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1. Introduction

The Standard Paradigm of Cosmology, namely ΛCDM concordance model, has been proven
very successful in describing the universe evolution, at both background and perturbative levels.
Nevertheless, it exhibits possible disadvantages, either theoretical or observational [1]. In the first
class of potential issues one has the non-renormalizability of general relativity or the cosmological
constant problem. In the second class one may find the dynamical behavior of dark energy, the
realization of the inflationary phase, as well as various cosmological tensions.

Among cosmological tensions, one has the 𝐻0 tension, namely the fact that the present value of
the Hubble parameter is estimated by Planck collaboration to be 𝐻0 = (67.27±0.60) km/s/Mpc [2],
whereas local measurements of the 2019 SH0ES collaboration (R19) lead to 𝐻0 = (74.03 ± 1.42)
km/s/Mpc. Additionally, one may have the 𝜎8 tension, which is related to the matter clustering, and
the fact that the Cosmic Microwave Background (CMB) estimation [2] differs from the SDSS/BOSS
direct measurement [3, 4].

If these tensions are not due to unknown systematics, they probably need a modification
of standard lore in order to be alleviated. There are many directions one can follow in order
achieve this. In particular, since 𝜃𝑠 =

𝑟𝑠
𝐷𝐴

, where 𝑟𝑠 ∝
∫ 𝑡𝑟𝑒𝑐𝑜𝑚

0 𝑑𝑡
𝑐𝑠 (𝑡 )
𝜌(𝑡 ) is the sound horizon and

𝐷𝐴 ∝ 1
𝐻0

∫ 𝑡𝑡𝑜𝑑𝑎𝑦

𝑡𝑟𝑒𝑐𝑜𝑚
𝑑𝑡 1

𝜌(𝑡 ) is the angular diameter distance, one could try to change either 𝑟𝑠 or 𝐷𝐴

or both. Solutions that affect 𝑟𝑠 are referred to as “early-time” solutions, and solutions that alter
𝐷𝐴 are called “late-time” solutions. Hence, in the literature one can find a large class of solutions,
including modified gravity, early dark energy, extra relativistic degrees of freedom, bulk viscous
models, clustering dark energy, holographic dark energy, interacting dark energy, running vacuum
models, Horndeski theories, decaying dark matter, string-inspired models, etc [5–58] (for a review
see [59]).

In the present work we are interested in presenting a novel alleviation of both 𝐻0 and𝜎8 tension,
obtained in the framework of Tsallis cosmology [60]. Such a modified cosmological scenario arises
from the application of the standard gravity-thermodynamics conjecture, namely the procedure to
obtain the Friedmann equations from the first law of thermodynamics applied in the universe horizon
[61–63], but using Tsallis non-additive entropy [64–66], instead of the usual Bekenstein-Hawking
one. Tsallis cosmology has been shown to lead to interesting cosmological phenomenology [67–
76]. Nevertheless, in the following we will show that in such a framework we can obtain phantom
behavior for the effective dark-energy sector, which is one of the sufficient mechanisms that can
alleviate the 𝐻0 tension, as well as an increased friction term in the matter-perturbation evolution
equation, which leads to smaller 𝜎8.

The plan of the work is the following: In Section 2 we briefly review Tsallis cosmology, both at
the background and perturbative levels. Then in Section 3 we show how Tsallis cosmology can lead
to the alleviation of both 𝐻0 and 𝜎8 tensions simultaneously. Finally, in Section 4 we summarize
the obtained results.

2. Modified cosmology through Tsallis entropy

In this section we briefly review Tsallis cosmology. Tsallis non-additive entropy [64–66] gen-
eralizes the standard thermodynamics to non-extensive one, and it possess the standard Boltzmann-
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Gibbs statistics as a limit. In cosmology, this is characterized by an exponent 𝛿, and hence the
Tsallis entropy can be written in the form [77]

𝑆𝑇 =
�̃�

4𝐺
𝐴𝛿 , (1)

in units where ℏ = 𝑘𝐵 = 𝑐 = 1. In the above expression𝐺 is the gravitational constant, 𝐴 ∝ 𝐿2 is the
area of the system with characteristic length 𝐿, �̃� is a positive constant with dimensions [𝐿2(1−𝛿 ) ]
and 𝛿 is the non-additivity parameter. As mentioned in the Introduction, in the case 𝛿 = 1 and
�̃� = 1, Tsallis entropy recovers the standard Bekenstein-Hawking additive entropy.

