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1. Introduction

That the notion of emergence may be relevant in theories of Quantum Gravity (QG) is not a new
idea. While different interpretations of emergence might be encountered across different areas of
study, in the context of QG it has been defined [1, 2] as the appearance of properties of a system that
are novel with respect to other (more fundamental) descriptions of the same system and robust in
the sense of characterizability and reproducibility. However, there remains the more philosophical
question of what is actually meant by emergence, if it really describes a novel phenomenon or if it is
just a relative, rather epistemological notion reflecting the state of ignorance about all implications
of a given theory. Not entering this discussion, we take a more pragmatic point of view and consider
a standard string theory example to elaborate on how emergence should be understood in the course
of this article.

An open string stretched between two 𝐷-branes has a tower of excitations whose massless
modes are gauge fields confined to the branes. Computing the one-loop annulus diagram and
applying loop channel - tree channel equivalence, the amplitude encodes the tree-level exchange of
gravitons, i.e. of closed string excitations. Here, we say that QG is emerging via quantum effects
from another theory not having the graviton as fundamental degree of freedom. On the other side,
in weakly coupled perturbative string theory one usually concludes that, due to loop channel - tree
channel equivalence again, a theory of just open strings is not consistent and one always needs to
include the closed strings, as well. This is confirmed by all existing superstring theories in 10D and
their compactifications. Then, the leading order gravitational interaction is just a tree-level effect
in closed string theory. Since the quantization of closed strings includes gravity, in these theories
we say that QG is not truly emerging.1

A lesson we draw from this is that to realize emergence in the above sense we need a theory
featuring 𝐷-branes as fundamental light degrees of freedom, with closed strings being heavy. As
mentioned, this cannot happen in weakly coupled string theory, 𝑔𝑠 = 𝑒𝜙 � 1, so that one is guided
towards other asymptotic limits of QG, that might be potentially realizing such a hierarchical pattern
of mass scales. Thanks to recent progress in the swampland program (see e.g. [3–5] for reviews),
we now have a more systematic understanding of such infinite distance limits. There are a couple of
well established swampland conjectures particularly dealing with them, known as the swampland
distance conjecture [6] and one of its refinements, the emergent string conjecture [7].

As will be reviewed in section 2, the lesson one can draw from them is that in infinite distance
limits, with a parameter 𝑡 � 1, the degrees of freedom of QG will show a hierarchical pattern such
that one can distinguish between light and heavy modes, with the former being the fundamental
quantum degrees of freedom while the latter can be thought of as classical. In terms of the naturally
small parameter 𝑔 = 1/𝑡 � 1, the mass scale of these modes behave as

𝑚pert ' 𝑔𝛼Λ , 𝑚class '
Λ

𝑔𝛽
(1)

with 𝛼 ≥ 0, 𝛽 > 0 and Λ a characteristic mass scale of the limit. This is the behavior also known
from perturbative quantum field theories (QFTs), where we distinguish between the classical non-
perturbative contributions to the path integral and the light quantum fluctuations around them.

1One could say that gravity emerges from the quantization of closed strings, but this is not how we want to understand
it.
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Hence, it is in these limits that we can expect to find something like a perturbative QG theory that
shows certain resemblance to quantum field theory.

From this perspective, the usual perturbative string theory is just the perturbative QG theory
that arises in the small string coupling regime, 𝑔𝑠 = 𝑒𝜙 � 1, i.e. the infinite distance limit 𝜙 → −∞
for the dilaton. The characteristic mass scale Λ is given by the string scale Λ = 𝑀𝑠 = (𝛼′)−1/2.
The perturbative states are the vibration modes of the string and upon compactification also its
Kaluza-Klein (KK) and winding modes. The non-perturbative states are the various 𝑝-branes with
tension 𝑇𝑝 ' 𝑀

𝑝+1
𝑠 /𝑔𝛽𝑠 , 𝛽 = 1, 2. For 𝐷-branes with 𝛽 = 1, the quantum fluctuations (of the closed

string modes) around them can be described by open string modes and in fact the 𝐷-brane can be
characterized as a coherent state (boundary state in CFT) of closed strings. It is important to notice
that the vibration modes of the 𝑝-branes themselves are of the scale of the brane tension and hence
are heavy and freeze out in the limit 𝑔𝑠 → 0. While they seem similar at first sight, this example
reveals that QG is differing from QFT in one important aspect, namely that it does not feature a
finite number of perturbative modes but rather infinite towers thereof already at first quantization.

