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1. Introduction

Strominger and Vafa [1] initiated a black hole microstate accounting programme calculating
black hole entropy

(�� =
�23

4�~
, (1)

by a count of D-branemicrostates in a regimewhere string coupling constant is very small. However,
an explicit understanding of �3(2/��)1 duality via [2]

4(�� ( ®@) = Ω( ®@), (2)

where Ω( ®@) denotes the degeneracy of ground states carrying charge ®@ in the dual ��)1, continues
to remain as the least understood (and possibly enigmatic) corner of �3(/��) duality.

To have a better control in this accounting programme, the microstates are typically constrained
to be BPS, which are more robust under the variations of the string coupling constant and also of
other parameters such as the asymptotic moduli. However, even this counting is not free from
complications. In particular, one needs to make sure to exclude certain BPS states which can
combine into long representations or decay into BPS constituents. For example, for the case of
BD(1, 1|1) superconformal algebra

[!<, !=] = (< − =)!<+= (3)

[!0,G± 1
2
] = ∓1

2
G± 1

2
, [!∓1,G± 1

2
] = ±G∓ 1

2
, [',G± 1

2
] = G± 1

2
(4)

{G± 1
2
,G†
± 1

2
} = 2!0 ± ', {G± 1

2
,G†
∓ 1

2
} = 2!±1, {GU,GV} = 0, (5)

the short spectrum is split into chiral and anti-chiral sectors :

[ℎ]chiral
BD (1,1 |1) = [(ℎ, 2ℎ)]B; (2) ⊕D (1) ⊕ [(ℎ + 1/2, 2ℎ − 1)]B; (2) ⊕D (1) (6)

[ℎ]anti-chiral
BD (1,1 |1) = [(ℎ,−2ℎ)]B; (2) ⊕D (1) ⊕ [(ℎ + 1/2,−2ℎ + 1)]B; (2) ⊕D (1) , (7)

where we used the notation [(B; (2), D(1))] for the respective quantum numbers of the bosonic
subalgebra B; (2) ⊕ D(1), and (6,7) can be combined to obtain special long multiplets [ℎ]!1 , [ℎ]!2 :

[ℎ]!1 := [ℎ]chiral
BD (1,1 |1) ⊕ [ℎ + 1/2]chiral

BD (1,1 |1) [ℎ]!2 := [ℎ]anti-chiral
BD (1,1 |1) ⊕ [ℎ + 1/2]anti-chiral

BD (1,1 |1) , (8)

whereas a generic longmultiplet with |A | < 2ℎ, is given by (where we drop the B; (2) ⊕D(1) subscript
for brevity)

[(ℎ, A)]chiral
BD (1,1 |1) = [(ℎ, A)] ⊕ [(ℎ + 1/2, A − 1)] ⊕ [(ℎ, A + 1)] ⊕ [(ℎ + 1, A)] . (9)

This algebra is the unique superalgebra of N = 2 superconformal quantum mechanics, which is
the main subject of this note. In particular, the main interest is to be able to do the BPS counting
in terms of the BD(1, 1|1) unitary lowest weight irreducible representations (6,7) for a given such
model, and even more optimistically to read the full BPS spectrum1. BD(1, 1|1) superconformal
indices [5]

I±(Z) = tr
(
(−1)� 4−VH±Z±�

)
, (10)

1A partial progress in this direction is achieved for N = (4, 4) models through a detailed study of >B?(4∗ |4)
representation theory [3],[4].
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serve precisely for this purpose, which we compute in Section 2 in a slightly more general setting
than [5], namely by allowing for the presence of non-isolated fixed points, i.e for fixed point
submanifolds.

