1 −1
𝜒9
𝐽𝐾

(·) (·) 6 (·) −2(𝑁 − 2)
𝜒𝐵
𝐽𝐾

(·) (·) 6 −1
𝜙𝐵 ∼ <(𝜓𝑖𝐽 𝜒𝐵

𝐽𝑖
) (·) (·) (·) 2𝑁 − 5

𝜋𝐵 ∼ =(𝜓𝑖𝐽 𝜒𝐵
𝐽𝑖
) (·) (·) (·) 2𝑁 − 5

𝜋9 ∼ =(𝜓𝑖𝐽 𝜒9
𝐽𝑖
) (·) (·) (·) (·) 0

Table 6: Massless fermions and Goldstone bosons in the infrared, in 𝑁 = 5, 𝑘 = 1, 𝜓𝜒 model. 𝐵 = 1, 2, . . . , 8.

2.5.2 Infrared nonAbelian gauge groups

More generally, we ask whether or not the subgroup

𝑆𝑈 (𝑁) → 𝑆𝑈 (𝑛) × . . . (63)

in (2.5.2) can remain infrared-free (weakly coupled) at low energies, in a given model. By decom-
posing the fermions (52) as direct sums of the irreps of the 𝑆𝑈 (𝑛) subgroup, the (first coefficient
the) beta function of 𝑆𝑈 (𝑛) can be seen to be

𝛽(𝑆𝑈 (𝑛)) = 11 · 𝑛 − 𝑁 − 4
𝑘

· (𝑛 + 2) − 𝑁 + 4
𝑘

· (𝑛 − 2) − 8
𝑘
· (𝑁 − 𝑛) · 1

=
16 + 8𝑛 + 11𝑘𝑛 − 8𝑁 − 2𝑛𝑁

𝑘
. (64)

The change of sign happens at

𝑛∗ =
8𝑁 − 16

8 + 11𝑘 − 2𝑁
(65)

so the integer part of 𝑛∗, [𝑛∗] is the biggest 𝑛 that is IR free. Clearly if [𝑛∗] = 1 there are no
non-abelian IR free (gauge) symmetry breaking patterns. Let us discuss a few cases.

• 𝑘 = 1, 𝑁 = 5, 𝑛∗ = 8
3 , so [𝑛∗] = 2. Indeed

𝛽(𝑆𝑈 (2)) = −6 . (66)

The possible IR free breaking is

𝑆𝑈 (5) → 𝑆𝑈 (2) × 𝑆𝑈 (2) ×𝑈 (1)2 . (67)
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• 𝑘 = 1, 𝑁 = 6, 𝑛∗ = 32
7 , so [𝑛∗] = 4, and

𝛽(𝑆𝑈 (4)) = −4 . (68)

A possible IR free breaking mode is (see Fig. 1)

𝑆𝑈 (6) → 𝑆𝑈 (4) × 𝑆𝑈 (2) ×𝑈 (1) . (69)

In the following, the massless fermions which remain in the infrared are shown in quiver
graphs, instead of using tables such as Table 6. Circles with a number inside 𝑛 represent a
gauge group 𝑆𝑈 (𝑛), squares with a number 𝑚 represent a global symmetry 𝑆𝑈 (𝑚) group,
fermions are lines connecting the groups, arrows on the line indicate if is fundamental
(ingoing) or antifundamental (outgoing), lines omitted for 𝑆𝑈 (2); little “o” or “x” within a
line indicates if they belong to symmetric or anti-symmetric tensor representation.

9

24

Figure 1: Diagram corresponding to (69).

Another possible IR free breaking mode is (see Fig. 2)

𝑆𝑈 (6) → 𝑆𝑈 (3) × 𝑆𝑈 (3) ×𝑈 (1) . (70)

• 𝑘 = 2, 𝑁 = 6, 𝑛∗ = 16
9 . Since [𝑛∗] = 1 there are no non-abelian IR free symmetry breaking

patterns. Abelianization is the only IR-free possibility.

