
P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
3
5

Carroll Fermions

Eric A. Bergshoeff,𝑎,∗ Andrea Campoleoni,𝑏 Andrea Fontanella,𝑐 Lea Mele𝑏 and
Jan Rosseel𝑑
𝑎Van Swinderen Institute, University of Groningen,
Nĳenborgh 4, 9747 AG Groningen, The Netherlands

𝑏Service de Physique de l’Univers, Champs et Gravitation,
Université de Mons – UMONS, 20 place du Parc, 7000 Mons, Belgium

𝑐School of Mathematics & Hamilton Mathematics Institute,
Trinity College Dublin, Ireland

𝑑Division of Theoretical Physics, Rudjer Bošković Institute,
Bĳenička 54, 10000 Zagreb, Croatia
E-mail: E.A.Bergshoeff[at]rug.nl, andrea.campoleoni[at]umons.ac.be,
andrea.fontanella[at]tcd.ie, lea.mele[at]umons.ac.be,

Jan.Rosseel[at]irb.hr

We consider different Carroll limits of relativistic Dirac fermions in any spacetime dimensions.
One limit leads to Carroll fermions that are inert under internal Carroll boosts. We call these
fermions electric Carroll fermions. Another limit makes use of projection operators and leads to
a second type of Carroll fermion, called magnetic, that does transform non-trivially under Carroll
boosts as a reducible but indecomposable representation of the Carroll group. We construct actions
for both electric and magnetic Carroll fermions. In particular, in even dimensions we construct
an action for a minimal magnetic Carroll fermion that has the same number of components as a
Dirac spinor.

Corfu Summer Institute 2023 "School and Workshops on Elementary Particle Physics and Gravity"
(CORFU2023)
23 April - 6 May , and 27 August - 1 October, 2023
Corfu, Greece

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:E.A.Bergshoeff[at]rug.nl
mailto:andrea.campoleoni[at]umons.ac.be
mailto:andrea.fontanella[at]tcd.ie
mailto:lea.mele[at]umons.ac.be
mailto:Jan.Rosseel[at]irb.hr
https://pos.sissa.it/


P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
3
5

Carroll Fermions Eric A. Bergshoeff

1. Motivation

The Carroll group refers to a Inönü-Wigner contraction of the Poincaré group in which the
speed of light 𝑐 is taken to 0.1 Originally studied by Lévy-Leblond [1] and Gupta [2] for a long
time Carroll symmetries were considered as a theoretical curiosity with obscure features. In some
respect, one can consider a Carroll limit as the opposite of a Galilei limit where one takes the limit
in which the speed of light is taken to be infinity. These two limits have the effect that in the case of a
Galilei limit the lightcone opens up and a particle can move everywhere in spacetime whereas when
taking a Carroll limit the lightcone closes down and a Carroll particle cannot move 2 , see Figure
1. In some sense, taking a Galilei limit of matter is as exotic as taking a Carroll limit. Souriau
was the first to study such Galilei particles [6]. We note that in order to describe ordinary matter
such as electrons and quarks one needs to extend the Galilei symmetries to centrally extended ones
called Bargmann symmetries. This extension is required because in the non-relativistic case both
the mass and the energy of ordinary matter is separately conserved while in the relativistic case,
since mass is equivalent to energy, there is only one conservation law corresponding to a single
Noether symmetry. We note that the Carroll symmetries do not allow such a central extension.

Galilei: lightcone opens up Carroll: lightcone closes down.

Figure 1: Under a Galilei limit (left) the lightcone opens up whereas under a Carrol limit (right) the
lightcone closes down

Recently, Carroll symmetries have made a come-back due to several reasons. First of all, it
turns out that a conformal extension of the Carroll group is the so-called BMS group that describes
the asymptotic symmetries of flat spacetime at null infinity [7]. This relates the Carroll symmetries
to the active field of flat space holography, see, e.g. [8–10]. Furthermore, any null hypersurface is
described by a manifold whose structure group is the Carroll group. This applies for instance to
black hole horizons [11]. In a rather different context, Carroll symmetries also naturally arise in the
tensionless limit of string theory; see, e.g., [12] and references therein. Finally, Carroll symmetries
also feature in a recent discussion of decoupling limits of M-theory [13].