Conformal invariance for one-dimensional sigma models requires that the target space has a
conical geometry [6],[7], and hence in superconformal quantum mechanics2 we have two com-
plications being non-compactness and singularity of our target space cones, which are generally
not considered in the applications of equivariant localization theorems. The first issue is resolved
by considering the spectrum of !0 instead of the original Hamiltonian �, which has an effect of
introducing a harmonic potential given by the special conformal charge  ∼ A2, and hence acting
as an IR-regulator. At the level of the superconformal algebra, this is realized through a similarity
transformation such that the discrete spectrum of the dilatation operator maps to that of !0. The
second issue however is more serious and always3 exists, since any cone is singular at least at a
point A = 0, the tip of the cone, where the curvature does not vanish, but rather blows up. Hence,
even the wave-functions corresponding to eigenstates of !0 will be ill defined at this point, and so
is a counting done by an index localizing to this singular point. We overcome this problem in two
steps. The first step is to further modify our spectral problem by instead counting the wave-functions
corresponding to the eigenstates of !0 ± ', which introduces an auxiliary magnetic background
A± to the original problem, and breaks the conformal invariance. Since both !0 and ' have a
discrete spectrum (in terms of BD(1, 1|1) irreps), this maps the counting problem to the unitary
ground states of !0 ± ', as the BPS bound is a unitarity bound given by 2ℎ ≥ |A |. The second and
key point is that (10) is now computed as an equivariant Witten index [12] for a model which is
not conformally invariant, and hence the fixed point locus is determined by an ‘arbitrary’ Reeb-like
vector d� (up to (21)), rather than the conformal one (23), and accordingly the refinement in (10)
tracks through arbitrary smooth supersymmetry and global isometry preserving deformations of
the metric. Concretely, given any SCQM (�) defined on a KT (Kähler with torsion) space - (with
a fixed complex structure), with a singular metric � and the conformal Reeb vector fixed by the
homothety, (10) computes the BPS spectrum of SQM (H±) defined on the same space - with a
smooth metric4 �̃ and a generically different Reeb vector determined by the holomorphic global
isometry �, assuming that (-, �) possesses such smooth resolution. This interpretation is similar
to the approach applied successfully for arbitrary quasi-regular Kähler cones by Martelli, Sparks,
and Yau [15], whereas the relevance for superconformal quantum mechanics was observed in [16].

One physical motivation originates from a subset of solutions to N = 2, 3 = 4 supergravity
obtained from CY compactification of Type-II string theory, where one obtains two types of BPS
solutions: single-centered, or multi-centered. The moduli space of the multi-centered ones is
parameterized by Denef equation [17] :

|Z& | sin
(
U& − U

)
|A=∞ =

=∑
?=1

〈
Γ?, Γ&

〉
2| ®G? − ®G& |

, (11)

2See [8], [9] for reviews on superconformal mechanics, and [10],[11] for the original works.
3Except from the ‘flat’ C: models, which are examined in full detail via various approaches in [5].
4The resolved metric �̃ must asymptotically agree with the singular metric � as the resolution parameter goes to

zero. In the case of ADHM quiver mechanics, where the target space can be realized as a Hyper-Kähler quotient, this
resolution parameter coincides with the FI parameter, and has the effect of lifting the singular isolated fixed point locus
from the tip of the cone to regular points on the resolved space [4],[13],[14].
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which at the same time gives a simple physical halo-like configuration for a classical BPS bound
state. For such bound states with a non-vanishing intersection product one derives from (11) that
the bound state radius becomes infinite at the wall of marginal stability, that is to say this class of
BPS bound states typically exists at only one side of the wall, unlike the single centered black holes
which can exist for any given value of asymptotic moduli. In particular, a BPS index constructed
as a ‘second helicity supertrace’ [18], to count D6+D2-D0 halo states was studied in [19] :

Ω
�!
&
=

∑
�'

(−1)2�'# �! ,�'
&

, (12)

where # �! ,�'
&

is the dimension of the moduli space of �2 brane of charge & and ( 9! , 9')-charge
under (* (2)! × (* (2)' R-symmetry.

For a comprehensive understanding of BPS bound states, it is useful to consider another
low energy effective description, which allows for an explicit count of generic microstates. This
is provided by N=4 supersymmetric quiver quantum mechanics [20] where the wrapped D-branes
appear as particles moving inMinkowski space. The interesting point is that one has both Higgs and
Coulomb branches in this quiver mechanics. Concretely, starting from the supergravity description
and taking 6( → 0 limit one first arrives the Coluomb branch quivers consisting of multi-centered
particles with a bound state radius that can be mapped to the one in the supergravity description, and
lowering it further one obtains a more stringy Higgs-branch picture. It has been shown before that
genericmulti-centered BPSmolecules of the Coulomb branch make only a sub-leading contribution
to the black hole entropy [21], whereas there exists a subset of Higgs-branch solutions which form
the exponential majority [22]. It remains however unclear what the physical interpretation of these
pure-Higgs states is when the gravitational coupling constant is not vanishingly small.

