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1. Introduction

Recent observations suggest that the Universe has recently entered a phase of accelerated expan-
sion [1–6]. The simplest theoretical response involves the introduction of a positive cosmological
constant, Λ, which gives rise to the "cosmological constant problem" as quantum field theoretical
predictions vastly exceed observed values [7, 8]. This discrepancy, alongside tensions within the
ΛCDM model such as the 𝐻0 [9] and 𝜎8 tensions [10] (for a review see [11]), prompts exploration
into alternative explanations. These include considering a dynamic cosmological constant or dark
energy concept within general relativity [12, 13], or modifying the underlying gravitational the-
ory to develop richer cosmological behaviors [14–18]. Additionally, more radical approaches like
holographic dark energy are explored [19–21].

Modified gravity not only aims to address these cosmological issues but also offers better
quantum behavior due to its potential to eliminate divergences [22] that general relativity cannot
[23]. When higher order terms are included in the gravitational Langrangian they tend to eliminate
the divergences [24], therefore higher-order gravity theories have been extensively developed [25–
28]. From all the higher order Lagargian terms, the Gauss-Bonnet (GB) term is special as it
represents the Euler density in 4D, making it a topological invariant as per the Chern-Gauss-Bonnet
Theorem [29] and crucial for maintaining heterotic string theory’s local supersymmetry [30]. In
M-theory, it’s vital for renormalization by addressing beta-function divergences at high energies
[31].

In Euclidean quantum gravity, entities like instantons and wormholes exhibit different topol-
ogy from the background at the microscopic level [32], while wormholes are also studied in the
astrophysical scale [33–38]. These changes, potentially leading to singularities, challenge classical
and quantum field theories [39, 40] but are considered necessary for a consistent quantum gravity
framework [41]. Research, including work on Euclidean quantum gravity [42–45] and connections
to Ricci flow [46, 47] and string theory [48–52], supports the viability and significance of topology
changes. Among others, topology changes may in principle affect the field equations that arise
through the semiclassical variation procedure of gravitational actions. Although in the case of
Einstein-Hilbert action this procedure reproduces the standard field equations, one could investi-
gate whether variation of the Gauss-Bonnet action on a topologically altered spacetime due to the
formation of microscopic wormholes could lead to a non-trivial result. Interestingly enough, such
an extended analysis does induce extra terms in the field equations, which can be interpreted as an
effective dark energy sector of topological origin.

2. Topology change in Euclidean quantum gravity

In Euclidean quantum gravity (EQG) context the time dimension is Wick rotated so that the
complex path integral to converge and yield saddle point solutions, namely instantons, with different
topology from the background [53, 54] which mediate topology change [32]. These solutions can
represent the creation of a pair of black holes or Euclidean wormholes under a strong field as
in Schwinger process [32, 55]. In the sum over history approach, Sorkin [41] has developed a
calculus for topology change based on Morse theory, where the transition between two manifolds
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of distinct topology is being performed by a Morse function provided a cobordism exists between
the manifolds [44, 56].

The topological structure of a manifold 𝑀 is characterized by the Euler characteristic 𝜒(𝑀)
which is defined as the alternating sum of the Betti numbers of the manifold 𝑀 [57]

𝜒(𝑀) =
∑︁
𝑝

(−1) 𝑝𝐵𝑝, (1)

where the Betti numbers 𝐵𝑝 of a manifold are defined as the dimension of the 𝑝𝑡ℎ de Rahm
cohomology group [57]

𝐵𝑝 = 𝑑𝑖𝑚𝐻 𝑝 (𝑀). (2)

In the above expression the 𝑝𝑡ℎ de Rahm cohomology group 𝐻 𝑝 (𝑀) is the set of all closed p-forms
𝑍 𝑝 (𝑀) modulo the set of all exact p-forms 𝐵𝑝 (𝑀)

𝐻 𝑝 (𝑀) = 𝑍 𝑝 (𝑀)/𝐵𝑝 (𝑀), (3)

where a closed form satisfies 𝑑𝜔 = 0 (where 𝜔 is a 𝑝-form and 𝑑 denotes the exterior derivative),
and an exact form satisfies 𝜔 = 𝑑𝑛 (where 𝑛 is a 𝑝-form).