Motivated by these applications of Carroll symmetry, various authors have recently considered
the construction and study of Carroll invariant field theories, for an incomplete list, see [14–
25]. Most of these papers concern the study of bosonic Carrollian field theories, see, however,
[14, 18, 21, 22, 24, 26]. It is the purpose of this contribution to give a systematic treatment

1We use a slightly sloppy notation here. We actually mean to first replace 𝑐 by 𝜆𝑐, with 𝜆 a dimensionless contraction
parameter, and next to take the limit 𝜆 → ∞. Taking the limit in this way guarantees that 𝑐 has disappeared from the
action after taking the limit.

2This statement should be slightly weakened. First of all, when one considers a collection of Carroll particles only
the center of mass cannot move [3] and secondly, taking the Carroll limit of a tachyon, one ends up with a new type of
Carroll particle with zero energy that can move [4, 5].
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of Carroll fermions thereby generalizing some of the results in the literature. As a warming-up
exercise, we will first give a brief review of Carrollian scalar field theories.

2. Carroll Scalars

We are going to derive Carroll scalar field theories by taking a Carroll limit of a relativistic
scalar field theory. We will take limits using the following two steps:

1. We first redefine the relativistic fields and symmetry parameters in terms of the would-be Carroll
fields and parameters and a contraction parameter 𝑐.

2. We next substitute these redefinitions into the action and transformation rules and take the limit
that 𝑐 → 0. 3

We illustrate these two steps by first showing how by taking a Carroll limit the spacetime
Poincaré transformations become Carroll transformations. We consider the Lorentz spacetime
transformation rules in 𝐷 dimensions 𝛿𝑋𝐴 = −Λ𝐴

𝐵𝑋
𝐵, decompose the index 𝐴 into 𝐴 = (0, 𝑎)

with 𝑎 = 1, , 2, · · ·𝐷 − 1 and make the following redefinitions:

𝑋0 =
𝑡

𝑐
, 𝑋𝑎 = 𝑥𝑎 , Λ𝑎𝑏 = 𝜆𝑎𝑏 , Λ0𝑎 =

1
𝑐
𝜆0𝑎 (1)

so that we obtain

𝛿𝑡 = −𝜆0
𝑎𝑥

𝑎 , 𝛿𝑥𝑎 = −𝜆𝑎𝑏 𝑥𝑏 −
1
𝑐2𝜆

𝑎
0 𝑡 (2)

In particular, this shows that the Carroll boosts only work in one direction and in this way form a
reducible but indecomposable representation:

𝑡 → 𝑥𝑎 → 0 . (3)

We will assume that the Carroll limit of the spacetime coordinates always works in this way and
from now on concentrate on the internal Carroll boosts only. It turns out that there are two different
ways of defining a Carroll limit which we will discuss below separately.

2.1 Electric Carroll Scalars

We consider the following Lagrangian describing a 𝐷-dimensional relativistic real scalar Φ
with mass 𝑀 :

L =
𝑐2

2
(𝜕𝑡Φ)2 − 1

2
𝜕𝑎Φ𝜕𝑎Φ − 𝑀2

2𝑐2Φ
2 . (4)

Besides the coordinate redefinitions mentioned above we now make the further redefinitions

Φ =
𝜙

𝑐
, 𝑀 = 𝑚𝑐2 . (5)

3We find it convenient to define a different contraction parameter 𝑐 = 1/𝑐 and to take 𝑐 → ∞.
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Taking 𝑐 → ∞, we obtain the following electric Carroll scalar Lagrangian :

Lelectric scalar =
1
2
(𝜕𝑡𝜙)2 − 𝑚2

2
𝜙2 . (6)

Under the internal Carroll boosts we have

𝜕𝑎𝜙 → 𝜕𝑡𝜙 → 0 , (7)

which shows that the electric Carroll Lagrangian is invariant under these internal Carroll boost
transformations. Due to the absence of a term with spatial derivatives this scalar field theory
corresponds to an electric Carroll particle which has non-zero energy but cannot move [1, 2].

2.2 Magnetic Carroll Scalars

There is a different way of taking the Carrol limit where one uses a so-called Hubbard-
Stratonovich transformation that allows us to control the leading divergence in an expansion of the
action and consider the sub-leading terms as the outcome of the limit. This transformation works
as follows. 4 If the leading order divergence is given by a complete square of the generic form 𝑋2,
one can write an equivalent expression using an auxiliary field 𝜆 as follows :

𝑐2𝑋2 + O(𝑐0) ⇔ − 1
𝑐2𝜆

2 + 2𝜆𝑋 + O(𝑐0) . (8)

The equivalence, for finite 𝑐, can be shown by substituting back the solution of the auxiliary field
given by

𝜆 = 𝑐2𝑋 . (9)

After taking the limit 𝑐 → ∞ the first term in the alternative expression vanishes and the auxiliary
field becomes a Lagrange multiplier with the result that the limit is given by the sub-leading terms.