This Coulomb branch effective quiver mechanics is originally described in terms of (3,4,1)5
component form by [23], [20]

! = − 50�0 −*0�0 + �80 ¤G80 + m81*0_̄0f8_1 +
1
2
�01

(
¤G80 ¤G81 + �0�1 + 8

(
_̄0 ¤_1 − ¤_1_0

))
− 1

2
m82�01

(
_̄0f8_

1�2 + n8 9: _̄0f9_1 ¤G:2
)
− 1

8
m 92m 93�01_

0_1_̄2_̄3 , (13)

where the background scalar and gauge potentials are given as

*0 =
∑
1,1≠0

=
^01

2A01
�80 = −

∑
1,1≠0

^01
n8 9:=

9G:
01

2A
(
G;
01
=; − A

) , (14)

where ^01, `01, 50 are respectively DSZ product, mass, FI parameter, and the metric can be written
as6

�01 = X01

( ∑
2,2≠0

|^02 |
4A3
02

)
− |^01 |

4A3
01

+ `01� (G). (15)

Any N = 4� supersymmetric mechanics described in terms of (3, 4, 1) multiplets can be
rewritten through the gauging of the auxiliary field [25],[26] in terms of the so called root multiplet

5The notation denotes number of (bosonic,fermionic,auxiliary) degrees of freedom.
6Explicit form of the function � (G), which is not important for our purpose (since `01 = 0 for scaling solutions),

can be obtained from [24].
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(4, 4, 0) [27], which then takes a general form [28] :

! =
1
2
����CG

��CG
� + ���CG� −

8

2
���j

�j� + 8
2
���j

��̂C j
� − 1

12
m[����� ] j

�j�j� j� ,

(16)
and hence in particular the effective Coulomb branch description (13) can be brought into this form
[24]. N = 4 supersymmetry with (* (2)! ×(* (2)' R-symmetry restricts the target space geometry
of (16) to be Hyper-Kähler with Torsion (HKT).

At a generic point of the effective Coulomb branch, the first equation in (14) is equivalent to
(11), which shows the correspondence between BPS bound states in 3 = 4 supergravity and 3 = 1
quiver descriptions [20]. There is a subset of these bound state solutions known as scaling solutions
[20],[19] captured in a certain scaling limit of (13) [29],[24]. This has the net effect of putting mass
and FI couplings to zero, while the action remains finite and develops a � (2, 1; 0) superconformal
symmetry. In this limit, the root formulation (16) takes the form of a gauged superconformal
mechanics [28] with the target geometry restricted by a set of conformal constraints which can be
interpreted as a deformed version of the well-known standard constraints [6],[30] for conformal
invariance. We revisit this gauged superconformal mechanics in Section 3 particularly specializing
to scaling quivers.

The root form of scaling quiver mechanics is especially useful for quantization since it gives
a geometric description for the supersymmetric ground states. Moreover, it brings a possibility
of an explicit count of these states as � (2, 1; 0) irreducible representations via corresponding
superconformal indices [31] :

tr
(
(−1)2� 3

! H!0±�! I!0±�'
)
, (17)

which we hope to be able to compute in a future work, in particular for scaling quivers. For a similar,
yet simplerN = 2� superconformal quantummechanics, this is recently achieved [5] for the indices
(10) under the assumption of a resolved target, and with a fixed point locus consisting of a single
isolated point. While we keep the first assumption, in this note we generalize that computation to
the presence of a fixed point submanifold, determined by the holomorphic Killing vector field d�

of the resolved space7.