To connect to the notion of emergence described initially, the crucial question is whether there
exist asymptotic limits of QG where the light states are not string excitations. What is the value
of Λ in these cases? If such non-string limits exist, then the highly non-trivial question of how
one can mathematically describe these new perturbative QG theories arises. With no string loop
expansion available, as well as the techniques developed so far for it evaluation available, how can
one determine e.g. the low-energy effective action for the massless modes? As we will describe,
the answer to these questions seems to be closely related to the two aforementioned swampland
conjectures, the notion of species scale [8, 9] and the so-called Emergence Proposal [10–12]. The
latter suggests that the kinetic terms in the low-energy effective action of (all) QG theories are
emerging quantum mechanically from integrating out states below a certain ultraviolet (UV) scale.

It is fair to say that the Emergence Proposal is currently on less firm ground than other
swampland conjectures. It is the purpose of this article to review and conceptually reflect on
some recent advances [13–15] in concretizing this general idea and to connect it to the concept
of emergence mentioned at the very beginning of this introduction. At the end of section 3, we
will also comment on the recent work [16, 17] employing an approach slightly different form ours.
Admittedly, part of the results of [13–15] build upon previous seminal work by e.g. Green-Gutperle-
Vanhove [18] (and then [19–25]) and Gopakumar-Vafa [26, 27], which however at that time did not
explicitly emphasize the relation to emergence, let alone the swampland program.

2. Preliminaries

In this section we first lay out some of the basic notions from the swampland program predating
the formulation of the Emergence Proposal. Then, we discuss the Emergence Proposal in its initial
form and argue that a refined M-theoretic version of it has a real chance of being realized.

2.1 The swampland distance conjecture

The swampland distance conjecture [6] states that when approaching points at infinite distance
in the moduli space of an effective field theory (EFT) arising from a viable QG theory, an infinite
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tower of states becomes exponentially light. Denoting with 𝑀𝑛 the mass of the 𝑛-th level of the
tower, the statement is that for 𝜙 → ∞ we have

𝑀𝑛 ' 𝑓 (𝑛) 𝑒−𝛼𝜙 , (2)

where 𝛼 is of order one in natural units where 𝑀pl = 1. Since the EFT comes with an UV cut-
off above which all the states have been integrated out, this implies a breakdown of the effective
description for field excursions 𝜙 & 𝛼−1. Hence, an EFT derived from QG only has a finite range
of validity.

In string theory two different types of such towers are usually encountered, one is genuinely
stringy in nature, while the other has to do with the fact that string theory is a higher dimensional
theory. Consider for instance critical superstring theory, for which the relation between the 10D
Planck scale and the string scale is

𝑀s ' 𝑀pl 𝑔
1/4
𝑠 ' 𝑀pl 𝑒

𝜙/4 . (3)

Therefore, in the infinite distance limit of weak string coupling, 𝜙 → −∞, (for fixed Planck scale)
the tower of string excitations of mass 𝑀𝑛 =

√
𝑛𝑀𝑠 becomes exponentially light. Asymptotically

this tower has an exponential degeneracy of states at mass level 𝑛 given by deg𝑛 ' exp(
√
𝑛).

Compactifying string theory to lower dimensions, like e.g. to 9D on a circle, the sizes of the
compact dimensions will appear as extra scalars in the EFT. Taking one of these scalars to infinite
distance leads to a decompactification limit, for which the KK modes become exponentially light.
To see this, consider the circle compactification on a radius of size 𝑅. Setting 𝜙 = 𝛾 log(𝑀pl𝑅),
where 𝛾 is fixed by canonically normalizing the kinetic term, the mass of the KK tower is given by

𝑀𝑛 '
𝑛

𝑅
' 𝑀pl 𝑛 𝑒

−𝜙/𝛾 . (4)

Hence, the KK tower shows an exponential scaling behavior with a dependence on the level 𝑛 and
a polynomial degeneracy deg𝑛 (here deg𝑛 = 1 for a single 𝑆1).