We consider a Friedmann-Robertson-Walker (FRW) metric of the form

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)
(

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2𝑑Ω2
)
, (2)

with 𝑎(𝑡) the scale factor, and 𝑘 = 0, +1,−1 the spatial curvature. We substitute Tsallis entropy
(1) into the first law of thermodynamics −𝑑𝐸 = 𝑇𝑑𝑆, and we perform all the steps of gravity-
thermodynamics conjecture [61–63]. Specifically, we consider the boundary of the system to be the
Universe apparent horizon 𝑟𝑎 = (𝐻2 + 𝑘

𝑎2 )−1, having temperature 𝑇 = 1/(2𝜋𝑟ℎ), and being filled
by the universe matter fluid, with energy density 𝜌𝑚 and pressure 𝑝𝑚 [78–91]. Hence, this leads to
(we consider only the more physically interesting case 𝛿 ≠ 2) [60]

− (4𝜋)2−𝛿𝐺

�̃�
(𝜌𝑚 + 𝑝𝑚) = 𝛿

¤𝐻 − 𝑘

𝑎2(
𝐻2 + 𝑘

𝑎2

) 𝛿−1 , (3)

and this by integration to

2(4𝜋)2−𝛿𝐺

3�̃�
𝜌𝑚 =

𝛿

2 − 𝛿

(
𝐻2 + 𝑘

𝑎2

)2−𝛿

− Λ̃

3�̃�
, (4)

with dots denoting time-derivatives, and where Λ̃ is an integration constant, which can be considered
as the cosmological constant. For the non-extensive scenario with Tsallis entropy, equations (3)
and (4) are the two modified Friedmann equations. Focusing on flat geometry, i.e. 𝑘 = 0, we can
re-write them into the standard form

𝐻2 =
8𝜋𝐺

3
(𝜌𝑚 + 𝜌𝐷𝐸) (5)

¤𝐻 = −4𝜋𝐺 (𝜌𝑚 + 𝑝𝑚 + 𝜌𝐷𝐸 + 𝑝𝐷𝐸) , (6)

where we have defined an effective dark energy density and pressure as [60]

𝜌𝐷𝐸 =
3

8𝜋𝐺

{
Λ

3
+ 𝐻2

[
1 − 𝛼

𝛿

2 − 𝛿
𝐻2(1−𝛿 )

]}
, (7)

𝑝𝐷𝐸 = − 1
8𝜋𝐺

{
Λ + 2 ¤𝐻

[
1 − 𝛼𝛿𝐻2(1−𝛿 )

]
+ 3𝐻2

[
1 − 𝛼

𝛿

2 − 𝛿
𝐻2(1−𝛿 )

]}
, (8)
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as well as the new constants Λ ≡ (4𝜋) 𝛿−1Λ̃ and 𝛼 ≡ (4𝜋) 𝛿−1�̃�. In these lines, the equation-of-state
parameter for the effective dark energy is

𝑤𝐷𝐸 ≡ 𝑝𝐷𝐸

𝜌𝐷𝐸

= −1 −
2 ¤𝐻

[
1 − 𝛼𝛿𝐻2(1−𝛿 ) ]

Λ + 3𝐻2
[
1 − 𝛼𝛿

2−𝛿
𝐻2(1−𝛿 ) ] . (9)

We mention that for 𝛿 = 1 and 𝛼 = 1 the above expressions recover the standard ones as expected.
Let us elaborate the aforementioned equations. For simplicity we consider dust matter (𝑝𝑚 = 0)

and we introduce the density parameters through

Ω𝑚 =
8𝜋𝐺
3𝐻2 𝜌𝑚 (10)

Ω𝐷𝐸 =
8𝜋𝐺
3𝐻2 𝜌𝐷𝐸 . (11)