2. N = 2� superconformal quantum mechanics

On a complex topological spaceM, we considerN = (0, 2) supersymmetric non-linear sigma
models with #-many chiral multiplets. Each such multiplet contains two bosonic, two fermionic
real degrees of freedom and no auxiliary degree of freedom. These non-linear sigma models can
generically be defined on a family of different Hermitian metrics {���}; � = 1, · · · , 2# . In this
case, since we are considering (0, 2) models but not (1, 1) models, we also have a complex structure
�, and N = 2 supersymmetry restricts the geometry (�, �) with the constraints :

����
�
� + ����� � = 0 ����

�
� = −X�� N(�)��� = 0 ∇̂(���)� = 0. (18)

7Indeed the superconformal index of the analog type-A models for various examples (remarkably for the case of
generic toric Calabi-Yau 3-folds [16]) can be computed as a regular Dolbeault cohomology on the resolved space, and
the fixed point data of the resolved space is sufficient.
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In addition to N = 2 supersymmetry we also demand D(1)' R-symmetry transforming the coordi-
nates as

XAG
� = −2Ad� XA j

� = −2A
(
m�d

� + 1
2
���

)
j�, (19)

for some vector field d�. This restricts the last constraint in (18) slightly further :

∇̂���� = 0, (20)

and requires the extra constraints :

!d��� = 0 !d�
�
� = 0. (21)

These models become also conformally invariant if there exists a holomorphic closed homothety b
such that the refined geometry (�, �, b) further satisfies the constraints

! b��� = −��� ! b �
�
� = 0 b� = −

1
2
m� , (22)

which are restrictive enough to fix the vector field d as

d�conformal = −�
�
�b

� . (23)

Hence, only for N = 2 non-linear sigma models which are additionally conformally invariant, (21)
becomes a consequence of the conformal symmetry conditions (22,23). Such metrics � satisfying
(22) are always8 singular at least at a single point {0}, since the condition

∇�b� = −
1
2
X��, (24)

implied by (22), itself implies [7] that the conformal metric always takes the form of a cone metric

� = 3A2 + A268 9 ({G})3G83G 9 , (25)

where {0} corresponds to the tip of the cone.
This non-linear sigma model for # chiral multiplets can be obtained easily from the N = 1

superspace action [32] as

L = 1
2
��� ¤G� ¤G�+�� ¤G�−

8

2
���j

�j�+ 8
2
���j

�
(
¤j� + Γ̂��� ¤G� j�

)
− 1

12
m[����� ] j

�j�j� j� ,

(26)
where in general one can pick Γ̂ as to be slightly more general9 than the Bismut one, but we work
with this special choice, i.e.

Γ̂��� = Γ
�
�� +

1
2
���� , (27)

where the torsion ���� is accordingly fixed due to (20) by the complex structure ��� as

���� = ��
���

� ��
� (∇���� + ∇� ��� + ∇� ��� ) , (28)

8Except for the flat geometries.
9In that case then the extra part B��� should necessarily contain a symmetric part because Bismut is the unique

totally-antisymmetric one. In case one chooses to work with this slightly more general torsion tensor than the Bismut
one, then there is an additional constraint �� [�m����� ] = 0, which becomes automatic in the Bismut case due to (28).
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which should further satisfy
!d���� = 0, (29)

for the invariance of (26) under R-symmetry. Moreover, the target space geometry becomes Kähler
if

d����� = 0. (30)

The conformal invariance further requires

! b���� = −���� b����� = 0, (31)

which together with (23) implies (29). Now via (20,24) and the second constraint in (31), we obtain
a nice identity

d����� = ��� + 2∇�d� . (32)

Finally, existence of the background gauge-field ��, with the corresponding field strength
� = 3�, enhances the previous set of R-symmetry constraints to

����
�
� + ����� � = 0 8d� = 0, (33)

whereas conformal symmetry requires
8b� = 0, (34)

which together with (23) implies the second condition in (33).
The corresponding superconformal symmetry algebra realized by (26) is BD(1, 1|1) [6], [30],

which we prefer to express in a basis such that the complex supercharges G± 1
2
satisfy10

{G± 1
2
,G†
± 1

2
} = 2!0 ± ' [',G± 1

2
] = G± 1

2
, (35)

where !0 =
1
2 (� +  ), and �,  , ' are respectively the Hamiltonian, special conformal charge,

and the '-charge. These fermionic charges G± 1
2
are constructed by combining supercharges and

conformal supercharges of the parent superconformal model (26), which we now review. From [28]
we recall that the supercharges &U and conformal supercharges (U are given by

&1 = − j�� �� Π� +
8

2
� �
[� ��� ]�j

�j�j� , (1 =2j����b� (36)