Alternatively, one can avoid such a Hubbard-Stratonovich transformation by not starting with
a scalar field in a second-order formulation like we did in the electric case but, instead, by starting
from a Hamiltonian formulation of this Lagrangian. On top of this we also take an opposite sign of
the mass term, for reasons given below, so that we obtain the following Lagrangian:

L = Π𝜕𝑡Φ − 1
2𝑐2Π

2 − 1
2
𝜕𝑎Φ𝜕𝑎Φ + 𝑀2

2𝑐2Φ . (10)

Making the redefinitions

Π = 𝜋 , Φ = 𝜙 , 𝑀 = 𝑚𝑐 (11)

and taking 𝑐 → ∞ we obtain the following magnetic Carroll scalar Lagrangian [4, 5, 15] :

Lmagnetic scalar = 𝜋𝜕𝑡𝜙 − 1
2
𝜕𝑎𝜙𝜕

𝑎𝜙 + 𝑚2

2
𝜙2 . (12)

This Lagrangian is invariant under internal Carroll boosts due to the following exact sequence:

𝜋 → 𝜕𝑎𝜙 → 𝜕𝑡𝜙 → 0 . (13)

4The transformation given below can be generalized to the cases where the leading divergence is given by terms of
the form 𝑋𝑌 or 𝑋2 + 𝑌2 for certain 𝑋 and 𝑌 . We will not need these generalizations here.
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Due to the Lagrange multiplier term this action corresponds to a so-called magnetic Carroll particle
with zero energy, which, however, can move.

The reason that we had to change the sign of the mass term in the magnetic case, so that we are
dealing with a tachyon, is that we needed consistency with the dispersion relation whose original
relativistic expression reads:

𝑀2 = 𝐸2 − ®𝑝2 . (14)

When taking the electric limit we get ®𝑝 = 0 and 𝑚2 = 𝐸2. However, in the magnetic case we have
𝐸 = 0 and we would obtain the inconsistent relation 𝑚2 = − ®𝑝2 unless we replace 𝑀 by 𝑖𝑀 .

This closes our discussion of the Carroll scalars. We next turn our attention to the fermionic
case.

3. Carroll Fermions

Recently, several works have appeared dealing with Carroll fermions. Several of these works
use different limiting techniques applied to Lagrangians, Hamiltonians or equations of motion
[14, 18, 21, 24, 27]. An interesting bottom-up construction of Carroll fermion field theories
appeared in [21, 22] (see also [26]). In this approach, one does not start from a 𝑐 → 0 limit
of relativistic fermions, but instead constructs spinor representations of the homogeneous Carroll
group, starting from degenerate Clifford algebras [28–30].

One obstacle in defining two different (electric and magnetic) limits of a Dirac fermion, as we
did for scalars above, is that the Dirac lagrangian is already written in a first-order form. Here we
show that nevertheless two different limits can be defined by making use of a special projection
operator acting on the spinor indices. Furhermore, we will show that in even dimensions we
can construct a minimal magnetic formulation using a single Dirac fermion, by making use of a
higher-dimensional generalization of the four-dimensional Γ5 matrix.

Before taking limits of Lagrangians, we first consider a relativistic complex Dirac spinor Ψ in
a 𝐷-dimensional Minkowski spacetime with the standard Lorentz transformation rule

𝛿Ψ(𝑥) = Ξ𝐴𝜕𝐴Ψ(𝑥) − 1
4
Λ𝐴𝐵Γ

𝐴𝐵Ψ(𝑥) (15)

where

𝛿𝑋𝐴 ≡ 𝑋 ′𝐴 − 𝑋𝐴 = −Ξ𝐴 , Ξ𝐴 = Λ𝐴
𝐵𝑋

𝐵 . (16)

To obtain a Carroll fermion we decompose 𝐴 = (0, 𝑎), redefine the coordinates as in the scalar case
together with the following redefinitions of the parameters and the Dirac fermion:

Λ𝑎𝑏 = 𝜆𝑎𝑏 and 𝜉𝑎 = 𝜆𝑎𝑏𝑥
𝑏 , Λ0𝑎 =

1
𝑐
𝜆0𝑎 and 𝜉0 = 𝜆0

𝑎𝑥
𝑎 , Ψ = 𝜓 .