The Poincare lemma states that a closed form defined on a domain 𝑉 ⊆ 𝑀 is also exact, if
the domain 𝑉 is contractible to a point. In the light of Poincare lemma, de Rham cohomology
can be seen as a restriction on the global exactness of closed forms [57]. In summary, Betti
numbers measure the global inexactness of closed forms as obstructions to contractibility to a point,
originated from holes and discontinuities of the domain [58].

In Table 1 the value of Euler characteristics for different spacetime manifolds is presented.

Spacetime Euler characteristic
𝜒

Minkowski 0
Extreme Black Holes 0
Self-dual Taub-Newman-Unti-Tamburino 1
Schwarchild and Kerr Black Holes 2
Nariai 𝑆2 × 𝑆2 4
Euclidean Wormhole 𝑆1 × 𝑆3 0

Table 1: Euler characteristics as it has been calculated in [54, 59–62]. By the product property for product
manifolds 𝜒(𝑀1 × 𝑀2) = 𝜒(𝑀1) · 𝜒(𝑀2), one can easily verify that for a Nariai instanton 𝜒𝑁𝑎 = 2 · 2 = 4
and similarly for a Euclidean wormhole 𝜒𝐸𝑊 = 0 · 3 = 0.

In order to investigate the topology change, one can decompose a 4D manifold 𝑀 into a
connected sum (symbolized by #) of two 4D manifolds 𝑀1 and 𝑀2, by gluing them together at the
boundaries left by the removal of a four-ball. For connected sums, the Euler characteristic is given
by [57]

𝜒 (𝑀1#𝑀2) = 𝜒(𝑀1) + 𝜒(𝑀2) − 2. (4)

Then, following Gibbons [32, 63], the formation of a Euclidean wormhole with topology (𝑆1 × 𝑆3),
namely

𝑀 → 𝑀#(𝑆1 × 𝑆3), (5)
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decreases 𝜒 by 2, thus 𝛿𝜒 = −2 , while the formation of a Nariai instanton with topology (𝑆2 × 𝑆2),
namely

𝑀 → 𝑀#(𝑆2 × 𝑆2), (6)

increases 𝜒 by 2 thus 𝛿𝜒 = 2.
Therefore the formation of gravitational instantons or wormholes change the Euler characteristic

of the 4D spacetime manifold, where equation (1) becomes [58]

𝜒 = 𝑏0 − 𝑏1 + 𝑏2 + 𝑏3, (7)

with 𝑏0 the number of connected components, 𝑏1 the number of one-dimensional holes, 𝑏2 the
number of two-dimensional holes, and 𝑏3 the number of three-dimensional holes. Hence, when
the Euler characteristic changes, there is a change in the Betti numbers of spacetime [64], which
implies that there is an area of the manifold, a wormhole, which is not contractible to a point.

3. The effective topological variation procedure

Inspired by Wheeler’s conceptualization of spacetime foam [65], where quantum fluctuations
of the metric are considered to cause fluctuations of the topology of the spacetime manifold, which
was later developed in the context of Euclidean quantum gravity by Hawking, Gibbons, Sorkin and
others [53, 66, 67], we are interested in investigating the behavior of the variation of higher-order
gravitational actions under the assumption that the variation of the quantum field fluctuations 𝛿ℎ

causes a variation in the topology of the spacetime manifold 𝛿𝜒.
We consider that the Euclidean quantum gravity process, which yields instanton solutions

of different spacetime topology, can be encapsulated into an effective topology change operation
(𝑒 𝑓 𝑓𝑇𝐶), as illustrated in Fig. 1. Specifically, for manifolds with metric 𝑔𝑖 and Euler characteristics
𝜒𝑖 , it can be encapsulated into the variation of the gravitational quantum field 𝛿ℎ, namely

𝑀 (𝑔1, 𝜒1)
𝑒 𝑓 𝑓𝑇𝐶−−−−−→ 𝑀

′ (𝑔2.𝜒2),
𝑒 𝑓 𝑓𝑇𝐶 : 𝛿ℎ −→ 𝛿𝜒. (8)

M ′(g2, χ2)

effTC

M(g1, χ1)

Figure 1: A three-dimensional illustration of the effective topology change from a manifold of Euler charac-
teristic 𝜒1 to a manifold of Euler characteristic 𝜒2.