&2 =j�Π� −
8

6
���� j

�j�j� , (2 = − 2j�b�, (37)

with
Π� = ?̃� − �� −

8

2

(
l��� −

1
2
����

)
j�j� . (38)

The generators G± 1
2
are then defined as

G± 1
2
= Q ∓ 8(, Q = 1

2
(&1 + 8&2) S = 1

2
((1 + 8(2), (39)

10More properly, we define a similarity transformation which maps the dilatation generator to !0 =
1

2l

(
� + l2 

)
,

so that the supercharges G± 1
2
satisfy {G± 1

2
,G†
± 1

2
} = l (2!0 ± '). We then choose to work in the units such that l = 1.

7
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which explicitly give

G± 1
2
=

1
2

(
X�� + 8�

�
�

)
j�

(
Π� − A±�

)
+ 1

12

(
X�� + 38�[��

)
��� ]�j

�j�j� , A±� = ∓2d�.
(40)

Remaining superconformal charges of (26) are given as [6] (in the conventions of [28]11)

� =
1
2
���Π

�Π� + 8
2
���j

�j� + 1
12
m[����� ] j

�j�j� j� (41)

� = b�Π� (42)
 = 2b�b� (43)
' = 2d�Π� − 28∇�d�j�j� . (44)

On the spectrum of the models (26), there exists a well defined fermion number � which
satisfies [5]

[�,G± 1
2
] = �, � =

8

2
���j

�j� + #
2
, (45)

and hence
[�,G± 1

2
] = 0 � := ' − � + 2, (46)

extending the superconformal algebra to BD(1, 1|1) ⊕ D(1)� . This also provides the classical
expression for the �-charge

� = −2d�Π� + 28∇�d�j�j�

= −2d�
(
?̃� − �� −

8

2
l��� j

�j�
)
+ 8∇�d�j�j� −

8

2
d�����j

�j�, (47)

where we used the identity (32). The action of this isometry D(1)� on the coordinates is given by
(cfr. (19))

Xn G
� = n d� Xn j

� = nm�d
�j� . (48)

So, a character-valued index [33] with respect to this global isometry is introduced [5] as

I±_ = )A

[
(−1)� 4−V (�+ ±') Z±�

]
= )A

[
(−1)� 4−VH±_

]
, (49)

where we defined

H±_ = � +  ± ' ∓ 8_� Z := 4V (8_) , 8_ ∈ R. (50)

We compute this index in the standard manner via supersymmetry localization à la Álvarez-
Gaumé [34] for the corresponding real supercharge (which corresponds to torsionful Dirac operator
[5])

� := G± 1
2
− G†

± 1
2
, (51)

and obtain that it is given by the formula

I_± = 8#
∫
M0

dimM0∏
<=1

3G<0 3[
<
0

exp
(
8
2l

_
��
[�0 [

�
0
)

det′ PBC
(
−X��mg − 8'̂±,_��

)1/2 =

∫
M0

2ℎ(l_) ∧ �̂('̂±,_);

'̂
±,_
��

= '̂����[
�
0 [

�
0 ∓ 28_m�d� l_�� = �̃

±
�� + 8

_

2
F ±��, (52)

11with ' = −2'there
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where
F ± = 3A± = ∓4∇[�d�] (53)

denotes the auxiliary potential. This result for the index is equivalent toNiemi-Tirkkonen equivariant
localization theorem [35],[36] as expected (since � corresponds to Dirac operator). To evaluate this
formula for singular conical geometries of various N = 2� superconformal quantum mechanical
non-linear sigma models, one has to find the fixed point locusM0 on the corresponding resolved
space, which is given by12

�j = 0 ⇒ d� = 0, (54)

where the vector field d� is determined by the conditions (21). Moreover, since the inverse Legendre
transform L_ of the ‘Hamiltonian’H_ is not conformally invariant, d� is in general different than
the conformal one (23), since on the resolved space there exists no homothety.

In the remaining parts of this section, we give more details for the supersymmetry localization
computation of (49), starting with the unrefined case Z = 1, for general N = 2� superconformal
mechanics on resolved targets.

