PROCEEDI

Yano F structures and extended Supersymmetry in a BiLP

Ulf Lindström^{a,b,∗}

- *Theoretical Physics, Imperial College*[†](#page-0-0) *,*
- *Prince Consort Road, London SW7 2AZ, UK*
- *Department of Physics and Astronomy, Theoretical Physics, Uppsala University, SE-751 20 Uppsala, Sweden*

E-mail: ulf.lindstrom@physics.uu.se

We look at a sigma model based on the $(4, 4)$ twisted chiral multiplet [\[3\]](#page-6-0). It admits two geometric descriptions: The ususal biquaternionic geometry on the tangent space and a new geometry involving two Yano F-structures on a doubled tangent space. This analysis sheds light on the recent discussion of semichiral models in [\[1\]](#page-6-1) and on an upcoming discussion of complex linears.

Corfu Summer Institute 2023 "School and Workshops on Elementary Particle Physics and Gravity" (CORFU2023) 23 April - 6 May , and 27 August - 1 October, 2023 Corfu, Greece

[∗]Speaker

[†]Leverhulme Visiting Professor.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). <https://pos.sissa.it/>

1. Introduction

In a recent article^{[1](#page-1-0)} [\[1\]](#page-6-1) on $(2, 2)$ symplectic sigma models, it is shown that additional supersymmetries imply the existence of two integrable Yano F structures.

The analysis deals with a general symplectic model and would benefit from an explicit example. In this note we illustrate the general procedure in the transparent case of the (4, 4) twisted chiral multiplet [\[3\]](#page-6-0). Unlike in the symplectic model there are no auxiliary fields to be integrated out so the relation between $(2, 2)$ and $(1, 1)$ formulations is very direct. Nevertheless the two geometries found in the symplectic model are found here too.

2. Background

2.1 (1, 1) **Geometry of sigma models**

Additional symmetries of a $(1, 1)$ supersymmetric non linear sigma model in two dimensions are associated with additional complex structures J^i . The transformations follow the pattern

$$
\delta^i \varphi = \epsilon_i^{\pm} J^i \mathbb{D}_{\pm} \varphi \ . \tag{1}
$$

When the extra symmetry is $(4, 4)$, the corresponding complex structures form an $SU(2)$ algebra and are covariantly constant with respect to the Levi Civita connection (hyperkähler) or the Levi-Civita connection plus torsion (bi hermitian). The metric is hermitian with respect to all complex structures.

2.2 (2, 2) **Geometry of pre-sigma models**

The (2, 2) algebra is

$$
\{\mathbb{D}_{\pm}, \bar{\mathbb{D}}_{\pm}\} = 2i\partial_{\pm} \ . \tag{2}
$$

The symplectic model discussed in [\[1\]](#page-6-1) is based on left ℓ and right r semichiral superfields

$$
\bar{\mathbb{D}}_+\ell = 0\,,\quad \bar{\mathbb{D}}_-\mathfrak{r} = 0\,.
$$

These $(2, 2)$ fields contain auxiliary spinorial $(1, 1)$ superfields which have to be integrated out before the sigma model structure can be seen. So the (2, 2) formulation is not a sigma model and we don't expect it to carry the usual geometry. Instead it was found in [\[1\]](#page-6-1) that an ansatz

$$
\delta \varphi = U^{(\alpha)} \bar{\epsilon}^{\alpha} \bar{\mathbb{D}}_{\alpha} \varphi + V^{(\alpha)} \epsilon^{\alpha} \mathbb{D}_{\alpha} \varphi , \quad \alpha \in (+, -)
$$
 (4)

leads to the existence of two Yano F-structures $\mathcal{F}_{(\alpha)}$ on the doubled tangent bundle.

¹Partly drawing on [\[2\]](#page-6-2).

2.3 Strategy

The procedure in [\[1\]](#page-6-1) can be summarised as follows:

- 1. In (2, 2) superspace, consider a sigma model based on (2, 2) superfields φ and make the most general ansatz for additional susy transformations in terms of φ , preserving all their chirality conditions.
- 2. Use closure of the susy algebra and invariance of the action to constrain the transformations.
- 3. Identify the geometric objects that result from step 2. E.g. the Yano F-stuctures for the symplectic model in [\[1\]](#page-6-1).
- 4. Reduce the resulting transformations and structures to (1, 1) superspace where the geometry corresponding to extended susy is wellknown.

Below we check these steps for the twisted chiral $(4, 4)$ multiplet [\[3\]](#page-6-0) where all structure is known.

