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1. Introduction

Reported here are intriguing phenomenological implications stemming from Λ varying gravity
theories, inspired by certain quantum gravity models. The treatment presented in this study is
broad-reaching, applying to various actions involving Λ variation, particularly those employed in
Renormalization Group (RG) approaches to quantum gravity. A pivotal aspect is an effective grav-
itational action featuring a Cosmological Constant (CC), Λ, that depends on the system’s energy
density thus its characteristics such as size, energy content etc. Notably, when the system encom-
passes astrophysical entities like galaxy clusters or black holes, significant corrections manifest in
several observable parameters. These corrections appear in luminosity distance and strong/weak
lensing measurements, among others.

Thus, the current analysis pertains to models that the cosmological constant Λ(𝑥𝑖 , 𝑡) can
vary based on the physical attributes of the system in question, such as spatial dimensions and
energy content i.e. energy density. Such variability is a characteristic feature of certain intriguing
approaches to quantum gravity already established in the literature. When applied to astrophysical
entities like galaxy clusters or black holes rather than the entire Universe, these models yield distinct
phenomenological implications. We focus on obervational signatures concerning SNIa luminocity
distances and weak and strong gravitational lensing.

2. Asymptotic Safety

Weinberg initially proposed in 1976 [1] that perturbative renormalizability isn’t the sole solution
for a theory’s completeness at high energies. Instead, it suffices for the theory to possess finite
values for a finite number of parameters at UV energies. Asymptotic Safety (AS) adheres to these
principles, aiming for a theory characterized by a finite number of finite parameters with fixed
values at high energies. Though the concept has been around for years, it wasn’t until the late
1990s, following works by Wetterich and Reuter, that asymptotically safe framework was formally
formulated, as detailed in [2, 3].

Asymptotic safety (AS), reviewed in [4],[5],[6],[7], operates within the confines of four-
dimensional spaces and continuous manifolds. It presents a minimalist approach, retaining the
symmetries and fields of both Quantum Field Theory (such as the Standard Model) and General
Relativity (GR). Moreover, it adopts a background-independent approach.

Notably, AS suggests that General Relativity and its extensions, including some with higher
derivatives in the Einstein-Hilbert action, can be models capable of non-perturbative renormal-
ization. However, it should be noted that AS is not a complete framework due to the absence of
knowledge about the Lagrangian governing our universe.

AS theory defines field contents and symmetries. Subsequently, the family of actions is deter-
mined, specifying interactions of fields that abide by these symmetries. Functional renormalization
group equations are then employed within the theory space, which encompasses all actions with
"coordinates" coupling constants (e.g., 𝐺, Λ). The renormalization group, (RG), flow establishes
connections between physics at different scales (𝑘), resulting in running coupling constants such as
𝐺 and Λ. The RG method eliminates degrees of freedom in the ultraviolet Lagrangian containing
interaction terms multiplied by couplings. As the approach progresses towards lower energies, it
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describes the values of running couplings. Ultimately, it enables the determination of IR couplings
at nearly zero energies, where the effective potential typically exhibits a complex structure.

The functional renormalization group (FRG) methodology is anchored on a scale-dependent
effective action denoted as Γ𝑘 . The parameter 𝑘 traverses from Γ𝑘→∞, where no quantum fluctua-
tions have been integrated out, to Γ𝑘→ 0, signifying the stage where all quantum fluctuations have
been integrated away. The FRG flow equation for Γ𝑘 , reads [2], [3],

𝑘𝜕𝑘 Γ𝑘 =
1
2

sTr
[
(𝑘𝜕𝑘 𝑅𝑘)

(
Γ
(2)
𝑘

+ 𝑅𝑘

)−1
]
. (1)

In this context, the right-hand side integrates quantum fluctuations with momenta approximately
of the scale 𝑘 , which have the most significant impact on the variation of Γ𝑘 at that scale. The
second-order term, Γ (2)

𝑘
, represents a functional derivative with respect to all fields, alongside with

the regulator functional 𝑅𝑘 and the supertrace sTr, which aggregates over all indices.
The truncation of the Effective Average Action to the Einstein-Hilbert form, initially utilized

to demonstrate Asymptotic Safety, Eq(2), leads to RG equations showcasing intriguing trajectories
and a non-Gaussian fixed point, known as the Reuter fixed point.