2.1 Superconformal index as an index for auxiliary quantum mechanics

The path integral for the index

I± = )A
[
(−1)� 4−V (�+ ±')

]
=

∫
[�j] [�G]4−V

∫ V
0 3gL�± (55)

involves the Lagrangian L�± which corresponds (after Wick rotation) to the inverse Legendre
transform of {G±,G†±}, and is related to the vanilla model (26) by a simple shift of the background
gauge potential, i.e.13

L± = L[�→ �̃± = � + A±], (56)

which is invariant under N = 2 supersymmetries :

XG†±1/2
G� = − 8n

2
(��� − 8X��)j� (57)

XG†±1/2
j� = − n

2

(
��� + 8X��

)
¤G� + 8n

2
m��

�
�j

� j� (58)

X (G±1/2−G†±1/2)
G� = n j� X (G±1/2−G†±1/2)

j� = 8n ¤G�, (59)

as well as under the D(1)� transformation (48).
We note that when L± → L, and the torsion is put to zero, the index is manifestly equivalent

to the index of Dirac-operator [37],[38], first computed by Atiyah and Singer [39],[40], and then
by Álvarez-Gaumé [34],[41] and Friedan and Windey [42] via supersymmetry path integral, except
that in our case we have a noncompact target. For simplicity we will assume that the Kähler form
Ω satisfies the condition

mm̄Ω = 0, (60)

12In general we also have time-dependent classical vacua (instanton) configurations given by ¤G� = ∓28_d�, which we
do not consider.

13Note that b2 term cancels with  in the derivation of (56).
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so that the four-fermion term in (26) drops out and thus we are able to apply standard supersymmetry
localization [38]. Such target geometries are called strong Kähler with torsion (SKT), but our results
straightforwardly generalize to weak Kähler with torsion (wKT) geometries where the derivative of
the torsion tensor is non-vanishing. However, this brings a simplification rather than a complication
because in the wKT cases, the whole contribution from the torsion can be made vanishing through
a continuous deformation while preserving the N = 2 supersymmetry of (26) in computing the
index [38].

Let us now summarize the computation of (55) through explicit supersymmetry localization
for SKT geometries. First, we note that the supersymmetry generator (51) acts on L± as given in
(59), and hence we observe that a supersymmetry-exact generalization of (26) is given by

L±(^) = ^X (G±1/2−G†±1/2)

(
− 8

2
��� ¤G�j� −

1
12
���� j

�j�j�
)
+ �̃±� ¤G

� − 8
2
�̃±��j

�j�, (61)

with an arbitrary parameter ^. Note that (61) reduces to (56) for ^ = 1. Now, expanding (61) over
the fluctuations

G = G0 +
b
√
^

j = [0 +
[
√
^
, (62)

and considering the limit ^ →∞, the Euclidean path integral (55) evaluates to

I = 8#
∫
M

dimM∏
 =1

3G 0 3[
 
0

4
8
2 �̃
±
��
[�0 [

�
0

det′PBC
(
−X��mg − 8'̂����[�0 [

�
0

)1/2 =

∫
M
2ℎ(�̃±) ∧ �̂('̂), (63)

where '̂ is the torsionful Riemann tensor. We obtain the corresponding index for the wKT geometry
simply by replacing '̂ with the standard torsionless Riemann tensor [38]. We also note that it is the
‘net’ field � + F ± rather than only the background field � that appears inside the Chern character.
Up to these differences, (63) coincides with the standard result of Atiyah-Singer index. However,
in this case, sinceM is noncompact the result (63) is divergent.

Finally let us also note that to compute the index (55), wemerely used theN = 2 supersymmetry
invariance of the auxiliary Lagrangian L�± appearing in the index path integral. In fact, unlike the
original superconformal model (26),L± is not invariant under D(1)' and conformal transformations
due to the appearance of the extra potential A±. In other words, Witten indices constructed from
H± do not make a good use of this freedom.

2.2 Supersymmetric Localization of the Refined Index

We now return to the refined superconformal index (49), which can be interpreted as the
equivariant Witten index for the refined Hamiltonian (50), with the D(1)� isometry generated by a
holomorphic Killing vector field d�. Crucially, the refined Lagrangian !±

_
appearing in the index

path integral is not conformally invariant. Hence, onlyN = 2 supersymmetry and D(1)� symmetry
are preserved in the index path integral, whereas the stringent condition (23) on d� does not hold.

