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1. Introduction

The foundational principles of black hole thermodynamics were established during the 1970s
through groundbreaking contributions by researchers such as Bekenstein, Bardeen, Hawking, and
Gibbons [2–5]. Over subsequent decades, these principles have been extended and generalized
in various ways. However, due to the absence of a comprehensive microscopic understanding
provided by a quantum theory of gravity, these principles remain primarily an analogy to the laws
of statistical thermodynamics. Such a quantum description is provided for asymptotically Anti-de
Sitter (AdS) backgrounds embedded in string theory via the AdS/CFT correspondence [6]. In the
presence of supersymmetry many observables are protected and many microscopic calculations have
successfully reproduces the macroscopic Bekenstein-Hawking entropy of the corresponding black
holes. The task of characterizing realistic thermal black holes has instead proven to be significantly
more challenging and exact microscopic calculations for such systems are still elusive. A notable
successful exception from these hurdles is the case of AdS3/CFT2 correspondence because two-
dimensional conformal symmetry is strong enough to fix the scaling of the microscopic density of
states without any supersymmetry, resulting in the celebrated Cady formula, [7].

Considering the aforementioned insights, our current investigation aims to extend the program
of [1] and [8] to case of Bañados-Teitelboim-Zanelli (BTZ) black holes [9, 10] asymptoting to
AdS3. [1] presented a fresh perspective on black hole thermodynamics by proposing a novel
set of "natural" chemical potentials. These proposed potentials suggest a simpler microscopic
explanation for thermal black holes. This approach is rooted in the intriguing observation that
the laws governing black hole thermodynamics are not necessarily unique even within a single
spacetime solution. Surprisingly, it is possible to define a set of chemical potentials and uphold a
corresponding conservation law at each event horizon individually [11]. For example, Hawking’s
original semi-classical calculation [3] applies equally to both the inner and outer horizons of a typical
thermal black hole in an asymptotically flat 4-dimensional spacetime [12–14]. Similar features exist
for additional event horizons in scenarios involving higher dimensions or a cosmological constant
[15].

Since the first law holds independently for multiple sets of chemical potentials, it becomes
feasible to construct arbitrary linear combinations of the corresponding variables while preserving
the same conservation law (known as the first law). This flexibility was previously utilized to
define the so-called left- and right-moving entropies and temperatures [12–14]. More recently,
[1, 8] expanded upon this concept by considering the corresponding left- and right-moving on-
shell actions. Remarkably, these actions emerge as straightforward and fully explicit functions of
the respective chemical potentials, a feature not exhibited by the free energies on the individual
horizons.

The construction in [1, 8] was also partially inspired by the natural split of left- and right-
moving excitations of 2-dimensional conformal field theories (CFTs) compactified on a torus. We
should however note that the black hole construction of natural variables made from combinations
of potentials on multiple horizons is in no formal or clear way related to a CFT2 symmetry, and the
chosen terminology was based on an analogy rather than a clear match. The current investigation
bridges this gap by elucidating the precise connection between the natural variables characterizing
black holes, as applied to the BTZ case and its extensions featuring higher derivatives, see [16], and
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the corresponding left- and right-moving variables within CFT2.

2. The Cardy formula

Before moving to the investigation of the macroscopic black holes of interest, we briefly recall
some basic facts about thermodynamics of 2-dimensional conformal field theories, see e.g. [17, 18]
for reviews and further holographic context. We start by putting the field theory on a torus of
modulus 𝜏,

𝜏 :=
1

2𝜋
(𝜖 + 𝑖 𝛽) , (1)

which can be thought of a the complexified (inverse) temperature. Since the theory enjoys modular
invariance, in the high-temperature limit 𝜏 → 0 it can be shown that the partition function (called
elliptic genus) factorizes into independent holomorphic and anti-holomorphic contributions, which
are in turn fully fixed. Considering the grand-canonical ensemble, we have

𝑍CFT2 (𝜏, 𝜏) = 𝑍𝑙 (𝜏) 𝑍𝑟 (𝜏) , (2)

with
log 𝑍𝑙 (𝜏) ≈

𝑖 𝜋

12 𝜏
𝑐𝑙 , log 𝑍𝑟 (𝜏) ≈

𝑖 𝜋

12 𝜏
𝑐𝑟 , (3)

where ≈ denotes the leading asymptotic behavior that we are interested in. Above, 𝑐𝑙 and 𝑐𝑟 are the
central charges in the algebras of left-moving and right-moving excitations of the CFT2, respectively.
The above formula is the grand-canonical version of the Cardy formula, which ultimately fixes the
asymptotic density of states. To achieve this, one needs to perform a Laplace transform of the
partition function with respect to the number of left movers and right-movers (𝑛𝑙,𝑟 − 𝑐𝑙,𝑟/24),
conjugate to 𝜏, 𝜏 respectively. At the leading order this amounts to a simple Legendre transform of
the variables, leading to

log 𝜌(𝑛𝑙, 𝑛𝑟 ) ≈ 2𝜋
√︂

𝑐𝑙

6

(
𝑛𝑙 −

𝑐𝑙

24

)
+ 2𝜋

√︂
𝑐𝑟

6

(
𝑛𝑟 −

𝑐𝑟

24

)
. (4)