Γ𝑘 =
1

16𝜋

∫
𝑑4𝑥

√−𝑔 𝐺 (𝑘)−1
(
𝑅 − 2Λ(𝑘)

)
+ gauge fixing and ghost terms (2)

Although the RG scale dependence 𝑘 differs from the physical scale dependence, the structure of
asymptotically safe models, through momentum-dependent correlation functions and form factors,
gives rise to running couplings pertinent to the gravity sector, notably Newton’s constant and the
cosmological constant, 𝐺 (𝑘), Λ(𝑘). Ultimately, observables are successfully defined based on
these fundamental elements of the theory. A recent study also corroborated the physical graviton
propagator’s close resemblance to the propagator used in AS calculations, thereby justifying the
physical running of 𝐺 and Λ ([8]).

The RG flow for 𝐺 (𝑘) and Λ(𝑘) in the Ultraviolet, UV, regime (𝑘 → ∞) is given by 𝐺 (𝑘)𝑈𝑉 =
𝑔∗
𝑘2 , Λ (𝑘)𝑈𝑉 = 𝜆∗𝑘2, where the dimensionless (𝑔∗, 𝜆∗) take finite values (UV fixed point). This
suggests a gravity anti-screening, potentially explaining phenomena near the Big Bang or during
the concluding phases of gravitational collapse. These flow hold relevance solely within the
trans-Planckian domain, with their following evolution governed by a system of partial differential
equations. The dynamics of these coupling constants exhibit variability based on the composition
of matter.

Perhaps the most illuminating physical explanation in this context has been presented by
Polyakov,[9], who noticed that as gravity is always attractive and therefore a larger cloud of virtual
particles implies a stronger gravitational force, Newton’s constant𝐺 should be anti-screened at small
distances. The implication of this behaviour suggests that the dimensionless coupling constant tends
to a finite non-zero limit at small distances When we go at higher energies is like looking closer a
particle so we take under consideration smaller number of virtual particles. Thus, 𝐺 gets smaller.
The same applies for a negative CC. A positive cosmological constant term on the other hand, is
always repulsive, therefore a larger cloud of virtual particles implies a less repulsive force, and the
cosmological constant Λ should be larger at small distances. The implication of this behaviour
suggests that the dimensionless coupling constant 𝜆 = Λ 𝑘−2 tends to a finite non-zero limit at small
distances.
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At lower energies, the dimensionless Newton constant and cosmological constant (𝑔, 𝜆) are
running, [10],

𝑔(𝑘) = 𝑔∗ + 𝑔1

(
𝑘

𝑀𝑑

)−𝜃1

+ 𝑔2

(
𝑘

𝑀𝑑

)−𝜃2

, (3a)

𝜆(𝑘) = 𝜆∗ + 𝜆1

(
𝑘

𝑀𝑑

)−𝜃1

+ 𝜆2

(
𝑘

𝑀𝑑

)−𝜃2

, (3b)

where the critical exponents 𝜃𝑖 determine the flow behaviour. A new energy scale is expected, named
𝑀𝑑 . It is the energy scale where the ensemble of quantum spacetimes decohere and a classical
spacetime is emmerged. 𝑀𝑑 is expected to be related with the Planck energy scale 𝑀𝑃. Equations
(3) hold within the infrared regime and may be pertinent on astrophysical scales. The parameters
within these equations are constrained to meet experimental data and cosmological/astrophysical
observations. To ensure a viable phenomenology in the late cosmological era, they must conform
for example to the range elucidated in [11–14].