3. The $N = 4$ twisted chiral multiplet

In (2, 2) superspace the $N = 4$ twisted chiral multiplet is given in terms of chiral superfields ϕ and twisted chiral superfields χ

$$
\bar{\mathbb{D}}_{\pm}\phi = 0
$$

$$
\bar{\mathbb{D}}_{+\chi} = \mathbb{D}_{-\chi} = 0.
$$
 (5)

A model based on these has an action

$$
S = \int d^2x d^2\theta d^2\bar{\theta} K(\phi, \bar{\phi}, \chi, \bar{\chi}) . \tag{6}
$$

Reduction to (1, 1) superspace reveals that the target space geometry has two commuting complex structures, a local product structure and a metric that is hermitean wrt both complex structures: A Bihermitean Local Product (BiLP) geometry [\[3\]](#page-6-0), [\[4\]](#page-6-3). This model has (4, 4) off-shell supersymmetry when the $(2, 2)$ fields sit in the $(4, 4)$ twisted chiral multiplet, $[3]$ provided that

$$
K, \phi \bar{\phi} + K, \chi \bar{\chi} = 0 \tag{7}
$$

and that the complex structures are covariantly constant wrt connections with torsion, as shown in [\[3\]](#page-6-0).

A description in terms of transformations of the $(2, 2)$ fields instead leads to Yano F structures, which we now discuss.

3.1 Transformations

To simplify the description we consider the case of one chiral ϕ and one twisted chiral multiplet χ transforming under the extra susy as [\[3\]](#page-6-0)

$$
\delta \phi = \bar{\epsilon}^+ \bar{\mathbb{D}}_+ \bar{\chi} + \bar{\epsilon}^- \bar{\mathbb{D}}_- \chi
$$

\n
$$
\delta \bar{\phi} = \epsilon^+ \mathbb{D}_+ \chi + \epsilon^- \mathbb{D}_- \bar{\chi}
$$

\n
$$
\delta \chi = -\bar{\epsilon}^+ \bar{\mathbb{D}}_+ \bar{\phi} - \epsilon^- \mathbb{D}_- \phi
$$

\n
$$
\delta \bar{\chi} = -\epsilon^+ \mathbb{D}_+ \phi - \bar{\epsilon}^- \bar{\mathbb{D}}_- \bar{\phi} .
$$
\n(8)

Defining

$$
\varphi := \begin{pmatrix} \phi \\ \bar{\phi} \\ X \\ \bar{X} \end{pmatrix},
$$
\n(9)

we write [\(8\)](#page-3-0) as

$$
\delta \varphi = U^{(\pm)} \bar{\epsilon}^{\pm} \bar{\mathbb{D}}_{\pm} \varphi + V^{(\pm)} \epsilon^{\pm} \mathbb{D}_{\pm} \varphi \tag{10}
$$

where $V = \overline{U}$ suitably rearranged, and

$$
U^{(+)} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} , V^{(+)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix},
$$
 (11)

and similarly for $U^{(-)}$ and $V^{(-)}$. We find that $U^{(+)}V^{(+)} = -diag(1, 0, 1, 0), V^{(+)}U^{(+)} = -diag(0, 1, 0, 1)$ and that $U^{(-)}V^{(-)} = -diag(1, 0, 0, 1)$ and $V^{(-)}U^{(-)} = -diag(0, 1, 1, 0)$.

Closure of the extended susy algebra leads to the Nijenhuis tensors for U^{α} and V^{α} vanishing.

3.2 Geometry

The above results allows us to define two Yano F-structures $\mathcal{F}_{(\pm)}$ [\[5\]](#page-6-4) [\[6\]](#page-6-5) acting on the doubled^{[2](#page-3-1)} tangent space $T \oplus T$:

$$
\mathcal{F}_{(\alpha)} := \begin{pmatrix} 0 & U^{(\alpha)} \\ V^{(\alpha)} & 0 \end{pmatrix}, \quad \mathcal{F}^3_{(\alpha)} + \mathcal{F}_{(\alpha)} = 0.
$$
 (12)

An F structure defines projection operators

$$
l := -\mathcal{F}^2 = -\begin{pmatrix} UV & 0 \\ 0 & VU \end{pmatrix} \text{ and } m := 1 + \mathcal{F}^2 = \begin{pmatrix} 1 + UV & 0 \\ 0 & 1 + VU \end{pmatrix}
$$
(13)

²Whitney sum

that obey

$$
l + m = 1, \quad l2 = l, \quad m2 = m, \quad lm = ml = 0
$$

$$
\mathcal{F}l = l\mathcal{F} = \mathcal{F}, \quad m\mathcal{F} = \mathcal{F}m = 0.
$$
 (14)

The subspace corresponding to the projector $m_{(+)}$ is $(\phi, \chi) \oplus (\bar{\phi}, \bar{\chi})$ while the complement $(\bar{\phi}, \bar{\chi}) \oplus (\phi, \chi)$ corresponds to the projector $l_{(+)}$; $m_{(-)}$ projects onto $(\phi, \bar{\chi}) \oplus (\bar{\phi}, \chi)$ with the complement $(\bar{\phi}, \chi) \oplus (\phi, \bar{\chi})$.