A common technique in many approaches to quantum gravity is to split linearly the full metric
𝑔 into a background metric 𝑔̃ and the quantum fluctuation field ℎ around it [68]

𝑔𝜇𝜈 = 𝑔̃𝜇𝜈 + ℎ𝜇𝜈 . (9)
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According to Wheeler’s argument [69, 70] and similar more recent ones [71], the quantum fluc-
tuations are scale-dependent as 𝛿ℎ ∼ 𝑙𝑝

𝑙
, and they become large near the Planck scale, remaining

always smaller than one as long as we consider the Planck scale as cut-off. However, from the
viewpoint of asymptotic safety, one could argue that interactions could become weak at the Planck
scale by an appropriate renormalization-group flow [71]. If one follows the first consideration,
fluctuations may induce topology change, nevertheless higher-order terms in the expansion could
be non negligible. If one follows the second consideration, then classical expansion techniques can
be employed but ambiguities arise on the ability of fluctuations to induce topology change. Since
a solid theory of quantum gravity remains far from being complete, in this work we assume that
a compromise exists between the two extremes, suggesting that quantum fluctuations can produce
topology change at small scales, while being small enough in order for perturbation theory to hold.
Consequently, this scaling approach facilitates a reduction in the significance of higher-order terms,
thereby allowing the phenomena to be predominantly described by the first-order term.

As mentioned in [72], the quantum fluctuation field ℎ = 𝑔 − 𝑔̃ of the linear split is not a metric
and lacks a geometrical meaning, therefore among the other types of split, it is the most suited for
describing the fluctuation field that causes topology change. Consequently, we consider 𝑔̃𝜇𝜈 to be
the dynamical background metric and we handle ℎ𝜇𝜈 as an effective “matter” field. By demanding
background independence, one can introduce split symmetry [72], given by all the transformations
of the background metric and fluctuation fields that preserve the full metric, namely

𝑔(𝑔̃, ℎ) → 𝑔(𝑔̃ + 𝛿𝑔̃, ℎ + 𝛿ℎ) = 𝑔(𝑔̃, ℎ). (10)

In the quantization scheme of [73], background independence is guaranteed by the class of
metrics that are self-consistent. Self-consistent metrics 𝑔̃𝑆𝐶 are those that allow the effective field
equations obtained from the effective action Γ[ℎ𝜇𝜈 , 𝑔̃] to admit the solution ℎ𝜇𝜈 = 0. Thus, if one
incorporates background independence into the extremization condition of the effective action, then
one obtains the tadpole condition [73]

𝛿

𝛿ℎ𝜇𝜈
Γ[ℎ, 𝑔̃]

����
ℎ=0, 𝑔̃=𝑔̃𝑆𝐶

= 0. (11)

4. Effective cosmological constant of topological origin

We now have all the machinery to perform the variation of gravitational actions in cases where
there are topology changes in the underlying spacetime manifold.

4.1 Einstein-Hilbert action

Let us start by presenting the semiclassical approach in the case of Einstein-Hilbert action, as
it has been demonstrated firstly by ‘t Hooft in [74]. By performing a Wick rotation the action will
be Euclideanized, i.e.

𝑆𝐸𝐻 = − 1
2𝜅2

∫
𝑑4𝑥

√
𝑔𝑅, (12)
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with 𝜅2 the gravitational constant. We expand the Einstein-Hilbert action around the background
field according to the metric split (9), in orders of the “quantum field”, namely

𝑆𝐸𝐻 = 𝑆0 + 𝑆1 + 𝑆2 +
∞∑︁
𝑛=3

𝑆𝑛. (13)

In order to calculate each term we expand the inverse metric as

𝑔𝜇𝜈 = 𝑔̃𝜇𝜈 − ℎ𝜇𝜈 + ℎ
𝜇

𝜆
ℎ𝜆𝜈 + O(ℎ3), (14)

and then by employing the property log det 𝐴 = tr log 𝐴 and performing logarithmic and exponential
expansions, we express the determinant of the metric in terms of powers of ℎ as