Numerous efforts in high-energy physics, cosmology, and astrophysics seek to address various
challenges utilizing the properties of Asymptotic Safe Gravity. These endeavors include attempts
to explain inflation, dark energy, dark matter, and to reconcile discrepancies such as those relating
to MOND dynamics and Hubble tensions, [11], [15], [16]. [17], [18, 19], [20–27].

In AS phenomenology, 𝑘 denotes the reciprocal of a characteristic spatial length over which the
fields of the system are averaged. Consequently, 𝑘 correlates with the scale of the physical system
under examination. For astrophysical entities, 𝑘 may vary as a function of their proper length and,
equivalently, their energy density [28, 29]. An accurate treatment necessitates the non-perturbative
computation of a finite-temperature effective action encompassing both the gravitational field and
other fields, such as those in the Standard Model.

It is pertinent to highlight the relationship between 𝐺 and Λ with the energy density within
the AS framework. This dependency holds different implications in different areas of the Universe,
such as voids, clusters or filaments as well as in the early Universe during the "Big Bang" phase
[30–32], and in the cores of compact objects like stellar interiors, neutron stars, and black holes
[33–38].

The aim of the paper is to propose ways to measure different values of the cosmological constant
between regions of the Universe that are associated with different energy densities. In the third
section we analyse the case of signals coming from distant supernovae SNIa, [39, 40], while in the
fourth section we describe the case of strong/weak lensing, [41],[42].

Our investigation maintains the assumption of a nearly constant value for Newton’s constant
𝐺. This assumption aligns with phenomenologically viable scenarios of Renormalization Group
flow towards the infrared limit, where 𝐺 exhibits only weak variation.

3. Luminosity distances from signals traveling through voids and filaments/clusters

The idea here is to measure different values of the cosmological constant utilizing SNIa signals
traveling though areas of the Universe with as different as possible energy densities [43]. This
means that we have to use two different samples. In the first sample we collect signals coming from
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areas with more filaments with clusters of galaxies while in the second sample we have to include
signals passing mainly through voids.

The Hubble rate, 𝐻 = −1
(1+𝑧)

𝑑𝑧
𝑑𝑡

can be parameterized as

𝐻2 = 𝐻2
0
[
Ω𝑀 (1 + 𝑧)3 +Ω𝛾 (1 + 𝑧)4 +ΩΛ +Ω𝑘 (1 + 𝑧)2] (4)

with the different Ωs representing the matter, radiation, cosmological constant, and topological
curvature contributions and 𝑧 the redshift..

The luminosity distance is 𝐷𝐿 =
√︁
𝐿/4𝜋𝐹 with 𝐹 the flux. The photon rate decreases by a

factor of 𝑎/𝑎0 = 1/(1+ 𝑧), accompanied by an additional energy decrease by the same factor owing
to gravitational redshift. Conventionally, we set 𝑎(𝑡 = 0) = 1. Furthemore, since 𝐹 = 𝑎2 𝐿

4𝜋 𝑆 (𝑟 )2

with the comoving distance 𝑆(𝑟) =
∫ 𝑟

0
𝑑𝑥√

1−𝑘 𝑥2 , the luminosity distance is given by

𝐷𝐿 = −(1 + 𝑧)
∫ 𝑡𝑒𝑚𝑖𝑡

𝑡0

𝑑𝑡

𝑎(𝑡) = −(1 + 𝑧)
∫ 1

𝑎

𝑑𝑎

𝑎2 𝐻 (𝑎)
= (1 + 𝑧)

∫ 𝑧

0

𝑑𝑧′

𝐻 (𝑧′) . (5)

In relation to the statistical analysis concerning distance measurements, we can explore various
null hypotheses while working with luminosity distance as an observable. We can compare the mean
value of the observable, 𝐷𝐿 , derived from observations with its theoretical counterpart assuming a
preferred value for Λ from theory. Estimating distances from Type Ia supernova magnitudes in the
conventional manner, we can juxtapose these two 𝐷𝐿 values. Furthermore, another test involves
constructing one sample with signals traversing significantly more voids along their line of sight
compared to a second sample. Here, statistical differences in the mean Λ value between the two
samples would suggest potential quantum corrections to Λ.