• 𝑘 = 2, 𝑁 = 8, 𝑛∗ = 3 + 3
7 and

𝛽(𝑆𝑈 (3)) = −3 . (71)

Possible IR free breaking patterns are

𝑆𝑈 (8) → 𝑆𝑈 (3) × 𝑆𝑈 (3) × 𝑆𝑈 (2) ×𝑈 (1)2 (72)

or

𝑆𝑈 (8) → 𝑆𝑈 (2)4 ×𝑈 (1)3 . (73)
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3 33

9

Figure 2: Quiver diagram corresponding to (70)

32

5

33

Figure 3: Diagram corresponding to (72)

• 𝑘 = 2, 𝑁 = 10, 𝑛∗ = 32
5 , so [𝑛∗] = 6, and indeed

𝛽(𝑆𝑈 (6)) = −2 . (74)

Possible IR free breaking modes are

𝑆𝑈 (10) → 𝑆𝑈 (6) × 𝑆𝑈 (4) ×𝑈 (1) (75)

and

𝑆𝑈 (10) → 𝑆𝑈 (5) × 𝑆𝑈 (5) ×𝑈 (1) , (76)

and so on.
It is left for further study to understand which is the correct phase of each model.

3. Old and New criteria for confinement and other phases

These efforts to understand the dynamics and phases of chiral gauge theories in four dimensions
reviewed above, remind us of the well debated confinement (or Higgs) criteria, in particular in the
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6

6 4

2

Figure 4: Diagram corresponding to (75)

context of pure Yang-Mills theory or of QCD, and urge us to revisit these ideas with more critical
eyes.

There are three well-known “confinement criteria". (A): The original idea that a colored
particle cannot be freely propagating: they are confined inside a color-singlet composite object.
(B): Criteria which use Wilson loop or Polyakov loop; and (C): The dual superconductivity idea by
’t Hooft. As will be seen, each of them has some issues.

(A) The original color-confinement idea that colored particles (e.g., quarks) cannot be freely
propagating, and permanently confined inside a color-singlet composite states (e.g., hadrons).

This concept, which seems to be well-defined, appears to be somewhat problematic, when
applied to some chiral gauge theories. Namely, gauge non-invariant operators or states could
well be gauge-invariant ones, just written in a particular gauge.

A noteworthy and well known example is the Weinberg-Salam 𝑆𝑈 (2) × 𝑈 (1) theory. It is
usually stated that the 𝑆𝑈 (2) ×𝑈 (1) gauge group is spontaneously broken by the Higgs VEV

〈𝜙〉 =
(

v
0

)
, v = 256 GeV , (77)

and the neutrino and the lefthanded electron are the upper and lower components of the
fermion lefthanded doublet,

𝜓𝐿 =

(
𝜈

𝑒𝐿

)
. (78)

A more appropriate way to think about these is that (77) really means that

〈
2∑︁
𝑖=2

𝜙
†
𝑖
𝜙𝑖〉 ≠ 0 : (79)

and that the neutrino and electron are described by gauge invariant composite fields

𝜈 ∼ 𝜙†
𝑖
𝜓𝑖𝐿 , 𝑒𝐿 ∼ 𝜖𝑖 𝑗𝜙𝑖𝜓 𝑗𝐿 . (80)
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The familiar expressions (77) and (78) are just formulae valid in the particular (and arbitrary)
gauge chosen, (77).

Does it mean that there are no distinctions between the confinement and Higgs phases? The
answer is: there are. The weakly coupled, 𝑆𝑈 (2) × 𝑈 (1) theory in broken, Higgs phase,
cannot be understood as a strongly coupled 𝑆𝑈 (2) ×𝑈 (1) theory in confinement phase [63].
Analogous remarks can be made in certain classes of chiral gauge theories studied above. In
particular, in BY and GG models which are likely to be in a dynamical Higgs phase, there
is no difficulty in rewriting the condensate such as (29) or the NG boson of the system, in a
gauge-invariant fashion. Nevertheless, the dynamical Higgs phase is clearly distinct from the
putative, confining, symmetric phase [4, 5, 7].

(B) Another well-known criterion uses the Wilson loop

𝑊𝛾 = Tr {P𝑒𝑖
∮
𝛾
𝐴𝜇𝑑𝑥

𝜇

} , (81)

or the Polyakov loop in Euclidian spacetime,

𝑃(r) = 1
𝑁

Tr{T 𝑒𝑖
∫ 𝛽

0 𝑑𝜏𝐴0 (r,𝜏) } , (82)

where P and T represent the path-ordered or time-ordered exponentials. Wilson’s criterion
is

lim
𝛾→∞

〈𝑊𝛾〉 =
{
𝑒−𝐴 confinement phase,
𝑒−𝐿 Higgs phase :

(83)

i.e., the area law - a linearly rising potential between two test charges - indicates confinement
phase.

The Yang-Mills theory is invariant under the center symmetry transformation of the Polyakov
loop,

𝑃(r) → Z𝑁 𝑃(r) . (84)

The unbroken center symmetry
lim
𝛽→∞

|〈𝑃(r)〉| = 0 , (85)

can be used as a criterion of confinement phase (an infinite free energy for an isolated quark).