√
𝑔 =

√︁
𝑔̃

[
1 + 1

2
𝑔̃𝜇𝜈ℎ

𝜇𝜈 − 1
4
ℎ𝜇𝜈ℎ𝜇𝜈 +

1
8
(ℎ𝜇𝜇)2 + O(ℎ3)

]
, (15)

where the uppering and lowering of the quantum field indices are performed using the background
metric, namely ℎ = ℎ

𝜇
𝜇 = 𝑔̃𝜇𝜈ℎ𝜇𝜈 . Since the Ricci scalar is 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 , by employing (14) and

(15) the Ricci tensor and Ricci scalar can be expanded in the same manner. After some algebra and
neglecting the total derivatives, the first three terms of the Einstein-Hilbert expansion are expressed
as

𝑆0 = − 1
2𝜅2

∫
𝑑4𝑥

√︁
𝑔̃𝑅̃

𝑆1 =
1

2𝜅2

∫
𝑑4𝑥

√︁
𝑔̃

(
𝑅̃𝜇𝜈 −

1
2
𝑔̃𝜇𝜈 𝑅̃

)
ℎ𝜇𝜈

𝑆2 = − 1
2𝜅2

∫
𝑑4𝑥

√︁
𝑔̃

{
1
4
ℎ𝜇𝜈∇2ℎ𝜇𝜈 −

1
8
ℎ∇2ℎ

+ 1
2

(
∇𝜈ℎ𝜈𝜇 − 1

2
∇𝜇ℎ

)2
+ 1

2
ℎ𝜇𝜆ℎ𝜈𝜎 𝑅̃𝜇𝜆𝜈𝜎

+ 1
2

(
ℎ𝜇𝜆ℎ𝜈𝜆 − ℎℎ𝜇𝜈

)
𝑅̃𝜇𝜈 +

1
8

(
ℎ2 − 2ℎ𝜇𝜈ℎ𝜇𝜈

)
𝑅̃

}
. (16)

In summary, the effective action up to one-loop approximation will be

Γ = 𝑆𝐸𝐻 + Γ1𝐿 + O(2 − 𝑙𝑜𝑜𝑝), (17)

where the quadratic terms of the quantum field ℎ are absorbed in the one-loop part

Γ1𝐿 = Γ𝐺𝐹 + Γ𝐹𝑔ℎ, (18)

with Γ𝐺𝐹 and Γ𝐹𝑔ℎ corresponding to the effective action for the gauge fixing and ghost terms
respectively [73]. One can then vary the Einstein-Hilbert action due to quantum fluctuations of the
field ℎ𝜇𝜈 → ℎ𝜇𝜈 +𝛿ℎ𝜇𝜈 , i.e. calculate 𝛿ℎ𝑆𝐸𝐻 . Imposing the tadpole condition (11) for the effective
action (17) and taking into account (16), one finally retrieves the Einstein equations for the classical
background as [73, 75]

𝑅̃𝜇𝜈 −
1
2
𝑔̃𝜇𝜈 𝑅̃ = 𝜅2𝑇𝜇𝜈 , (19)
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where the stress tensor originates from the one-loop part of the effective action, containing matter
as correction terms in the right-hand-side, i.e.

𝑇 𝜇𝜈 = − 2
√
𝑔

𝛿

𝛿ℎ𝜇𝜈
Γ1𝐿

��
ℎ=0. (20)

Actually, this was expected, since the Einstein-Hilbert action term is the Euler density in two-
dimensions, and thus its variation due to variations of the quantum field ℎ in 4D will be the standard
one [76].

4.2 Gauss-Bonnet action

Let us now perform the above procedure in the case of the Gauss-Bonnet action. The Gauss-
Bonnet (GB) curvature polynomial G is defined as

G = 𝑅2 − 4𝑅𝜇𝜈𝑅
𝜇𝜈 + 𝑅𝜇𝜈𝜌𝜎𝑅

𝜇𝜈𝜌𝜎 , (21)

and it is known that in four dimensions such a term is a topological invariant. In order to see this in
the context of the present manuscript, we recall that the Chern-Gauss-Bonnet theorem [29] states
that for the case of a compact orientable manifold 𝑀 with boundary 𝜕𝑀 of dimension 𝐷 = 4, the
Euler characteristic is

𝜒(𝑀) = 1
32𝜋2

∫
𝑀

𝑑4𝑥
√
𝑔 G +

∫
𝜕𝑀

𝑄, (22)

with 𝑄 an appropriate correction form integrated on the boundary 𝜕𝑀 [77]. The essence of the
theorem is that despite any local deformation of the manifold, its total curvature, as expressed
by the integral of the GB curvature polynomial, depends only on the topology of the manifold.
Consequently, for a manifold of fixed topology, 𝜒 is considered a topological invariant under
smooth variations of the metric [78].