We adopt for simplicity two distinct values for the Hubble rate. One value corresponds to the
expansion rate observed in low-density systems like voids, denoted as 𝐻𝑣 , while another value,
denoted as 𝐻𝑐, characterizes the expansion rate in over-dense cosmic regions, such as filaments and
clusters of galaxies. In addition, we assume the same value, an average CC value, for all voids and
a different, but same CC value among filaments/clusters to streamline the modeling process.

For a light beam (originated by a source at redshift 𝑍) passing through 𝑁 voids and 𝑀 regions
with filaments, the luminosity distance is approximatelly given by

𝐷𝐿 = (1 + 𝑧𝑣 𝑓 𝑁 )
∫ 𝑍𝑣 𝑓 𝑁

0
𝐻−1

𝑐 𝑑𝑧′ +
∑︁
𝑝

1 + 𝑧𝑣𝑖 𝑝

1 + 𝑧𝑣 𝑓 𝑝

∫ 𝑍𝑣𝑖 𝑝

𝑍𝑣 𝑓 𝑝

𝐻−1
𝑣 𝑑𝑧′ +

+
∑︁
𝑞

1 + 𝑧𝑐𝑖 𝑞

1 + 𝑧𝑐 𝑓 𝑞

∫ 𝑍𝑐𝑖 𝑞

𝑍𝑐 𝑓 𝑞

𝐻−1
𝑐 𝑑𝑧′ + 1 + 𝑧

1 + 𝑧𝑣𝑖 1

∫ 𝑍

𝑍𝑣𝑖 1
𝐻−1

𝑐 𝑑𝑧′, (6)

where 𝑝 = 𝑁, 𝑁 −1, ...1 and 𝑞 = 𝑀 −1, 𝑀 −2, ...2 and with 𝑧𝑣𝑖 𝑝, (𝑧𝑐𝑖 𝑞), the gravitational redshifts
of entering the p-th void (q-th cluster), and 𝑧𝑣 𝑓 𝑝, (𝑧𝑐 𝑓 𝑞) the redshift of light exiting this void
(cluster) respectively.

If detailed knowledge regarding the distances between voids and clusters is inaccessible,
an alternative approach is feasible. We can define two distinct samples: one predominantly
comprising voids and the other emphasizing clusters or filaments. To implement this strategy,
we gather a substantial dataset of signals traversing areas exhibiting over-densities and under-
densities. Nonetheless, as the sample size increases, the discrepancy between densities diminishes,
necessitating a trade-off.
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Next, we analyze a situation where signals from a particular sample of astrophysical sources
arrive on Earth after traveling through a region of space with lower-than-average matter density.
Let’s assume this region has an average matter density represented by 𝜌𝑢𝑛. Next, let’s examine a
second set of signals that have passed through areas of higher-than-average density, indicated by an
average matter density of 𝜌𝑜𝑣 . As a result, we can investigate statistical differences in the values of
Λ. Then, luminosity distance for signals coming through under-density regions is given by

𝐷𝑢𝑛 = (1 + 𝑧)
∫ 𝑧

0

𝑑𝑧′

𝐻𝑢𝑛 (𝑧′)
, (7)

with

𝐻2
𝑢𝑛 = 𝐻2

0

[
𝜌𝑢𝑛

𝜌𝑐𝑟
(1 + 𝑧)3 + Λ𝑢𝑛

3𝐻2
0
+Ω𝑘 (1 + 𝑧)2

]
, (8)

Similarly we can evaluate the luminocity distance through over-density regions from the formula
𝐷𝑜𝑣 = (1 + 𝑧)