This is the more commonly used canonical version of the Cardy formula, that directly relates to the
Bekenstein-Hawking entropy of BTZ black holes as we turn to discuss.

3. BTZ in pure gravity

We consider the BTZ metric, [9, 10], as a solution of the 3-dimensional Einstein-Hilbert action
in presence of a cosmological constant,

d𝑠2
𝐵𝑇𝑍 = −𝑈 (𝑟)2d𝑡2 +𝑈 (𝑟)−2d𝑟2 + 𝑟2(d𝜙 + 4 𝑗

𝑟2 d𝑡)2 , (5)

with 𝜙 is an angular coordinate and

𝑈 (𝑟)2 = −8𝑚 + 𝑟2

𝑙2
+ 16 𝑗2

𝑟2 =
(𝑟2 − 𝑟2

+) (𝑟2 − 𝑟2
−)

𝑟2𝑙2
, (6)
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with 𝑙 setting the length scale of AdS3, and 𝑚, 𝑗 the parameters governing the asymptotic mass 𝑀

and angular momentum 𝐽,

𝑀 =
𝑚

𝐺
(3)
𝑁

, 𝐽 =
𝑗

𝐺
(3)
𝑁

. (7)

The inner (−) and outer (+) black hole horizons are given by

𝑟± =
√︁

2𝑙 (𝑙𝑚 + 𝑗) ±
√︁

2𝑙 (𝑙𝑚 − 𝑗) . (8)

We can compute the Bekenstein-Hawking entropies and associated inverse temperatures on the two
horizons, [16]

𝑆± =
𝜋 𝑟±

2𝐺 (3)
𝑁

, 𝛽± = ±2𝜋𝑙2 𝑟±
𝑟2
+ − 𝑟2

−
, (9)

as well as the angular velocities

Ω± =
𝑟2
∓

𝑙𝑟+𝑟−
. (10)

It is then easy to verify the first law of black hole thermodynamics holding separately at each
horizon,

𝛽± 𝛿𝑀 = 𝛿𝑆± + 𝛽±Ω± 𝛿𝐽 , (11)

such that the corresponding on-shell actions become

𝐼±(𝛽±,Ω±) = 𝛽± 𝑀 − 𝑆± − 𝛽±Ω± 𝐽 = − 𝜋

4𝐺 (3)
𝑁

𝑟± . (12)

Let us just focus on the upper sign and rewrite the on-shell action as

𝐼+ = − 3𝑙
2𝐺 (3)

𝑁

(
2𝜋

√︁
2𝑙 (𝑙𝑚 + 𝑗)
12 𝑙

+
2𝜋

√︁
2𝑙 (𝑙𝑚 − 𝑗)
12 𝑙

)
, (13)

such that we obtain the equality
𝐼+ = − log 𝑍CFT2 , (14)

upon the identifications, see e.g. [19],

𝜏 =
𝑖 𝑙

𝑟+ + 𝑟−
, 𝜏 =

𝑖 𝑙

𝑟+ − 𝑟−
, (15)

and
𝑐𝑙 = 𝑐𝑟 =

3𝑙
2𝐺 (3)

𝑁

(16)

Indeed the latter equality for the so-called Brown-Henneaux central charges needs to hold for the
correct definition of AdS3/CFT2 as it can be derived from the asymptotic symmetries, [20]. The
fact that the two central charges are equal is a defining characteristic of two derivative gravity with
or without additional matter couplings. Similarly to (14), the entropy 𝑆+ can be exactly equated to
the logarithm of the density of states, (4).
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3.1 Natural variables

Following [1], we define

𝛽𝑙,𝑟 :=
1
2
(𝛽+ ± 𝛽−) , 𝜔𝑙,𝑟 :=

1
2
(𝛽+Ω+ ± 𝛽−Ω−) ,

𝑆𝑙,𝑟 :=
1
2
(𝑆+ ± 𝑆−) , 𝐼𝑙,𝑟 :=

1
2
(𝐼+ ± 𝐼−) ,

(17)

leading to an alternative version of the first law,

𝛽𝑙,𝑟 𝛿𝑀 = 𝛿𝑆𝑙,𝑟 + 𝜔𝑙,𝑟 𝛿𝐽 , (18)

such that

𝐼𝑙,𝑟 = 𝛽𝑙,𝑟𝑀 − 𝑆𝑙,𝑟 − 𝜔𝑙,𝑟 𝐽 = −
𝜋
√︁

2𝑙 (𝑙𝑚 ± 𝑗)
4𝐺 (3)