Doing so, the Hubble parameter can be written as

𝐻 =

√
Ω𝑚0𝐻0√︁

𝑎3(1 −Ω𝐷𝐸)
, (12)

where “0" denotes the present value of the corresponding quantity. In the following it proves more
convenient to introduce the redshift 𝑧, defined as 1 + 𝑧 = 1/𝑎, having imposed the present scale
factor to 1. Substituting (7) into (11) and taking into account (12) we acquire

Ω𝐷𝐸 (𝑧) = 1 − 𝐻2
0Ω𝑚0(1 + 𝑧)3

{
(2−𝛿)
𝛼𝛿

[
𝐻2

0Ω𝑚0(1+𝑧)3 + Λ

3

]} 1
𝛿−2

, (13)

while from (9) we find [60]

𝑤𝐷𝐸 (𝑧) = −1 +

{
3[1 −Ω𝐷𝐸 (𝑧)] + (1 + 𝑧)Ω′

𝐷𝐸
(𝑧)

} {
1 − 𝛼𝛿

[
𝐻2

0Ω𝑚0 (1+𝑧)3

1−Ω𝐷𝐸 (𝑧)

]1−𝛿
}

[1 −Ω𝐷𝐸 (𝑧)]
{
Λ[1−Ω𝐷𝐸 (𝑧) ]
𝐻2

0Ω𝑚0 (1+𝑧)3 + 3

{
1 − 𝛼𝛿

2−𝛿

[
𝐻2

0Ω𝑚0 (1+𝑧)3

1−Ω𝐷𝐸 (𝑧)

]1−𝛿
}} , (14)

where primes denote differentiation with respect to 𝑧. Finally, note that applying (13) at present
time (𝑧 = 0) we acquire a relation of the parameters, namely

Λ =
3𝛼𝛿
2 − 𝛿

𝐻
2(2−𝛿 )
0 − 3𝐻2

0Ω𝑚0, (15)

from which we deduce that our model has two extra free parameters, namely 𝛼 and 𝛿.
We close this section by examining Tsallis cosmology at the perturbative level. Introducing as

usual the matter overdensity 𝛿𝑚 := 𝛿𝜌𝑚/𝜌𝑚, and focusing without loss of generality on the case
𝛼 = 1, one can show that its evolution equation is given by [92]

𝛿′′𝑚 +
2 (4−2𝛿) −

(
9−6𝛿+8𝜋𝐺Λ𝐻2𝛿−4)

(4−2𝛿) (1 + 𝑧) 𝛿′𝑚 +
3

1
𝛿−2

[
(1−2𝛿) 𝜌

1
2−𝛿
𝑚 − 9 (1−𝛿) Λ𝜌

𝛿−1
2−𝛿
𝑚

]
8𝜋𝐺

2 (2 − 𝛿)2 𝐻2(1 + 𝑧)2
𝛿𝑚 = 0,

(16)

4



P
o
S
(
C
O
R
F
U
2
0
2
3
)
1
7
4

Alleviating both 𝐻0 and 𝜎8 tensions through Tsallis entropy Maria Petronikolou

with Λ given by (15). Note that comparing to standard result, in the above expression we have a
different friction term (the second term), as well as an effective Newton’s constant (the last term).
Clearly, in the case 𝛿 = 1, one recovers the standard result, which in the case of matter domination
(Ω𝑚 ≈ 1) gives

𝛿′′𝑚 + 1
2(1 + 𝑧) 𝛿

′
𝑚 − 3

2(1 + 𝑧)2 𝛿𝑚 = 0 (17)

as expected. Lastly, after obtaining the solution for 𝛿𝑚(𝑧), we can calculate the physically interesting
observational quantity

𝑓 𝜎8(𝑧) = 𝑓 (𝑧) 𝜎(𝑧), (18)

with 𝑓 (𝑧) := − 𝑑 ln 𝛿𝑚 (𝑧)
𝑑 ln 𝑧

and 𝜎(𝑧) := 𝜎8
𝛿𝑚 (𝑧)
𝛿𝑚 (0) [59].