∫ 𝑧

0
𝑑𝑧′

𝐻𝑜𝑣 (𝑧′ ) related to Λ𝑜𝑣 from

𝐻2
𝑜𝑣 = 𝐻2

0

[
𝜌𝑜𝑣

𝜌𝑐𝑟
(1 + 𝑧)3 + Λ𝑜𝑣

3𝐻2
0
+Ω𝑘 (1 + 𝑧)2

]
. (9)

Now according to the AS theory, [28],[29], we can approximately write

Λ𝑢𝑛 ∝ 𝜉 𝜌
1/2
𝑢𝑛 . (10)

Certainly, a strong test for RG approaches to quantum gravity would be to verify the ratio between
the two values of Λ in addition to the statistical difference of the mean/median values of the Λs.

Λ𝑢𝑛

Λ𝑜𝑣

=

(
𝜌𝑢𝑛

𝜌𝑜𝑣

)1/2
. (11)

A non homogeneous treatment of the whole Universe would be more appropriate and will be
presented in a forthcoming paper. This work aims to describe mainly the phenomenon.

4. Implications for Strong and Weak Lensing measurements

Approaches to quantum gravity that posit a discrete spacetime or an initial network of events
can naturally address the issue of spacetime singularities. AS represents a theory that encompasses
a continuous gravity field. The capability of AS to avoid singularities arises from the anti-screening
of gravity strength and the potential presence of a positive Λ in the UV regime. Additionally,
Asymptotic Safe Gravity alters the characteristics of black holes, such as a non-singular center, an
inner horizon, potential final remnants, and radiation, as proposed in [35, 44–47].

AS corrects at tree level Schwarzschild-de Sitter metric with a homogeneous isotropic metric.
Both metrics contain 𝑘 dependent cosmological and Newton constants. AS inspired quantum
improved Schwarzschild-de Sitter metric Eq.(12), [48]. These type of metrics can be chosen to
describe galaxies and/or clusters of galaxies. We have

𝑑𝑠2 = −
(
1 − 2𝐺𝑘𝑀

𝑅
− 1

3
Λ𝑘𝑅

2
)
𝑑𝑇2 + 𝑑𝑅2

1 − 2𝐺𝑘𝑀

𝑅
− 1

3Λ𝑘𝑅
2
+ 𝑅2 𝑑Ω2 , (12)

6
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where 𝐺𝑘 and Λ𝑘 are functions of a characteristic scale 𝑘 of the system under investigation.
AS theory at the present incomplete stage cannot provide the exact dependence of the cutoff

𝑘 on physical scales like length or energy. For phenomenological purpose various simple scalings
have been proposed [49], [34], [50], [29]. For astrophysical black holes 𝑘 is associated with the
characteristic astrophysical length scale 𝐿, the radius, 𝑅. So, the ansatz for 𝑘 is 𝑘 = 𝜉/𝑅, with 𝜉

is a dimensionless order-one number. However, a better natural choice which generates the desired
phenomenology, is to set as 𝐿 equal to the proper distance 𝐷 > 0. The use of proper distances
proved also to be a sucesful choice also for excibiting a singularity avoidance/smoothing in spherical
solutions of AS gravity [36].

The proper distance along a radial path, 𝑑𝑇 = 𝑑𝜃 = 𝑑𝜑 = 0 from 𝑅0 till 𝑅 is given by

𝐷 (𝑅) =
∫ 𝑅

𝑅0

𝑑R
√
𝐹
. (13)

with 𝐹 = 1 − 2𝐺𝑘𝑀

𝑅𝑆
− 1

3Λ𝑘𝑅
2
𝑆
. In the IR regime it is expected that the dimensionless Newton

constant and cosmological constant run according to the trajectory

𝑔𝐼𝑅 (𝑘) = 𝑔∗ + ℎ1𝑘
𝜃1 , 𝜆𝐼𝑅 (𝑘) = 𝜆∗ + ℎ2𝑘

𝜃2 , (14)

with (𝜃1, 𝜃2 ≥ 0) two unknown critical exponents.
Now, the gravitational lensing from a point mass is estimated using the gravitational potential