We can now perform the steps of the previous subsections in the case of the Gauss-Bonnet
action. Its Euclideanized form is

𝑆𝐺𝐵 = − 𝛼

2𝜅2

∫
𝑑4𝑥

√
𝑔

(
𝑅2 − 4𝑅𝜇𝜈𝑅𝜇𝜈 + 𝑅𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌𝜎

)
, (23)

where 𝛼 is the coupling parameter. The effective action under the one-loop approximation will be

Γ = 𝑆𝐺𝐵 + Γ1𝐿 + O(2−𝐿𝑜𝑜𝑝) . (24)

Varying the GB action with respect to quantum fluctuations of the field ℎ𝜇𝜈 → ℎ𝜇𝜈+𝛿ℎ𝜇𝜈 according
to the topological variational procedure and applying the 4D Chern-Gauss-Bonnet theorem (22)
without a boundary, we obtain

𝛿ℎ𝑆𝐺𝐵

= 𝛿ℎ

[
− 𝛼

2𝜅2

∫
𝑀

𝑑4𝑥
√
𝑔

(
𝑅2 − 2𝑅𝜇𝜈𝑅

𝜇𝜈 + 𝑅𝜇𝜈𝜌𝜎𝑅
𝜇𝜈𝜌𝜎

)]
= −32𝜋2 𝛼

2𝜅2
𝛿𝜒

𝛿ℎ𝜇𝜈
𝛿ℎ𝜇𝜈 . (25)
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Implementing the substitution 𝛿𝜒 → 𝜕𝜒 and applying the chain rule, we find

𝛿ℎ𝑆𝐺𝐵 = −16𝜋2 𝛼

2𝜅2
𝜕𝜒

𝜕𝑉

𝛿𝑉

𝛿ℎ𝜇𝜈
𝛿ℎ𝜇𝜈

= −16𝜋2 𝛼

2𝜅2
𝜕𝜒

𝜕𝑉
𝛿ℎ

(∫
𝑀

𝑑4𝑥
√
𝑔

)
= −16𝜋2 𝛼

2𝜅2
𝜕𝜒

𝜕𝑉

∫
𝑀

𝑑4𝑥
𝛿
√
𝑔

𝛿ℎ𝜇𝜈
𝛿ℎ𝜇𝜈 , (26)

with 𝑉 the manifold volume. If one implements the expansion of the metric determinant (15), then
the functional derivative into the integral becomes 𝛿

√
𝑔

𝛿ℎ𝜇𝜈 = 1
2
√
𝑔̃𝑔̃𝜇𝜈 +O(ℎ), so after inserting it into

(26) we finally acquire

𝛿ℎ𝑆𝐺𝐵 = −16𝜋2 𝛼

2𝜅2
𝜕𝜒

𝜕𝑉

∫
𝑀

𝑑4𝑥
√︁
−𝑔̃𝑔̃𝜇𝜈𝛿ℎ𝜇𝜈 . (27)

Finally, we make the reasonable approximation that for an infinitesimal integration volume the
topology change per volume 𝜕𝜒

𝜕𝑉
remains constant and thus it can enter inside the integral, in which

case the topological variation of the Gauss-Bonnet term is expressed as

1
√
𝑔̃

𝛿𝑆𝐺𝐵

𝛿ℎ𝜇𝜈
= −16𝜋2 𝛼

2𝜅2
𝜕𝜒

𝜕𝑉
𝑔̃𝜇𝜈 + O(ℎ). (28)

Interestingly enough, the variation of the Gauss-Bonnet term on a manifold that has topology
changes due to the formation of wormholes is not zero.