3. Alleviating 𝐻0 and 𝜎8 tensions

Let us now investigate how the scenario of Tsallis cosmology can alleviate both 𝐻0 and 𝜎8

tensions. As we observe, the Tsallis exponent 𝛿 affects both the background and perturbation
evolution. As it was in [59] and in [93, 94], one of the efficient mechanisms that can alleviate the
𝐻0 tension is to obtain an effective dark-energy equation-of-state parameter lying in the phantom
regime, while one of the efficient mechanisms that can alleviate the 𝜎8 tension is to obtain an
increased friction term or a smaller effective Newton’s constant in the evolution equation of 𝛿𝑚.
Hence, our strategy will be to choose 𝛿 in order to fulfill the above requirements.

In ΛCDM cosmology the Hubble function is given by the relation

𝐻Λ𝐶𝐷𝑀 (𝑧) ≡ 𝐻0
√︁
Ω𝑚0(1 + 𝑧)3 + 1 −Ω𝑚0. (19)

On the other hand, in Tsallis cosmology the Hubble function is given by (12) with Ω𝐷𝐸 (𝑧) provided
by (13). Hence, we can choose model parameters which our 𝐻 (𝑧) coincides with 𝐻ΛCDM(𝑧) of
(19) at 𝑧 = 𝑧CMB ≈ 1100, namely 𝐻 (𝑧 → 𝑧CMB) ≈ 𝐻ΛCDM(𝑧 → 𝑧CMB), but give 𝐻 (𝑧 → 0) >

𝐻ΛCDM(𝑧 → 0). Finally, as usual, we desire to have the standard evolution ofΩ𝑚 andΩ𝐷𝐸 , with the
sequence of matter and dark-energy epochs, and with Ω𝑚0 ≈ 0.31, according to observations [2].
We mention here that the range of values {𝛿,Ω𝑚0} that we are using is well within the observational
bounds in these kinds of theories [60, 95].

In Fig. 1 we depict the normalized 𝐻 (𝑧)/(1 + 𝑧)3 as a function of the redshift parameter, for
ΛCDM scenario, as well as for Tsallis cosmology for various values of the entropic exponent 𝛿.
As we observe, for small deviations of 𝛿 below the standard entropy value 𝛿 = 1 we can have a
coincidence to ΛCDM cosmology at high and intermediate redshifts, while at small redshifts the
modified Tsallis scenario stabilizes in higher values of 𝐻0. The dependence of the 𝐻0 value on 𝛿,
leads to the estimation 𝐻0 ≈ 74 km/s/Mpc for 𝛿 = 0.993. Hence, Tsallis cosmology, with 𝛿 values
slightly less than the standard value, can indeed alleviate 𝐻0 tension (𝛿 > 1 values do not lead to
alleviation).

As an additional verification, we confront the derived evolution with Cosmic Chronometer
(CC) data [97], namely datasets based on 𝐻 (𝑧) measurements through the relative ages of massive
passively evolving galaxies [96]. In Fig. 2 we present 𝐻 (𝑧) for ΛCDM scenario and for Tsallis
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HΛCDM
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δ=0.997
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Figure 1: The normalized 𝐻 (𝑧)/(1 + 𝑧)3 in units of 𝑘𝑚/𝑠/𝑀𝑝𝑐 as a function of the redshift, for ΛCDM
cosmology (black-solid) and for Tsallis cosmology for 𝛼 = 1 and for 𝛿 = 0.993 (red - dotted), 𝛿 = 0.995 (blue
- dashed) and 𝛿 = 0.997 (orange - dashed-dotted). We have imposed Ω𝑚0 ≈ 0.31.

0.5 1.0 1.5
-100

-50

0

50

100

150

200

250

300

H
(z
)

z

Figure 2: The 𝐻 (𝑧) evolution in units of km/s/Mpc as a function of the redshift, for ΛCDM scenario (black
line) and for Tsallis cosmology with 𝛼 = 1 and 𝛿 = 0.993 (red dotted line), on top of the CC data points at
2𝜎 confidence level [96]. We have imposed Ω𝑚0 ≈ 0.31.

cosmology, on top of CC data from [96] at 2𝜎 confidence level. As we see, the agreement
is very good, 𝐻 (𝑧) of Tsallis cosmology lies within the CC data, exhibiting a slightly higher
accelerating behavior compared to that of the ΛCDM model at low redshifts, for the parameter sets
{Ω𝑚0, 𝛿} = {0.31, 0.993}.