(energy per unit mass) which is

Φ(𝑅, 𝑥) = − 𝐺𝑘 𝑀√
𝑅2 + 𝑥2

− 1
6
Λ𝑘 (𝑅2 + 𝑥2) (15)

It should be noted that the second term in Eq.(15), is repulsive if AS generates a positive CC.
However, there are some AS studies suggesting that the inclusion of Standard Model (SM) gauge
fields (and fields beyond the SM) can cause to a negative CC value or a value for CC that changes
sign during the RG flow. The deflection angle relevant for point mass lensing is approximately
equal to two times the newtonian prediction,

�̂� = 2
∫ ∞

−∞

𝜕Φ(𝑅, 𝑥)
𝜕 𝑅

𝑑𝑥 (16)

Here, 𝐺𝑘 and Λ𝑘 are expected to depend on the distance from the center of the spherical object.
Following AS theory suggestions we can approximately write that

𝑘 ∝ 1
𝐷 (𝑅) (17)

The dependence of 𝐺𝑘 and Λ𝑘 on 𝑘 is determined by the RG partial differential equations and
approximately can be found using Eqs.(14). Since the deflection angle is non trivially modified,
it is obvious that both strong and weak lensing measurements should be processed under this new
perspective and the corresponding inferences will be different.

Images of quasars, when lensed, appear as point-like due to their vast distances from Earth,
while galaxy images are extended. The latter case can lead to the blending of individual lensed
images, resulting in visually captivating structures that can be challenging to definitively identify

7
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as products of lensing. Strong lensing provides insights into the matter distribution within galaxies
and clusters of galaxies, causing background sources to be split into multiple images. Since
lensing is influenced by both dark and luminous matter, whereas other methods primarily focus
on the luminous component, comparing results from different techniques allows us to deduce the
distribution of the elusive dark matter. Additionally, examining lenses within their cosmological
framework can help constrain cosmological parameters.

On another note, lensing can also modify the shapes of background galaxies without generating
multiple images. This phenomenon, termed weak lensing, cannot be determined from a single
observation but becomes evident when multiple sources are studied, producing a statistically notable
effect. Even if objects behind the lens are positioned far from its central point, their light can still
be deflected by a sufficiently massive lens. If the lens’s surface mass density exceeds a specific
threshold, multiple images are produced; otherwise, a subtle distortion of the background source
occurs. Interestingly, weak lensing not only allows us to investigate individual mass concentrations
but also offers insights into the universe’s large-scale structure between the observer and the source.
This aspect is influenced by cosmological factors like the Hubble constant, the universe’s total
energy density, and the relative proportions of radiation, matter, and dark energy.

In a forthcoming publication, lensing datasets will be analysed and presented assuming asymp-
totic safe gravity which for the case of lensing requires AS corrections to be taken into account both
for black hole solutions and for the cosmological background.

5. Conclusions

In this study, I propose two specific observational signatures to test asymptotic safe gravity
models inspired by RG approaches to quantum gravity.

If the cosmological constant, Λ, varies due to quantum corrections and depends on the energy
density of the astrophysical system being studied, it leads to both astrophysical and cosmological
implications. The luminosity distance is considered as an observable, and a technique has been
suggested to investigate the idea that Λ may have distinct values in cosmic voids compared to those
in filaments and clusters.

Furthermore, the case of gravitational lensing was sketched. The deflection angle for a point
source has been estimated and it was shown that is modified in the context of Asymptotic Safety.
The fact that 𝐺 varies, alters the gravitational potential that bends the light. Moreover, and perhaps
more significantly, there is an additional repulsive or attractive force due the existence of a new
potential term arising from the varying Λ.

8
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