The lattice simulation indicates that the 𝑆𝑈 (𝑁) Yang-Mills theory is indeed in confinement
phase, according to these criteria.

The problem with this criterion is that there is nothing to confine in pure YM theory (!).
As soon as massless quarks are introduced, center symmetry is broken. Also, the confining
string between two test charges is broken by the spontaneous production of quark-antiquark
pairs from the vacuum (vacuum polarization), and the area law is lost. The perimeter law
ensues. Thus neither (83) nor (85) can be used to discriminate the infrared phases (Higgs or
confining) of quantum chromodynamics (QCD) with massless quarks.
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(C) Confinement as a dual Meissner effect (’t Hooft). By considering the subgroup of the color
𝑆𝑈 (3),

𝑈 (1)2 ⊂ 𝑆𝑈 (3) , (86)

the charges of a particle (elementary or solitonic) can take electric and magnetic quantum
numbers

(𝑛1, 𝑛2;𝑚1, 𝑚2) , 𝑛𝑖 , 𝑚𝑖 ∈ Z , 𝑖 = 1, 2 . (87)

The corresponding𝑈𝑖 (1) electric and magnetic coupling strengths are

𝑛1𝑒1 , 𝑚1𝑔1 , 𝑛2𝑒2 , 𝑚2𝑔2 , (88)

where the elementary electric and magnetic charges obey Dirac’s quantization condition,

𝑒1 𝑔1 ∈ Z/2 , 𝑒2 𝑔2 ∈ Z/2 . (89)

Now define the “Dirac unit" between two particles

D1,2 ≡
2∑︁
𝑖=1

(𝑛(1)
𝑖
𝑚

(2)
𝑖

− 𝑛(2)
𝑖
𝑚

(1)
𝑖

) . (90)

Then ’t Hooft’s criterion [58] is the following. If the field of particle 1 with charges (87)
condenses

〈𝑀 (1)〉 ≠ 0 , (91)

then all particles 2 carrying charges with nonvanishing Dirac unit with respect to particle 1,

D1,2 ≠ 0 , Mod(3) , (92)

are confined.

For instance, the condensation of the magnetic monopole of𝑈1(1),

〈𝑀0,0;1,0〉 ≠ 0 , (93)

implies that the quark with charge 𝑄 (1,0;0,0) is confined (dual Meissner effect).

The criterion (C) is also problematic. In formulating the confinement criterion in terms of the
𝑈 (1)2 ⊂ 𝑆𝑈 (3) charges, one has made an implicit, dynamical assumption that these Abelian
(electric, magnetic or dionic) degrees of freedom describe the physics in the infrared. In
other words, one assumes dynamical Abelianization, analogous to what happens in N = 2
supersymmetric gauge theories or in the chiral𝜓𝜒𝜂model we discussed in Sec. 2.4. However,
in the standard QCD there are no elementary or (plausible) composite scalar fields in the
adjoint representation 8, in contrast to these other systems. In such a situation dynamical
Abelianization of the system is unlikely. Besides, there are no phenomenological indications
in favor of an Abelian𝑈 (1)2 infrared effective theory for QCD.

8Actually there are bifermion 𝜓𝐿𝜓𝑅 or bi-gluon 𝐺𝜇𝜈𝐺𝜇𝜈 composites which may act as scalar fields in the adjoint
representation. However the corresponding composite scalars in the color-singlet representation are in a much more
strongly attractive channels, and indeed those are believed to form condensates in the real-world QCD.
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It is possible that confinement in QCD is explained by a dual superconductor mechanism,
but without Abelianization. But it means that the infrared physics involves nonAbelian
monopoles and their quantum dynamics, a notoriously subtle problem. See e.g. [59] for a
review and for references to earlier literature.

Quantum-mechanical properties of Abelian or nonAbelian monopoles and dyons, their dy-
namics and their possible roles in confinement and symmetry breaking, have, on the other
hand, been largely clarified by the ground-breaking discovery of the exact Seiberg-Witten
solutions of N = 2 supersymmetric gauge theories [29]-[35]. Unfortunately, it turns out
that it is rather difficult to make reliable predictions about ordinary (i.e., nonsupersymmetric)
theories, by using the knowledge gained in the context of N = 2 (or N = 1) supersymmetric
theories. In general, one expects various phase transitions, when the N = 2 or N = 1 susy
breaking terms are added in the action, and are tuned to be larger than the dynamical scales
ΛN=2 or ΛN=1 of supersymmetric theories.