4.3 Einstein-Gauss-Bonnet action

Let us now consider the full case of general relativity plus a Gauss-Bonnet correction, namely

𝑆𝑡𝑜𝑡 = 𝑆𝐸𝐻 + 𝑆𝐺𝐵. (29)

As we analyzed above, although the Einstein-Hilbert term gives the standard classical field equations,
the Gauss-Bonnet term leads to a nontrivial semiclassical result. In particular, the effective action
under the one-loop approximation will be

Γ = 𝑆𝐸𝐻 + 𝑆𝐺𝐵 + Γ1𝐿 + O(2−𝐿𝑜𝑜𝑝) . (30)

Calculating the fuctional derivative of the effective action by employing Eq. (16) and Eq. (28), we
finally obtain

1
√
𝑔̃

𝛿Γ

𝛿ℎ𝜇𝜈
=

1
√
𝑔̃

𝛿𝑆𝐸𝐻

𝛿ℎ𝜇𝜈
+ 1
√
𝑔̃

𝛿𝑆𝐺𝐵

𝛿ℎ𝜇𝜈
+ 1
√
𝑔̃

𝛿Γ1𝐿

𝛿ℎ𝜇𝜈

=
1

2𝜅2

{
𝑅̃𝜇𝜈−

1
2
𝑔̃𝜇𝜈 𝑅̃−16𝜋2𝛼

𝜕𝜒

𝜕𝑉
𝑔̃𝜇𝜈+

1
√
𝑔̃

𝛿Γ1𝐿

𝛿ℎ𝜇𝜈
+O(ℎ)

}
. (31)

Hence, imposing the tadpole condition (11) that removes the terms O(ℎ), we find the semiclassical
field equations

𝑅̃𝜇𝜈 −
1
2
𝑔̃𝜇𝜈 𝑅̃ + 𝑔̃𝜇𝜈Λ𝑒 𝑓 𝑓 = 𝜅2𝑇𝜇𝜈 , (32)
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where the stress tensor is given by (20), and where we have defined

Λ𝑒 𝑓 𝑓 ≡ −16𝜋2𝛼
𝜕𝜒

𝜕𝑉
. (33)

As we observe, we have obtained an effective cosmological constant term of topological origin, in-
duced by the Gauss-Bonnet correction term due to the topology change that microscopic wormholes
brought about. This is the main result of the present work.

5. Dark energy from microscopic Gauss-Bonnet wormholes

The effective cosmological constant 𝜕𝜒

𝜕𝑉
, can be interpreted as the density of the nontrivial

microscopic objects per four-volume 𝜌𝑜𝑏 𝑗 =
𝑁𝑜𝑏 𝑗

𝑉
, since these objects induce the topology change

(for instance 𝛿𝜒 = −2 corresponds to the formation of a Euclidean wormhole, while 𝛿𝜒 = 2 to
the formation of a Nariai instanton). Hence, according to (33), the effective cosmological constant
equals the density 𝜌𝑤 of 𝑁𝑤 topology changing wormholes per four-volume, i.e.

Λ𝑒 𝑓 𝑓 = −16𝜋2𝛼𝜌𝑤 = −16𝜋2𝛼
𝑁𝑤

𝑉
, (34)

namely it depends on the GB coupling parameter 𝛼 and on the wormhole density.
Concerning the value of GB coupling, there is a consensus that since the GB term appears

in the low-energy limit of an effective action [79], 𝛼 is related to the inverse of the string tension
[80–82] 𝛼 ∼ (1/

√
𝑎
′) or equivalently to the square of the string scale 𝛼 ∼ 𝑙2𝑠 [76, 83]. Since the

string scale 𝑙𝑠 cannot be far from the Planck scale in four dimensions 𝑙𝑠 ∼ 𝑙𝑝 [84, 85], one first
estimation could be 𝛼 = 𝑙2𝑝. In such a case, if we identify the effective cosmological constant
Λ𝑒 𝑓 𝑓 of (34) with the observed cosmological constant Λ𝑜𝑏𝑠 = 10−52𝑚−2, we need a microscopic
wormhole density of 𝜌𝑤 = 1016 wormholes per cubic meter per second, which is quite reasonable
according to Hawking and Schulz estimations for the spacetime foam [40, 53, 64]. On the other
hand, since the upper bound for the wormhole density is one wormhole per Planck volume, namely
𝜌𝑀𝑤 = 1