2.2 The Emergent String Conjecture

From these two simple string theory examples, it might seem as a big leap to conjecture that this
is essentially already the exhaustive list of different behaviors in any theory of QG. Nevertheless,
this is precisely what the emergent string conjecture [7] states:

Any infinite distance limit in QG is either an emerging string limit, where a fundamental
string tower accompanied by particle-like towers becomes light, or a decompactifica-
tion limit, where the lightest tower shows the behavior of a KK tower.

Evidence for this conjecture was initially collected for Calabi-Yau compactifications of M-theory
and type IIA superstring theory in infinite distance limits in their vector-multiplet moduli space. To
appreciate the meaning of this conjecture, it is important to notice that these two limiting behaviors
can come in various disguises.
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Emergent string limit The most obvious such limit is the aforementioned coscaled weak coupling
limit

𝑔𝑠 → 𝜆𝑔𝑠 , 𝑀𝑠 → 𝜆1/4𝑀𝑠 , (5)

of type IIA/IIB string theory in 10D. Here we have 𝜆 � 1 while keeping the 10D Planck scale
constant. For the type IIB superstring, one can also consider the analogous strong coupling regime,
𝜆 � 1, leading to an emergent string limit where the string tower comes from 𝐷1-branes [14]. This
can be generalized to compactifications on 𝑘-dimensional tori down to 𝑑 = 10 − 𝑘 dimensions. In
this case, the coscaled emergent 𝐷1-string limit is

𝑔𝑠 → 𝜆𝑔𝑠 , 𝑀𝑠 → 𝜆
𝑑−6

2(𝑑−2) 𝑀𝑠 , 𝜌1 → 𝜆
1
2 𝜌1 , 𝜌𝑖 → 𝜆

1
2 𝜌𝑖 , (6)

where 𝜌𝑖 denote the internal radii in string units. After applying the map

𝑀2
𝑠 = 𝑀

2
∗ 𝑟11 , 𝑔𝑠 =

𝑟11
𝑟1
, 𝜌1 =

1
𝑟1 𝑟

1/2
11

, 𝜌𝑖 = 𝑟𝑖 𝑟
1/2
11 , (7)

between M-theory (on 𝑇2 × 𝑇 𝑘−1) and type IIB (on 𝑇 𝑘), one can transform this scaling to the
M-theory quantities

𝑟11 → 𝜆
1
3 𝑟11 , 𝑀∗ → 𝜆

(𝑑−8)
3(𝑑−2) 𝑀∗ , 𝑟1 → 𝜆−

2
3 𝑟1 , 𝑟𝑖 → 𝜆

1
3 𝑟𝑖 , (8)

where 𝑟11, 𝑟1 and the 𝑟𝑖 denote the internal radii in 11D Planck units and 𝑀∗ the 11D Planck scale.
In this limit, the lightest states are the 𝐷1-branes, whose mass scale is

𝑀𝐷1 = 𝑇
1/2
𝐷1 ' 𝑀𝑠

𝑔
1/2
𝑠

'
𝑀

(𝑑)
pl

𝜆
2

𝑑−2
. (9)

However, there also exist more involved limits of this type. Consider e.g. the compactification
of the type IIA superstring on a Calabi-Yau which is 𝐾3-fibered over a P1. Let us denote the size
of the base as 𝑡𝑏 so that the total volume of the Calabi-Yau is given by 𝑉 = 𝑡𝑏𝜏𝐾3 + . . . where
𝜏𝐾3 indicates the size of the 𝐾3 fiber. Now, we can consider the infinite distance limit where
we scale 𝑡𝑏 → 𝜆𝑡𝑏 with 𝜆 � 1 while keeping 𝜏𝐾3 finite. To maintain also the 4D Planck scale
finite, 𝑀2