In the special case when all entries in the U and V matrices are derivatives of a function,^{[3](#page-4-0)} the condition from *invariance of the action* [\(6\)](#page-2-0) for the $\bar{\epsilon}^{\alpha}$ transformations in [\(10\)](#page-3-2) reads:

$$
0 = \left(K_{,i} U^{(\alpha)i}{}_{[j} \right)_{k]} = K_{,i[j]} U^{(\alpha)i}{}_{k]}, \qquad (15)
$$

The conditions for invariance under ϵ^{α} transformations follow by complex conjugation, replacing $U \rightarrow V$. Using the explicit form of U and V in [\(11\)](#page-3-3), we indeed recover the conditions [\(7\)](#page-2-1).

The requirements on U and V mentioned in Sec. 3.1 are sufficient to show that the F -structures are integrable. The details follow in parallel to the discussion in [\[1\]](#page-6-1).

3.3 The (1, 1) **description recovered.**

At the $(1, 1)$ level extended susy is governed by additional complex structures. For $(4, 4)$ susy there are three extra complex structures for plus and three for minus directions $\mathcal{J}^{\mathfrak{A}}_{(\alpha)}$. They form a bi-quaternion structure:

$$
\mathcal{J}^{\mathfrak{A}}_{(\alpha)} \mathcal{J}^{\mathfrak{B}}_{(\alpha)} = -\delta^{\mathfrak{A}\mathfrak{B}} + \epsilon^{\mathfrak{A}\mathfrak{B}\mathfrak{C}} \mathcal{J}^{\mathfrak{C}}_{(\alpha)} \ . \tag{16}
$$

We now relate the $(2, 2)$ superspace results to the bi-quaternion structure in $(1, 1)$ superspace.

Reducing to $(1, 1)$ entails the following split of $(2, 2)$ derivatives D into $(1, 1)$ derivatives D and explicit susy transformation generators Q

$$
\mathbb{D}_{\alpha} = \frac{1}{2} \left(D_{\alpha} - i Q_{\alpha} \right) , \quad \bar{\mathbb{D}}_{\alpha} = \frac{1}{2} \left(D_{\alpha} + i Q_{\alpha} \right) , \tag{17}
$$

so that the (twisted) chirality constraints become

$$
Q_{\pm} \phi^{A} = J^{A}_{\ B} D_{\pm} \phi^{B} , \quad Q_{\pm} \chi^{A'} = \pm J^{A'}_{\ B'} D_{\pm} \chi^{B'} \tag{18}
$$

where *J* has the canonical form $diag(i1, -i1)$. When acting on φ we then have

$$
\mathcal{J}^{(3)}_{(\pm)} = \begin{pmatrix} i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & \pm i & 0 \\ 0 & 0 & 0 & \mp i \end{pmatrix},
$$
(19)

where we have labelled the complex structure 3 to indicate that it is one of the $\mathcal{J}_{(\pm)}^{\mathfrak{A}}$. Using [\(19\)](#page-4-1) we conclude that

$$
\mathbb{D}_{\pm}\varphi = \frac{1}{2} \left(D_{\pm} - i Q_{\pm} \right) \varphi = \pi_{(\pm)} D_{\pm} \varphi \tag{20}
$$

$$
\bar{\mathbb{D}}_{\pm}\varphi=\frac{1}{2}\left(D_{\pm}+iQ_{\pm}\right)\varphi=\bar{\pi}_{(\pm)}D_{\pm}\varphi\,,\tag{21}
$$

³Certainly true in the present (4, 4) twisted chiral case.

where

$$
\pi_{(\pm)} := \frac{1}{2} \big(1 - i \mathcal{J}_{(\pm)}^{(3)} \big) \ . \tag{22}
$$

To compare the transformations (10) to the transformations of the $(1, 1)$ components, we need to calculate

$$
U^{(+)}\bar{\epsilon}^{+}\bar{\mathbb{D}}_{+}\varphi = \bar{\epsilon}^{+}U^{(+)}\bar{\pi}_{(+)}D_{+}\varphi
$$

$$
= \bar{\epsilon}^{+}D_{+}\begin{pmatrix} \bar{\chi} \\ 0 \\ -\bar{\phi} \\ 0 \end{pmatrix},
$$
(23)

all evaluated at the (1, 1) level.