The Lagrangian corresponding to the refined Hamiltonian

�±_ = � +  ± ' ∓ 8_�, 8_ ∈ R, (64)

10
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can be easily obtained via inverse Legendre transform as

!±_ =
1
2
��� ¤G� ¤G� + �̃±� ¤G

� + 8
2
���j

�∇̂C j� −
8

2
�̃±��j

�j� ∓ _
(
∇�d� +

1
2
d�����

)
j�j�

∓28_d� ¤G� − 2_2d�d
� − 1

12
m[����� ] j

�j�j� j� , (65)

and is invariant under refined N = 2 supersymmetries :

XG_
± 1

2

G� = − 8n
2

(
��� + 8X��

)
j� (66)

XG_
± 1

2

j� = − n
2

(
��� − 8X��

) (
¤G� ∓ 28_d�

)
+ 8n

2
m��

�
�j

� j�, (67)

XG_†±1/2
G� = − 8n

2
(��� − 8X��)j� (68)

XG_†±1/2
j� = − n

2

(
��� + 8X��

) (
¤G� ∓ 28_d�

)
+ 8n

2
m��

�
�j

� j� . (69)

X (G_±1/2−G
_†
±1/2)

G� = n j� , X (G_±1/2−G
_†
±1/2)

j� = 8n

(
¤G� ∓ 28_d�

)
. (70)

Comparing thesewith the unrefined analogs (57-59), we see that the supersymmetry transformations
of fermions receive a fugacity-dependent extra contribution determined by the vector d�. This leads
to localization of the index path integral

I±_ =

∫
[�G] [�j]4−

∫ V
0 3g!

±,�
_ , (71)

to a subspace determined by the fixed point locusM0 of d� :

M0 = {G0 |d(G0) = 0}, (72)

instead of an integration over the full target spaceM, and hence eventually brings a finite result
unlike the unrefined index.

As similar to before, we find a useful supersymmetry-exact generalization of (65) :

!±_,^ = ^X_

(
− 8

2
��� ¤G�j� −

1
12
���� j

�j�j�
)
− 8

2
�̃±��j

�j�∓_∇�d�j�j�−2_2d�d
�, (73)

where X_ is used as a shorthand for (70), and we did not write O( ¤G�) terms which do not contribute
to path integral index as ^ →∞.

We are now ready to use the localization principle for the index path integral (71) computed
with the Euclidean continuation of (73), which after expanding over (62) up to quadratic order in
fluctuations, and considering the limit ^ → ∞, gives (52)14. For the cases whereM0 consists of
only isolated fixed points {G0}, it reduces to a simple form

I±_ = 8#
∑
{G0 }

det
PBC

′ (−X��mg ∓ 2_m�d� (G0))−1/2 , (74)

14which is valid for a SKT geometry. Similarly as before, one obtains the corresponding result for the wKT geometry
simply by replacing the Riemann tensor with the torsionless one.
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as obtained in [5]. Hence, unlike the unrefined index which generically gives an infinite result for
noncompact spaces, the refined index gives a finite result (at a fixed charge) since the domain of
integration is now restricted to beM0, but not over the full target spaceM.

Finally, we note that

∓ _X_
(
d�j

�
)
= ∓8_d� ¤G� ∓ _∇�d�j�j� − 2_2d�d

�, (75)

and thus we can deform L_± by a X_-exact term as

L_± → L_± ∓ _gX_(d�j�), (76)

so that (73) generalizes

L_g ,^± = ^X_g

(
��� ¤G�j� −

8

12
���� j

�j�j�
)
+�̃±� ¤G

�− 8
2
�̃±��j

�j�∓_g∇�d�j�j�−2_2
gd�d

�,

(77)
where we introduced the shorthand

_g := g_, g ∈ R. (78)

So, we see that the deformation (76) has the net effect of introducing an arbitrary relabeling factor
g in front of the fugacity _ in the main result (52). Similarly to the unrefined case, (52) is valid for
SKT targets, and the generalization to the wKT cases is simply obtained by replacing the torsionful
equivariant Riemann curvature with the torsionless one.