pl = 𝑀2
𝑠𝑉/𝑔2

𝑠 , we have to coscale 𝑔𝑠 → 𝜆1/2𝑔𝑠. This means that we are taking a limit
with a large string coupling. Scanning through the list of states, we see that the lightest modes
scale like 𝑀𝑠 ' 𝑀pl/𝜆1/2 and are given by the excitations of a string resulting from wrapping the
𝑁𝑆5-brane on 𝐾3, together with the particle-like states of 𝐷0- and transverse (to the large P1)
𝐷2- and 𝐷4-branes. The excitations of the type IIA fundamental string scale like 𝑀 ' 𝜆0 and are
parametrically heavier. One can show that in this limit there exists a weakly coupled heterotic dual
model compactified on 𝐾3×𝑇2 such that the complexified Kähler modulus, 𝑇𝐵 = 𝑡𝐵 + 𝑖𝑏, is mapped
to the dilaton of the heterotic string, 𝑆 = exp(−𝜙𝐻 ) + 𝑖𝐵. The light towers of states are mapped to
the heterotic string excitations and to the KK and winding modes on 𝐾3 × 𝑇2. Hence this type IIA
infinite distance limit is an emergent string limit, where a (dual) fundamental string is among the
lightest modes.

5



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
3
8

Reflections on an M-theoretic Emergence Proposal Ralph Blumenhagen

Decompactification limit The type IIA Kähler moduli space of Calabi-Yau compactifications
also admits a coscaled decompactification limit, which is given by scaling all of its Kähler moduli
isotropically as 𝑡𝐼 → 𝜆2/3𝑡𝐼 and coscaling the dilaton as 𝑔𝑠 → 𝜆𝑔𝑠 to keep the 4D Planck scale finite.
For later purposes let us discuss this strong coupling limit more generally, i.e. upon compactifying
type IIA string theory on an internal manifold 𝑋 of dimension 𝑘 . Since this limit will be related
to M-theory, we recall the dictionary between the strong coupling limit of the type IIA superstring
and M-theory. The string scale 𝑀𝑠 and coupling 𝑔𝑠 are given in terms of the 11D Planck scale 𝑀∗
and of the size 𝑟11 of the eleventh direction as

𝑀2
𝑠 = 𝑀

2
∗ 𝑟11 , 𝑔𝑠 = 𝑟

3
2
11 . (10)

Let us consider the strong coupling limit, 𝜆 → ∞, such that the 𝑑 = 10 − 𝑘 dimensional Planck
scale 𝑀 (𝑑)

pl and the size of the internal space remain finite in units of 𝑀∗. In terms of the type IIA
quantities it reads

𝑔𝑠 → 𝜆𝑔𝑠 , 𝑀𝑠 → 𝜆
𝑑−4

3(𝑑−2) 𝑀𝑠 , 𝜌𝐼 → 𝜆
1
3 𝜌𝐼 . (11)

Note that 𝑑 = 4 is special in the sense that the string scale does not scale with 𝜆. This can be
translated to the M-theory quantities as

𝑟11 → 𝜆
2
3 𝑟11 , 𝑀∗ →

𝑀∗

𝜆
2

3(𝑑−2)
, 𝑟𝐼 → 𝑟𝐼 , (12)

where 𝑟𝐼 denote the radii of the internal space 𝑋 in units of 𝑀∗. This means that all length scales of
𝑋 are scaled isotropically. One can show that the (𝑑 + 1)-dimensional Planck scale 𝑀 (𝑑+1)

pl scales
in the same way as 𝑀∗.

From the M-theory perspective this particular type IIA strong coupling limit corresponds
to decompactification from 𝑑 to 𝑑 + 1 dimensions. The lightest tower of states are particle-like
𝐷0-branes, or equivalently KK states of the eleventh direction of mass

𝑀𝐷0 ' 𝑀𝑠

𝑔𝑠
'
𝑀

(𝑑)
pl

𝜆
2(𝑑−1)
3(𝑑−2)

. (13)

The next lightest states are arising from wrapped 𝐷2- and 𝑁𝑆5-branes, having a mass scale
𝑀𝐷2,𝑁 𝑆5 ' 𝑀𝑠/𝑔1/3

𝑠 ' 𝑀
(𝑑)
pl /𝜆

2
3(𝑑−2) ' 𝑀∗. KK modes along other compact directions 𝐼 also

have mass 𝑀KK ' 𝑀∗/𝑟𝐼 . All other states, like wrapped 𝐷4-branes or the fundamental string, are
parametrically heavier. Hence, this is a typical example of a decompactification limit where the
lightest tower is (dual) to a KK tower of particle-like states.