𝑁

. (19)

It might now seem that we have doubled the number of chemical potentials that we are about to
relate holographically, but in fact we find the following identities,

𝛽𝑙 = −𝑙 𝜔𝑙 =
𝜋𝑙2

2
√︁

2𝑙 (𝑙𝑚 + 𝑗)
, 𝛽𝑟 = 𝑙 𝜔𝑟 =

𝜋𝑙2

2
√︁

2𝑙 (𝑙𝑚 − 𝑗)
, (20)

such that we can rewrite

𝐼𝑙,𝑟 = −𝑆𝑙,𝑟 + 𝛽𝑙,𝑟
𝑙𝑀 ± 𝐽

𝑙
. (21)

This means that in practice we again have only two independent variables, 𝛽𝑙 and 𝛽𝑟 in the left-
and right-moving sectors, respectively. It is then easy to write down the on-shell actions in terms
of their respective variables,

𝐼𝑙,𝑟 = − 𝜋2𝑙2

8𝐺 (3)
𝑁

𝛽𝑙,𝑟

, (22)

obeying the identities
𝜕𝐼𝑙,𝑟

𝜕𝛽𝑙,𝑟
=
𝑙𝑀 ± 𝐽

𝑙
(23)

It is then clear that under the identifications (15)-(16),

𝜏 =
𝑖

𝜋𝑙
𝛽𝑙 , 𝜏 =

𝑖

𝜋𝑙
𝛽𝑟 , (24)

leading to

𝐼𝑙 (𝛽𝑙) = − log 𝑍𝑙 (𝜏) , 𝐼𝑟 (𝛽𝑟 ) = − log 𝑍𝑟 (𝜏) , (25)

in agreement with (14). This illustrates the agreement between the left- and right moving sectors
in gravity and their counterparts in field theory.
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3.2 Extremality

The extremal limit for the BTZ black holes coincides with the supersymmetric (BPS) limit
(when the theory is extended to supergravity),

𝑀 = ± 𝐽

𝑙
, (26)

relating the two parameters describing the solutions, e.g. 𝑗 = ±𝑙 𝑚. Both signs are equally
meaningful, as they correspond either to 𝛽𝑟 → ∞ or 𝛽𝑙 → ∞, respectively. Choosing for clarity
the upper sign above, we then find

𝐼BPS
𝑙 = − 𝜋2𝑙2

8𝐺 (3)
𝑁

𝛽𝑙

, 𝐼BPS
𝑟 = 0 . (27)

This is in agreement with the expectation that supersymmetry always imposes the vanishing of one
of the sectors, observed generically in various examples in [1, 8].

4. BTZ in topologically massive gravity

In topologically massive gravity (TMG), [21, 22], the Einstein-Hilbert action in presence of
a cosmological constant is suitably modified to include a gravitational Chern-Simons contribution
parametrized by an additional coupling constant 1/𝜇 following the conventions of [16]. The addition
of the topological term allows for the same black hole metric as above, (5)-(6). The fact that we
have a higher derivative correction however changes the resulting extrinsic potentials such as the
asymptotic charges, entropy (calculated now via the Wald prescription [23]) and on-shell action.
Taking this into account, see again [16] for more details, the entropies for the outer and inner
horizons are

𝑆𝑇,± =
𝜋 𝑟±

2𝐺 (3)
𝑁

+ 𝜋 𝑟∓

2𝐺 (3)
𝑁

𝜇𝑙
(28)

where 1/𝜇 is the Chern-Simons coupling defined as in [16]. The conserved charges can be written
as

𝑀𝑇 = 𝑀 + 𝐽

𝜇𝑙2
, 𝐽𝑇 = 𝐽 + 𝑀

𝜇
, (29)

where 𝑀 and 𝐽 are the asymptotic charges as defined in (7) and they become equivalent in the limit
in which we go back to the pure gravity case, i.e. 𝜇 → ∞.