After taking the limit that 𝑐 → ∞ we obtain in this way a transformation rule without internal
Carroll boosts :

𝛿𝜓 = 𝜉0 𝜕𝜓

𝜕𝑡
+ 𝜉𝑎

𝜕𝜓

𝜕𝑥𝑎
− 1

4
𝜆𝑎𝑏Γ𝑎𝑏𝜓 .
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To obtain non-trivial internal Carroll boosts we decompose the Dirac spinor Ψ while preserving
the spatial rotations. For this purpose we can use any of the matrices Γ0, Γ0Γ★ or Γ★ where Γ★,
to be defined below, indicates the generalization of Γ5 to any even dimension. It turns out that the
option Γ0Γ★ gives similar answers as when we use Γ0 in terms of some redefined gamma matrices.
The option Γ★ does not work for our purposes since it cannot distinguish between spatial rotations
and boosts. We therefore take the Γ0 option and define the following projected Dirac fermion Ψ±:

Ψ± =
1
2
(
1 ± 𝑖Γ0) Ψ . (17)

We next redefine the two projections differently as follows:

Ψ± = 𝑐±1/2+𝜖 1
2
(
1 ± 𝑖Γ0) 𝜓± , (18)

where 𝜖 is an arbitrary free parameter. Calulating the transformation rules of the two projections we
find that after taking the limit 𝑐 → ∞ one of the two projections transform under internal Carroll
boosts as follows:

𝛿𝜓+ = 𝜉0 𝜕𝜓+
𝜕𝑡

+ 𝜉𝑎
𝜕𝜓+
𝜕𝑥𝑎

− 1
4
𝜆𝑎𝑏Γ𝑎𝑏𝜓+ , (19)

𝛿𝜓− = 𝜉0 𝜕𝜓−
𝜕𝑡

+ 𝜉𝑎
𝜕𝜓−
𝜕𝑥𝑎

− 1
4
𝜆𝑎𝑏Γ𝑎𝑏𝜓−

1
2
𝜆0𝑎Γ0𝑎𝜓+ . (20)

This shows that the projected spinors 𝜓± form a reducible but indecomposable representation of the
homogeneous Carroll group :

𝜓− → 𝜓+ → 0 . (21)

We now discuss the electric and magnetic Carroll fermions separately.

3.1 Electric Carroll fermions

The electric Carroll fermions are the easiest to define. Starting from the relativistic Dirac
Lagrangian

Lrelativistic Dirac = Ψ̄Γ𝜇𝜕𝜇Ψ − 𝑀

𝑐
Ψ̄Ψ (22)

and taking the Carroll limit defined by the redefinitions

𝑋0 = 𝑡/𝑐 , 𝑋𝑎 = 𝑥𝑎 , Ψ = 𝜓 , 𝑀 = 𝑐2𝑚 (23)

we obtain the following electric Carroll Dirac Lagrangian [18]

Lelectric Carroll Dirac = 𝜓̄Γ0 ¤𝜓 − 𝑚𝜓̄𝜓 + h.c. . (24)

Here we have defined ¤𝜓 ≡ 𝜕𝜓

𝜕𝑡
. The verification of the invariance of this Lagrangian under internal

Carroll boosts can be done using the sequences

𝜕𝑎𝜓 → 𝜕𝑡𝜓 → 0 and 𝜓 → 0 . (25)

Note that the electric Carroll Lagrangian (24) can be truncated consistently with the Carroll sym-
metry as follows:

𝜓+ = 0 or 𝜓− = 0 or 𝜓L = 0 or 𝜓R = 0 . (26)
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3.2 Magnetic Carroll fermions

To make contact with recent other work on magnetic Carroll fermions we start from a non-
minimal off-diagonal Lagrangian and only at a later stage give the truncation (in even dimensions)
to a minimal model [31]. To be precise, we consider the following off-diagonal Lagrangian for two
Dirac spinors Ψ and X:

Loff-diagonal = X̄Γ𝐴𝜕𝐴Ψ − 𝑖
𝑀

𝑐
X̄Ψ + h.c. . (27)

To define a magnetic Carroll limit we consider the projected spinors Ψ± and 𝑋± and make,
besides the usual coordinate redefinitions and mass rescaling 𝑀 = 𝑐2𝑚, the following redefinitions
of the fermion fields :