The evidence for the emergent string conjecture comes mostly from string theory examples.2 It
is nevertheless remarkable that this string lamppost approach already led to more than just emergent
string limits, namely the existence of decompactification limits. As we have seen, one of them is
closely related to the M-theory corner of the known string duality diagram. It would be interesting
to know how generic this limit is. The suspicion is that all infinite distance decompactification
limits are combinations of the M-theory limit and its conventional further decompactification limits
of additional compact directions.

2See [29] for a recent attempt to recover the emergent string conjecture via bottom-up arguments based on black hole
thermodynamics.
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2.3 The species scale

Naively one would think that the mass scale where QG effects become important is the Planck
mass. However, already the weakly coupled string theory shows the relevance of another mass
scale, namely the string scale 𝑀𝑠, which in 10D is related to the Planck scale via (3). For fixed
Planck scale and in the infinite distance limit 𝑔𝑠 → 0, the string scale can become arbitrarily small.
This means that new, QG related physics will already occur at an energy scale well below the Planck
scale.

One can ask the question whether also the decompactification limit comes with such an
intermediate mass scale and how it can be determined. Quite intriguingly, the general appearance
of an effective QG cut-off in the case of a large number of light states was pointed out independently
of any string theory reasoning in [8, 9] (see also [28] for earlier work). When considering the
quantum corrections to the 4D graviton propagator due to the coupling of a large number 𝑁sp of
light species to gravity, the combination 𝑁sp𝑝

2/𝑀2
pl appears, with 𝑝 the momentum involved in

the process. If this combination becomes of order one perturbation theory definitely breaks down
revealing the mass scale Λ̃ ' 𝑀pl/

√︁
𝑁sp < 𝑀pl where quantum effects of gravity become important.

This is the so-called species scale, which in 𝑑 dimensions reads

Λ̃ '
𝑀pl

𝑁
1

𝑑−2
sp

. (14)

For a given tower, the number of light species with mass below the species scale can effectively be
counted as

𝑁sp = #(𝑚 ≤ Λ̃) . (15)

Then, the latter two equations can be solved for the two unknowns 𝑁sp and Λ̃. For KK towers
this definition indeed gives the correct species scale, whereas for string towers it gives an extra
multiplicative log-factor that is not expected to be physical, for reasons that we will review in the
following.

It turns out that one could alternatively think of the species scale as the scale where quantum
corrections to the leading order Einstein-Hilbert term become relevant. One way of seeing this is to
define the species scale as the radius 𝑟0 = 1/Λ̃ of the minimal-sized black hole that can be described
within the EFT. The mass and Bekenstein-Hawking entropy of such a black hole are

𝑀BH =
𝑀𝑑−2

pl

Λ̃𝑑−3
, 𝑆BH =

𝑀𝑑−2
pl

Λ̃𝑑−2
. (16)

The number of species is defined via the statistical entropy as

𝑆BH = logΩ(𝑀BH) =: 𝑁sp , (17)

where Ω(𝑀BH) is the number of ways the macroscopic black hole of mass 𝑀BH can be realized by
the microstates. Note that this definition of the number of species satisfies the relation (14) and has
also been developed into a more complete thermodynamic picture in [30, 31].