Under these circumstances, the best thing one can do could be to try to learn the kind of
physics phenomenon which is dynamically realizable, and which could be underlining the
confinement in QCD, rather than attempting to deform the N = 2 or N = 1 QCD in some
concrete manner (see [60–62] for recent efforts), hoping to get something which looks similar
to the standard QCD.

We shall indeed take the first attitude, and discuss below an idea, realized in susy gauge
theories, and might be underlying the physics of real-world QCD, that confinement is a
deformation of the RG flow towards a nonAbelian strongly-coupled conformal fixed point
(Sec. 4).

But before that, let us discuss new simple criteria for "color confinement", Higgs phase, etc.

3.1 New criteria (tentative) for different phases

The difficulties in the familiar "confinement criteria" (A) - (C) reviewed above indeed tempt
us to propose the following, new criteria for different phases of chiral or vectorlike 𝑆𝑈 (𝑁) gauge
theories in four dimensions.

Let us however keep note of a lesson, first of all, that the studies in different classes of chiral
gauge theories discussed in Sec. 2, all based on the same 𝑆𝑈 (𝑁) Yang-Mills theory, taught us. It is
the fact that the infrared dynamics (and the phase) of an asymptotically-free 𝑆𝑈 (𝑁) gauge theory is
not determined by that of the pure 𝑆𝑈 (𝑁) Yang-Mills theory on which it is based, but by the dynamics
involving the massless matter fields, which in turn depend critically on their representation. Thus an
argument that a chiral gauge theory (e.g., the BY model) should necessarily confine, as the 𝑆𝑈 (𝑁)
Yang-Mills theory is in confinement phase, is logically unfounded.

Our proposal is that the different phases are characterized by the number and types of various
colored Nambu-Goldstone bosons the system produces. They may be generated by the condensation
of either elementary or composite scalar fields. We exclude below those systems which are infrared-
free 𝑆𝑈 (𝑁) theory (many fermions are present so that the interactions are weak at low energies.
𝑆𝑈 (𝑁) gauge bosons survive in the IR as asymptotic states - Coulomb phase. We exclude also
those which flow into conformal fixed-point theories (however, this last class of models may have a
subtle and important relation to confinement, see below).
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(a) The system is in the confinement phase if it produces no colored NG bosons.

This is the case for YM, QCD, supersymmetric QCD and susy YM. Note that the phase of
the standard QCD with massless fermions is classified as confinement according to this new
criterion, whereas the old criterion (B) fails.

(b) (Dynamical) Higgs phase, when the system produces 𝑁2 − 1 colored NG bosons.

This occurs (likely) in the chiral BY and GG models studied in [3]-[7], and in the Glashow-
Weinberg-Salam electroweak theory.

(c) Dynamical Abelianization (or Coulomb phase) occurs when there are 𝑁 (𝑁 − 1) colored NG
bosons.

This was shown likely to be the correct phase of the 𝜓𝜒𝜂 model [8, 57], and is known to be
realized in most N = 2 supersymmetric gauge theories [29]-[35].

(d) Other groups other than (a)-(c) above, of colored NG bosons.

The system could flow into infrared effective theory containing some residual (infrared-free)
nonAbelian gauge dynamics. The first attempts investigating these possibilities in chiral
theories are reported in Sec. 2.5.2 above. In the context of N = 2 supersymmetric gauge
theories, this type of infrared-fixed-point theories are well-known (e.g., the 𝑟-vacua of N = 2
SQCD [64, 65].)

These new criteria clarify to some extent the ideas about possible different phases occurring
in various types of strongly-coupled gauge theories in four dimensions, chiral or vectorlike. Still,
confinement in QCD with massless quarks certainly requires a better explanation than the earlier
criteria (A)-(C) reviewed in Sec. 3, and a more detailed understanding of the mechanism than (a).

Below, we discuss an idea on the confinement in QCD, which might sound somewhat extraor-
dinary, but is indeed realized in some softly-broken supersymmetric theories.

4. A lesson from supersymmetric gauge theories

As already said, it remains an unsolved problem to make reliable predictions about the dynamics
of any specific (non-supersymmetric) gauge theory such as QCD, based on the knowledge about
supersymmetric gauge theories.

But the result of studies on supersymmetric gauge theories during the last 50 years does teach
us what sort of dynamical phenomena are possible in strongly-coupled nonAbelian gauge theories,
how they depend on the gauge group and on the massless matter contents, and how they work
concretely. It has given solid understanding of the nonperturbative effects involving instantons,
magnetic monopoles, dualities and interacting (super) conformal infrared fixed points (SCFT).