To conclude, the superconformal index defined as an equivariant Witten index on the resolved
target space can be obtained from the general localization formula (52), once the fixed point locus
of the holomorphic Killing vector d on this resolved space is determined.

3. Gauged Quivers

We now move on to theN = 4 case in order to make a connection with the quiver model of our
interest mentioned in the Introduction. Due toN = 4� supersymmetry we now have two additional
complex structures, which we express in the covariant form

�d = (�8 ,1) �̄d = (−�8 ,1), 8 = 1, 2, 3. (79)

This leads to HyperKähler with torsion target spaces for the corresponding sigma models, that can
be parametrized by the coordinates

G� := G`0 � ≡ `0 = 1, · · · , 4=, ` = (8, 4), 0 = 1, · · · , =. (80)

We now assume that there exists a set of global isometries described by =-many commuting15
Killing vectors {:0} acting on the bosonic and fermionic coordinates as16

X_G
� = _1:�1 X_j

� = _1m� :
�
1 j

� . (81)

15Generalization to non-abelian case is given in [28].
16Comparing (81) with (48) reveals that one can consider N = 2 gauged models where the refinement generator � is

gauged [43], and thereby building an explicit connection with [15] in superconformal mechanics.
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Gauging this global isometry by promoting _0 → _0 (C), and correspondingly introducing a world-
line valued gauge fields 00 (C), (26) becomes [28]

! =
1
2
����CG

��CG
�+�� ¤G�+00E0−

8

2
���j

�j�+ 8
2
���j

��̂C j
�− 1

12
m[����� ] j

�j�j� j� ,

(82)
where the gauge covariant derivatives are

�CG
� = ¤G� − 01:�1 �̂C j

� = ¤j� + Γ̂��� ¤G�j� + 01
(
∇�:1� +

1
2
����:

�
1

)
j� , (83)

and E0 (G) are arbitrary target space valued potentials satisfying the constraint

8:0� = 3E0 . (84)

We now specialize to a specific choice of a target space data :

�`0a1 = X`a�01, �01 = X01

( ∑
2,2≠0

|^02 |
4A3
02

)
− |^01 |

4A3
01

+ `01� (G) (85)

�`0a1d2 = n_`adm_0�12 (86)
(�8)`0a1 = ( 9 8+)`aX01 , ( 9 8±)`a = ∓

(
X`8Xa4 − X`4Xa8

)
− n8`a4 (87)

�� = �`0 = (�80,−E0) = (�80,− 50 −*0), (88)

which is evidently invariant under the isometry

:�0 = X
�
4 m0 . (89)

Second, we note that by fixing the gauge such that G40 is constant, (82) becomes the (3, 4, 1)
effective Coulomb quiver mechanics (13) :

! (4,4,0) (�CG40 = −00 := �0) = ! (3,4,1) . (90)

When `01 = 0, 50 = 0, it was shown [29],[24],[28] that (82) is invariant under � (2, 1; 0)
action. A detailed analysis of the algebra closure and the derivation of geometric constraints for
a general target space data, as well as the corresponding restrictions for the specific choice (85-
88), can be found in [28]. In the (4, 4, 0) language, this has the interpretation that the conformal
symmetry is realized after a reduction from the HKT space to a subspace which is determined by
the* (1)= gauge symmetry (81) :

"0 = −E0 ≈ 0⇔ *0 ≈ 0. (91)

Gauged formalism allows us instead to work on the covering HKT space, and try to compute the
corresponding � (2, 1; 0) index (17) with respect to this gauged model. From the computation in
the previous section, we can now see the simple reason why this would probably be a powerful tool
for computing the index : because in the gauged description of scaling quiver mechanics (82) the
analog d-vector field takes the form [28] :

d8 = −n 8 9:G 90m:0 − G80m40, (92)
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where the shift due to gauged isometry (81) given by the second term lifts the fixed point locus
from the singular tip of the cone of the unresolved conformal target space as G40 ≠ 0. Indeed, in
the gauged model d is given by

d = −� · b⊥, (93)

where b⊥ is not a homothety but rather related to that with a shift given by the Killing vector (89)
[28]. This suggests [43] that the gauged superconformal mechanical sigma models might be useful
to obtain a more precise description of the fixed point locusM0 on resolved targets, which is a key
ingredient of the localization formula (52).
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