Let us employ this definition for a string tower with mass levels 𝑀 = 𝑀𝑠
√
𝑁 and degeneracy

deg𝑁 . For sufficiently large mass levels 𝑁 , one can use the asymptotic expansion

deg𝑁 ∼ 𝑒𝛽
√
𝑁 . (18)
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Now, the excitation level required for the black hole mass is√︁
𝑁BH ' 𝑀BH

𝑀𝑠
'

𝑀𝑑−2
pl

𝑀𝑠 Λ̃
𝑑−3

, (19)

which for small 𝑔𝑠 is expected to be a very large number. Then, up to a 𝛽 factor, the black hole
entropy is

𝑆BH ' log
(
deg𝑁BH

)
'

√︁
𝑁BH . (20)

Setting this equal to the Bekenstein-Hawking entropy (16) and using (19) gives at leading order

Λ̃ ' 𝑀𝑠 , 𝑁sp '
(
𝑀pl

𝑀𝑠

)𝑑−2
. (21)

Hence, the so defined species scale is equal to the string scale. Note that here we have only exploited
the presence of a string tower and the self-consistency of the relations (16) and (17). This does
not exclude that there might be a lower scale where the black hole dynamically undergoes a phase
transition. This was discussed in the context of transitions from towers of states to (minimal) black
holes in [29] and was also employed for a conjecture on the characteristic energy scales appearing
in an EFT of QG more recently in [32]. Let us mention that one could try to use the relations (14)
and (15) to determine the species scale [33–35], which leads to the result Λ̃ ' 𝑀𝑠 log(𝑀pl/𝑀𝑠).

The multiplicative log-factor seems to be unphysical, as Λ̃ ' 𝑀𝑠 is consistent with the known
string corrections to the Einstein-Hilbert action, which include higher derivative terms generically
suppressed by the string scale. For the already mentioned Kähler moduli of type IIA compactifi-
cations on Calabi-Yau manifolds, it was argued in [36] that the one-loop topological free energy
F1(𝑇,𝑇) provides a good measure for the number of light species so that the species scale was
proposed to be

Λ̃ '
𝑀pl√
F1
, (22)

which receives additive and not multiplicative corrections [37]. One can show that for the aforemen-
tioned emerging string limit, F1 ' 𝑡𝐵 so that Λ̃ ' 𝑀𝑠. Hence, we summarize that in an emergent
string limit the species scale coincides with the string scale (of the emergent string) and that there
are no towers of states with a parametrically lighter mass.

Given the above generalization of the string scale as the scale where quantum effects of gravity
become important in the presence of light towers of states, it is now straightforward to also apply
it to the type IIA decompactification limit discussed in the previous section. In this case, it is
much shorter to employ the definitions (14) and (15) for the computation of the species scale. The
corresponding black hole computation was presented in [35] and gives the same result. Recall that
the lightest states were BPS bound states of 𝐷0-branes leading to a tower with masses

𝑀𝑛
𝐷0 ' 𝑀𝑠

𝑔𝑠
𝑛 '

𝑀
(𝑑)
pl

𝜆
2(𝑑−1)
3(𝑑−2)

𝑛 . (23)

The number of light species is given by the maximal KK mode, i.e 𝑁sp = 𝑛max ' 𝜆
2(𝑑−1)
3(𝑑−2) Λ̃/𝑀 (𝑑)

pl
so that we can solve for

Λ̃ '
𝑀

(𝑑)
pl

𝜆
2

3(𝑑−2)
' 𝑀

(𝑑+1)
pl ' 𝑀∗ . (24)
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As expected for decompactification limits, the species scale is given by the Planck scale of one
dimension higher, which here scales in the same way as the 11D Planck scale. In the infinite
distance limit this goes to zero, signalling that the 𝑑-dimensional theory breaks down and one has to
describe the theory in (𝑑 + 1) dimensions. However, we are not yet done. Since Λ̃ is parametrically
larger than the mass scale of the 𝐷0-brane tower, there could still be other towers of states with a
mass scale smaller than Λ̃. These would further lower the species scale. However, the next lightest
states are the aforementioned bound states of wrapped 𝐷2- and 𝑁𝑆5-branes as well as KK modes
along internal directions, whose mass scales precisely as Λ̃. Therefore, they do not further lower
the species scale which is indeed given by the higher dimensional Planck scale.3

In [14] a similar analysis was also done for the coscaled strong coupling limit of the 10D type
IIB superstring. As expected, in this case the lightest towers are the string towers of the 𝐷1-branes,
so that the species scale is nothing else than the 𝐷1-string mass scale Λ̃ ' 𝑇1/2

𝐷1 ' 𝑀pl/𝑔1/4
𝑠 with all

other mass scales being parametrically larger than Λ̃. The analogous result holds for the coscaled
type IIB limit in lower dimensions with the resulting species scale Λ̃ ' 𝑇1/2

𝐷1 ' 𝑀
(𝑑)
pl /𝜆 2

𝑑−2 .