From the point of view of the renormalization-group flow, confinement can be understood as
a deformation (deviation) by some relevant operator (which might be present already in the UV
theory or produced dynamically), from a trajectory leading to an infrared fixed point. See Fig. 5.
The relevant infrared fixed point theory might be Abelian (Abelianization), or nonAbelian but local
and weakly coupled, or a strongly-coupled, nonAbelian, nonlocal SCFT. The example of the first

21



P
o
S
(
C
O
R
F
U
2
0
2
3
)
1
2
6

Anomalies and Dynamics in Strongly-Coupled Gauge Theories Kenichi Konishi

type of the RG flow is ’t Hooft’s dual Meissner effect model (assumption) of confinement [58].
Confinement à la ’t Hooft shown by Seiberg and Witten by an N = 1 perturbation of the “monopole
point" of N = 2 susy 𝑆𝑈 (2) gauge theories [29, 30], is an explicitly realization.

The second type of the RG flow is the one into nonAbelian but weakly-coupled infrared-free
low-energy systems (hence, again, “trivial" conformal fixed points), and confinement caused by
a relevant perturbation. A known example is the so-called 𝑟-vacua of N = 2 supersymmetric
quantum chromodynamics (SQCD), leading to dual Meissner effects, involving both Abelian and
nonAbelian monopoles, upon N = 1 adjoint-scalar mass perturbation [64, 65].

Perhaps the most intriguing type of the RG flow, from the point of view of understanding con-
finement in real-world QCD, is the one which would point towards a strongly-coupled, nonAbelian,
nonlocal conformal fixed points [11–14]. Though they are the most difficult ones to analyze in
general, as they involve nonlocal, nonAbelian systems with strongly-coupled monopoles, dyons and
quarks (meaning that the system has no Lagrangian description), some remarkable developments
(Gaiotto-Seiberg-Tachikawa duality [66]) allow us to analyze the system explicitly, and to prove
confinement, upon appropriate N = 1 perturbations. Color confinement in the true sense (a) (i.e.,
without Abelianization) is indeed realized in these models, as has been shown in [12–14]. See
Fig. 6.

4.1 A final reflection

The RG flow of an asymptotically-free gauge theory with massless matter fields is directed
towards an infrared-fixed point theory. When a relevant perturbation is present (either in the UV
theory, such as a mass term, or produced by the system dynamically, in the form of composite scalar
fields) the RG flow may get deviated at the IR end of the trajectory (Fig.5), leading to a confining
vacuum. A conformal theory (CFT), a scale invariant theory, and confinement (generation of
mass scale and breaking of dilatation symmetry) might look at first sight diametrically opposite,
conceptually. How can they be close to (or deformed into) each other?

There are at least two precise senses in which they can indeed be “close to each other". The
first is that one of them may go into another when the parameters of the theory is varied (such as the
number of the flavors, or the mass of the matter fermions). Namely they can be close to each other
in the space of theories. In the standard 𝑆𝑈 (3) QCD with 𝑁𝐹 massless quark flavors, confining and
conformal vacua are believed to be separated by an (unknown) critical flavor number 𝑁∗

𝐹
.

More significantly, we learn from the analysis of the supersymmetric theories that the same
degrees of freedom (monopoles, dyons and quarks) describe both the infrared fixed-point CFT and
the nearby (perturbed by some relevant operators) vacuum in confinement phase.

In the real-world 𝑆𝑈 (3) QCD, with two nearly massless quarks, we may exclude Abelian
or nonAbelian infrared-free phases, for the lack of any phenomenological evidence. Among the
different RG flows (Fig. 5), then, the only one which seems plausible is the one towards the confining
vacuum lying near a nonAbelian, strongly-coupled nonlocal conformal fixed point. It is possible
that a phenomenon very similar to the one studied in [11]-[14] is indeed realized in the standard
QCD, even though our ability of exhibiting the dynamical details is for the moment limited to the
cases of N = 2 supersymmetric cousins.
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Figure 5: Various types of renormalization group (RG) flows. The IR fixed points can be trivial, Abelian free theories,
nonAbelian but local theories, or a strongly-coupled, nonAbelian, and nonlocal CFT. Different types of confinement can
occur, accordingly.
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Figure 6: An illustration of a strongly-coupled, nonAbelian CFT occurring in N = 2 SQCD with 𝑁 𝑓 = 2𝑁𝑐 − 1,
deformed into a confining vacuum with relevant, N = 1 perturbations. As a side remark, the 𝑎 theorem (showing the
consistency of the RG flow [67]) is illustrated in this model and in the standard, real-world QCD.
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