Again, the first law of black hole thermodynamics is verified for the two horizons

𝛽± 𝛿𝑀𝑇 = 𝛿𝑆𝑇,± + 𝛽±Ω± 𝛿𝐽𝑇 , (30)

where 𝛽± and Ω± are the inverse temperatures and the angular velocities as defined in the previous
section. The on-shell actions,

𝐼𝑇,±(𝛽±,Ω±) = 𝛽± 𝑀𝑇 − 𝑆𝑇,± − 𝛽±Ω± 𝐽𝑇 , (31)

can be related to the ones in pure gravity, (12), by

𝐼𝑇,± = 𝐼± + 1
𝜇𝑙

𝐼∓ . (32)

6



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
3
7

Black hole thermodynamics in natural variables: the BTZ case Kiril Hristov

We again find an exact match between gravity and field theory, (14)-(15), this time with the corrected
central charges, 1

𝑐𝑙,𝑟 =
3𝑙

2𝐺 (3)
𝑁

(
1 ± 1

𝜇𝑙

)
, (33)

again in agreement with the Brown-Henneaux asymptotic analysis.

4.1 Natural variables

Given that the temperature and angular velocities do not change, the natural left- and right-
moving variables in this case remain the same. Furthermore, following (17), we find that the
new left- and right-moving on-shell actions satisfy the first law and relate to the entropies via the
quantum statistical relation

𝐼𝑇, 𝑙,𝑟 = 𝛽𝑙,𝑟𝑀𝑇 − 𝑆𝑇, 𝑙,𝑟 − 𝜔𝑙,𝑟 𝐽𝑇 , (34)

in analogy with (19). It is also easy to verify that

𝐼𝑇, 𝑙,𝑟 =

(
1 ± 1

𝜇𝑙

)
𝐼𝑙,𝑟 , (35)

in terms of the analogous quantities in pure gravity. We finally arrive at

𝐼𝑇, 𝑙,𝑟 = −
(
1 ± 1

𝜇𝑙

)
𝜋2𝑙2

8𝐺 (3)
𝑁

𝛽𝑙,𝑟

, (36)

leading to the identifications (24)-(25) using the new central charges, (33). Remarkably, we again
obtain the analog of the conjugation relation (23),

𝜕𝐼𝑇, 𝑙,𝑟

𝜕𝛽𝑙,𝑟
=
𝑙𝑀𝑇 ± 𝐽𝑇

𝑙
(37)

now with the corrected values of the asymptotic charges.

4.2 Extremality

In the TMG case the extremal and BPS limit corresponds to

𝑀𝑇 = ± 𝐽𝑇

𝑙
, (38)

which at the level of the basic black hole parameters remains the same, 𝑗 = ±𝑙 𝑚. This again means
a vanishing temperature, 𝛽𝑙,𝑟 → ∞. Choosing the upper sign we then find

𝐼BPS
𝑇, 𝑙 = −

(
1 + 1

𝜇𝑙

)
𝜋2𝑙2

8𝐺 (3)
𝑁

𝛽𝑙

, 𝐼BPS
𝑇, 𝑟 = 0 , (39)

in analogy to (27).
1Notice that here we have exchanged the definitions of left and right with respect to [16]. This is a purely conventional

choice for the purpose of notational consistency with the definition of the corresponding gravitational variables in [1, 8].
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5. Generalizations and conclusions

Through the examples presented above, we have demonstrated the correspondence between
the microscopic variables in field theory and the gravitational formulation of left- and right-
moving sectors proposed independently in [1]. This equivalence is non-trivial, as the gravitational
construction initially involves doubling the chemical potentials to account for thermodynamics on
both the inner and outer horizons. However, in the BTZ case, this doubling is counteracted by
the additional relations (20), resulting in each sector featuring only a single independent chemical
potential, associated with the modular parameter in the dual theory.

Remarkably, these observations can be formally extended to other theories incorporating higher
derivative corrections, such as new massive gravity [24] and Lagrangians of the form 𝑓 (𝑔𝜇𝜈 , 𝑅𝜇𝜈)
as demonstrated in [25]. In these theories, only an overall normalization factor is found, maintaining
the equality of the Brown-Henneaux central charges. It is noteworthy that the TMG case discussed
earlier falls outside this category due to the gravitational Chern-Simons term, which disrupts the
symmetry between the two sectors. The fact that our gravitational variables consistently yield
accurate results suggests their broad applicability across these theories.

Additionally, it’s essential to recognize another class of AdS3 vacua and their BTZ-like quotients
in higher derivative theories known as "warped" AdS [26, 27]. In this scenario, the dual field theory
deviates from a standard two-dimensional CFT and instead exhibits only a single copy of the
Virasoro algebra, [28, 29]. Consequently, the corresponding partition function and Cardy formula
analog only feature a single sector (the right-moving one in our conventions), implying the absence
of the left-moving sector. It is intriguing to note that our gravitational construction precisely aligns
with the dual variables once again without any changes in the gravitational construction. We plan
to report on this observation elsewhere.
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