Ψ+ =
√
𝑐 𝑐𝜖𝜓+ , Ψ− =

1
√
𝑐
𝑐𝜖𝜓− , (28)

X+ =
1
√
𝑐
𝑐𝜖 𝜒+ , X− =

√
𝑐 𝑐𝜖 𝜒− . (29)

Here 𝜖 is an overall scaling parameter that in the present case needs to be 𝜖 = −1/2. Substituting
these redefinitions back into the off-diagonal Lagrangian (27) and taking the limit 𝑐 → ∞ one
finds a non-minimal off-diagonal Lagrangian. To explain why (in even dimensions) a truncation
to a minimal Lagrangian is possible, it is instructive to substitute the same redefinitions into the
relativistic transformation rules. After taking 𝑐 → ∞ we obtain the following result:

𝛿𝜓+ = 𝜉0 ¤𝜓+ + 𝜉𝑎𝜕𝑎𝜓+ −
1
4
𝜆𝑎𝑏Γ

𝑎𝑏𝜓+ and similar for 𝜒− , (30)

𝛿𝜓− = 𝜉0 ¤𝜓− + 𝜉𝑎𝜕𝑎𝜓− − 1
4
𝜆𝑎𝑏Γ

𝑎𝑏𝜓− − 1
2
𝜆0𝑎Γ

0𝑎𝜓+ and similar for 𝜒+ . (31)

These transformation rules suggest the following truncations in even dimensions:

𝜒± = Γ★𝜓∓ ,

where we have defined the generalization Γ★ of the 4D Γ5 matrix as follows:

Γ★ = (−i) 𝐷
2 +1Γ0Γ1 · · · Γ𝐷−1 . (32)

We thus obtain the following minimal magnetic Carroll Dirac Lagrangian :

Lmagnetic Carroll Dirac = 2𝜓̄−Γ
0Γ★ ¤𝜓+ + 2𝜓̄+Γ

0Γ★ ¤𝜓− + 2𝜓̄+Γ
𝑎Γ★𝜕𝑎𝜓+ +

+𝑖𝑚 (𝜓̄+Γ★𝜓− + 𝜓̄−Γ★𝜓+)

To verify the internal Carroll boost symmetry of this Lagrangian one may use the following
sequences:

𝜕𝑎𝜓 → 𝜕𝑡𝜓 → 0 and 𝜓− → 𝜓+ → 0 . (33)

7
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4. Conclusions

We note that the results on Carroll limits discussed here can be generalized to similar Galilei
limits of both scalars [32] and fermions [24]. This leads to similar notions of electric and magnetic
Galilei scalars and fermions.

An undesirable feature of our limit technique is that it requires the existence of a Dirac fermion.
This excludes for instance applications to supergravity in ten and eleven spacetime dimensions.
This obstacle can be circumvented by generalizing our particle limit to extended objects and by
requiring that the projection operator is invariant under the transverse spatial rotations only. This
can be achieved by replacing the Γ0 occurring in the particle projection operator by a gamma matrix
with indices in all directions longitudinal to the extended object [33]. In this way one can define
in ten and eleven dimensions, where the corresponding supergravity theories do not contain Dirac
spinors, suitable string and membrane projection operators as follows:

𝑃± =
1
2
(1 ± Γ01) : strings and 𝑃± =

1
2
(1 ± Γ012) : membranes . (34)

These projection operators are consistent with Majorana-Weyl spinors in 10D and Majorana spinors
in 11D.

The rescalings with 𝑐 we made when defining our Carroll limits guarantee that our final
expressions are invariant under global scalings of the fields. This implies that the Carroll symmetry
is extended to a conformal Carroll symmetry and that the actions we constructed, for generic
dimensions, are invariant under a (finite-dimensional) conformal Carroll algebra. This leads to
interesting connections with the BMS symmetry that plays such a prominent role in flat space
holography and celestial holography. In this context, it is of interest to note that the free Carroll
fermion models we constructed can be used to construct infinite dimensional algebras of the type
𝑤1+∞ in the same way as this has been done before in the relativistic case, see e.g. [34, 35]. It
would be interesting to see whether there exists electric and magnetic Carroll versions of these
infinite-dimensional algebras.

Last but not least, given that we have electric (magnetic) Carroll scalars and fermions, it is
natural to consider combinations that exhibit electric (magnetic) Carroll supersymmetry. We hope
to report on this in a future work [36] (see also [24]).
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