Let us now examine what is the mechanism behind the 𝐻0 tension alleviation. In Fig. 3
we present the evolution of the dark-energy equation-of-state parameter (14), for the value of the
parameter 𝛿 that alleviates the tension. As we observe, it lies in the phantom regime, which as we
mentioned above is one of the sufficient ways to alleviate the tension [93, 94]. Note that according to
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Figure 3: The evolution of the dark-energy equation-of-state parameter 𝑤𝐷𝐸 as a function of the redshift,
for Tsallis cosmology with 𝛼 = 1 and 𝛿 = 0.993.
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Figure 4: Evolution of f𝜎8 inΛCDM scenario (black solid) and in Tsallis cosmology with𝛼 = 1 and 𝛿 = 0.993
(orange dashed). The blue data points are from Baryonic Acoustic Oscillations (BAO) observations in SDSS-
III DR12 [98], while the gray data points at higher redshifts are from SDSS-IV DR14 [99–101].

(14) in principle 𝑤𝐷𝐸 (𝑧) can be quintessence-like, phantom-like, or experience the phantom-divide
crossing during the evolution, according to the value of 𝛿, and this is the reason we we constrained
our analysis to values 𝛿 ≲ 1, since these are needed to obtain the appropriate amount of phantom
behavior (concerning other potential astrophysical implications of phantom behavior see [102]).
Finally, note that we choose to extend Fig. 3 to negative redshifts, namely to the future, in order
to show that in the scenario at hand as time passes the phantom behavior becomes less and less
significant, and that the dark energy sector will asymptotically behave as a cosmological constant.

We now proceed to the examination of the 𝜎8 tension. As we mentioned above, the evolution
equation of matter overdensity 𝛿𝑚 is given by (16). In Fig. 4, we present the evolution of 𝑓 𝜎8 for
ΛCDM scenario, as well as for Tsallis cosmology, on top of observational data. As we observe,

7



P
o
S
(
C
O
R
F
U
2
0
2
3
)
1
7
4

Alleviating both 𝐻0 and 𝜎8 tensions through Tsallis entropy Maria Petronikolou

Tsallis cosmology can indeed reduce 𝑓 𝜎8 and alleviate 𝜎8 tension too, for the same parameter
choice that can alleviate 𝐻0 tension. This simultaneous alleviation of the tensions is not easy to be
obtained in alternative cosmological scenarios, and it is the main result of the present work.

Finally, let us examine the mechanism behind the 𝜎8 tension alleviation. As we observe from
(16), the scenario at hand has a different friction term as well as an effective Newton’s constant.
One can see that under the above parameter choice, we obtain an increased friction and an effective
Newton’s constant smaller than the usual one. And this indeed serves as one of the sufficient
mechanisms to alleviate 𝜎8 tension [93, 94].

4. Conclusions

In this work we presented how Tsallis cosmology can alleviate both 𝐻0 and 𝜎8 tensions
simultaneously. Such a modified cosmological scenario is obtained by the application of the gravity-
thermodynamics conjecture, but using the non-additive Tsallis entropy, instead of the standard
Bekenstein-Hawking one. Hence, one obtains modified Friedmann equations, with extra terms that
depend on the new Tsallis exponent 𝛿 that quantifies the departure from standard entropy.

In Tsallis cosmology one acquires an effective dark-energy sector with equation-of-state pa-
rameter that can be quintessence-like or phantom-like. Additionally, at the perturbative level one
extracts the evolution equation for matter overdensity, with extra terms in the friction term as well
as in the effective Newton’s constant.

As we showed, for particular choice of the Tsallis parameter 𝛿 we can obtain a phantom effective
dark energy, which is known to be one of the sufficient mechanisms that can alleviate 𝐻0 tension.
Interestingly enough, for the same parameter choice we obtain an increased friction term and an
effective Newton’s constant smaller than the usual one, and thus the 𝜎8 tension is also solved.

In summary, Tsallis cosmology has the capability to simultaneously mitigate both 𝐻0 and 𝜎8

tensions. Note that in general this is not easily obtained in alternative cosmological scenarios [59].
Hence, this attribute stands as a considerable advantage of Tsallis modified cosmology.
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