Additional supersymmetries in the (1, 1) formulation lead to an additional two complex structures $\mathcal{J}^{(1)}$ and $\mathcal{J}^{(2)}$ that can be read off from the transformations [\(8\)](#page-3-0) (which look the same in $(1, 1)$). On general grounds we expect the transformations to be a linear combinations of $\mathcal{J}^{(1)}$ and $\mathcal{J}^{(2)}$ as described in [\[1\]](#page-6-1). Their form is^{[4](#page-5-0)}

$$
\delta^{\pm}\varphi + \bar{\delta}^{\pm}\varphi = \frac{1}{2}\left(\left(\mathcal{J}_{(\pm)}^{(1)} + i \mathcal{J}_{(\pm)}^{(2)} \right) \epsilon^{\pm} D_{\pm}\varphi + \left(\mathcal{J}_{(\pm)}^{(1)} - i \mathcal{J}_{(\pm)}^{(2)} \right) \bar{\epsilon}^{\pm} D_{\pm}\varphi \right). \tag{24}
$$

The plus complex structures we get from [\(8\)](#page-3-0) are

$$
\mathcal{J}_{(+)}^{(1)} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}, \quad \mathcal{J}_{(+)}^{(2)} = \begin{pmatrix} 0 & 0 & 0 & i \\ 0 & 0 & -i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix},
$$
(25)

so that

$$
\frac{1}{2}\left(\mathcal{J}_{(\pm)}^{(1)} - i\mathcal{J}_{(\pm)}^{2}\right) = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
$$
 (26)

Using these we read off the $\bar{\epsilon}^+$ transformation from the last term in [\(24\)](#page-5-1):

$$
\bar{\delta}_{(+)}\begin{pmatrix} \phi \\ \bar{\phi} \\ \chi \\ \bar{\chi} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \vec{\epsilon}^{+} D_{+} \begin{pmatrix} 0 \\ \bar{\phi} \\ 0 \\ \bar{\chi} \end{pmatrix} = \vec{\epsilon}^{+} D_{+} \begin{pmatrix} \bar{\chi} \\ 0 \\ -\bar{\phi} \\ 0 \end{pmatrix}
$$
(27)

Which indeed reproduces the $\bar{\epsilon}^+$ transformations in [\(8\)](#page-3-0). The $\bar{\epsilon}^-$ and ϵ^{\pm} transformations are similarly reproduced.

⁴It again checks with the transformations given in [\[3\]](#page-6-0).

4. Conclusions

We have illuminated a method for finding extra non manifest supersymmetries directly in $(2, 2)$ superspace for 2d sigma models describing sectors of generalised Kähler geometry. We have done that using the twisted chiral multiplet of [\[3\]](#page-6-0) where all steps can be explicitly verified. This corroborates the new results for semi chiral multiplets in [\[1\]](#page-6-1) as well as results on complex linear fields presently being investigated.

Acknowledgments

I thank Max Hutt and Martin Roček for discussions and comments. The research is supported by the Leverhulme Trust through a Visiting Professorship to Imperial College, which is gratefully acknowledged.

References

- [1] U. Lindström, "Yano F structures and extended supersymmetry," JHEP **10** (2022), 115 doi:10.1007/JHEP10(2022)115 [arXiv:2207.11780 [hep-th]].
- [2] M. Göteman, U. Lindström, M. Roček and I. Ryb, "Sigma models with off-shell N=(4,4) supersymmetry and noncommuting complex structures," JHEP **09** (2010), 055 doi:10.1007/JHEP09(2010)055 [arXiv:0912.4724 [hep-th]].
- [3] S. J. Gates, Jr., C. M. Hull and M. Roček, "Twisted Multiplets and New Supersymmetric Nonlinear Sigma Models," Nucl. Phys. B**248** (1984), 157-186 doi:10.1016/0550-3213(84)90592-3
- [4] U. Lindström, M. Roček, R. von Unge and M. Zabzine, "Linearizing Generalized Kahler Geometry," JHEP **04** (2007), 061 doi:10.1088/1126-6708/2007/04/061 [arXiv:hep-th/0702126 [hep-th]].
- [5] K. Yano, "On a structure f satisfying $f^3 + f = 0$ ", Tech. Rep. Univ. of Washington, 12 (1961); " On a structure defined by a tensor field of type $(1, 1)$ satisfying $f^3 + f = 0$ ", Tensor, N.S. **14**, 9 (1963).
- [6] S. Ishihara and K. Yano, "On integrability conditions of a structure f satisfying $f^3 + f = 0$ ", Quart. J. Math. **15** (1964) 217-222.