𝑙4𝑝
∼ 10140, according to (34) the upper bound of Λ𝑒 𝑓 𝑓 is Λ𝑀 ∼ 1072𝑚−2, or approximately

10124 larger than Λ𝑜𝑏𝑠.
Note that in different frameworks there have also been approaches where the cosmological

constant is driven by spacetime wormholes, but they typically haveΛ → 0 at late times. For instance,
in [53] Hawking considers space time foam as a gas of instantons of different topology and in the
Euclidean quantum gravity one-loop approximation he obtains a negative cosmological constant
Λ𝑠 ∼ 𝛼

𝜒

𝑉
, which although having been extracted in a totally different framework, it resembles

our result (33). However, Hawking’s calculations are based on the trace anomaly expressed by the
invariant GB term, and for that reason 𝜒 appears constant (refinements of Hawkings spacetime foam
model were presented in [64, 86]). In [87], Coleman proposed a mechanism where wormholes
and topological fluctuations of space time induce a distribution of the values of Nature’s constants,
which smear Λ distribution to peak at zero. In [88, 89] it was claimed that the behavior of the
fundamental coupling constants in Coleman’s scenario was controlled by the trace anomaly and a
similar proposition was the Giddings-Strominger wormhole solution where a wormhole is coupled
to an instanton [90]. Additionally, in [55] a semiclassical model of spacetime foam was proposed,

9
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in which Casimir-like quantum fluctuations give rise to an arbitrary number of wormholes, as pairs
of black hole and antiblack hole, which drive the induced cosmological constant to zero as they
grow.

Nevertheless, in our approach microscopic wormholes lead to an effective dark energy sector
not directly, but due to the topology change they induce on the manifold, which in turn affects the
variation of the GB term. That is why it can have an arbitrary dynamical behavior. Additionally,
apart from its effects at late-time cosmology, such a dynamical effective sector could play a role
in the early universe too, potentially driving inflation. Finally, note that since Nariai instantons
correspond to a negative component while Euclidean wormholes to a positive one, one could have
richer cosmological behavior as well.

6. Conclusions

It is known that the appearance of microscopic objects, such as instantons and wormholes, at
the spacetime-foam level in Euclidean quantum gravity approaches, leads to spacetime topology
changes, which in principle may affect the field equations that arise through the variational procedure
of gravitational actions. Although in the case of Einstein-Hilbert action the presence of microscopic
wormholes does not lead to any nontrivial result, when the Gauss-Bonnet term is added in the
action the above procedure induces an effective cosmological term that depends on the Gauss-
Bonnet coupling and the wormhole density. Since the later in a dynamical spacetime is in general
time-dependent, one results with an effective dark energy sector of topological origin.

In particular, the appearance of objects with distinct topology and thus with different Euler
characteristics, leads to a change of the topological character of the spacetime manifold. This
process can be encapsulated into an effective approach in which the variation of the quantum
fluctuations induces a variation in the Euler characteristic, constituting the effective topological
variation procedure. By employing the semiclassical one-loop approach on the linear split of the
metric and, additionally, incorporating the background independence through the tadpole condition,
we showed that the variation of the Gauss-Bonnet term in the Lagrangian gives rise to a nontrivial
term in the field equations. The obtained effective cosmological constant can coincide with the
observed value 10−52𝑚−2 for densities of the order of 1016 microscopic wormholes per cubic meter
per second, which is quite reasonable according to estimations.

It would be interesting to consider scenarios of time-dependent wormhole density and inves-
tigate the behavior of the resulting dynamical dark energy sector, including the confrontation with
observational data from supernovae type I (SNIa), baryonic acoustic oscillations (BAO), and cosmic
microwave background (CMB) observations, as well as with direct Hubble constant measurements
through cosmic chronometers (CC). Additionally, one could examine the matter perturbation evo-
lution in such a dynamical scenario. Moreover, one could apply the same considerations at early
times and examine the possibility of a successful inflation realization. At the more theoretical
level, one could investigate the effective topological variation procedure going beyond the linear
expansion level, as well as examine the effect of a topologically dynamical GB term in the trace
anomaly behavior, in heterotic strings renormalizability, and in M-theory’s 𝛽-function. All these
studies extend beyond the scope of this manuscript and will be performed in future projects.
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