2.4 The Emergence Proposal

We have seen that a genuine feature of QG is the existence of infinite distance limits which
come in two different types, namely emergent string and decompactification limits. The QG cut-off
is the species scale, which is the string scale for emergent string limits and the higher dimensional
Planck scale for decompactification limits. In these limits towers of states become asymptotically
massless and one has a naturally small parameter in which one can hope to formulate perturbation
theory. The prime example is (fundamental) string theory itself, where this parameter is just the
string coupling, 𝑔𝑠 = exp(𝜙).

In this context, in [10–12] an interesting observation was made, namely that the metric on
moduli space can be recovered by integrating out the tower of asymptotically massless states at
one-loop. As a simple toy model, consider a light modulus 𝜙 and a tower of massive KK states ℎ𝑛
with mass 𝑀𝑛 = 𝑛Δ𝑚(𝜙) governed by a 𝑑-dimensional effective action

𝑆 = 𝑀𝑑−2
pl

∫
𝑑𝑑𝑥

(
1
2
𝐺𝜙𝜙 𝜕𝜇𝜙𝜕

𝜇𝜙 +
∑︁
𝑛

1
2
𝜕𝜇ℎ𝑛𝜕

𝜇ℎ𝑛 +
1
2
𝑚2
𝑛 (𝜙)ℎ2

𝑛

)
, (25)

where 𝐺𝜙𝜙 denotes the metric on field space. The moduli-dependent mass terms for ℎ𝑛 leads to
three-point couplings 𝑦 = [𝑚𝑛 (𝜙)𝜕𝑚𝑛 (𝜙)] ℎ2

𝑛 𝜙, inducing a one-loop correction to the kinetic term
for 𝜙 with the KK modes ℎ𝑛 running in the loop. Integrating out these modes up to the UV cut-off,
which is taken to be the species scale, leads to the leading order one-loop correction (see e.g. [34]
for more details)

𝐺
1−loop
𝜙𝜙

' Λ̃𝑑−1

𝑀𝑑−2
pl

(
𝜕𝜙Δ𝑚(𝜙)

)2

(Δ𝑚(𝜙))3 + . . . . (26)

For a KK tower with Δ𝑚 = 𝑀pl/𝑟, the species scale is the (𝑑 + 1)-dimensional Planck scale,
i.e. Λ̃𝑑−1 ' 𝑀𝑑−1

pl /𝑟 . Then we find 𝐺1−loop
𝑟𝑟 ' 1/𝑟2, which has the same functional dependence

on the modulus 𝑟 as the tree level metric, 𝐺0
𝑟𝑟 , resulting from the dimensional reduction of the

3An algorithm to calculate the species scale in the presence of multiple towers can be found in [38].
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Einstein-Hilbert action. Even though this is just a simple toy model, the above was considered quite
a remarkable correlation leading to the formulation of the so-called Emergence Proposal:

Emergence Proposal (Strong): The dynamics (kinetic terms) for all fields are emergent
in the infrared by integrating out towers of states down from an ultraviolet scale Λ𝑠,
which is below the Planck scale.

There have been slightly different formulations and also a weak version [34], but for the purpose of
this presentation let us stick to this version formulated in the review [3].

As it stands, this proposal is very generic and it is not clear what its realm of validity could
be. Of course, it is certainly meant in the context of QG and the swampland program, where one
usually identifies the UV cut-off scale Λ𝑠 with the species scale, i.e. Λ𝑠 ' Λ̃. Moreover, the towers
of states to be integrated out are those described in the previous sections and which become light
in infinite distance limits of the moduli space.

In the previous toy example, a hard UV cut-off for the one-loop integral was introduced,
i.e both internal momenta and the mass of the states running in the loop were cut-off at the species
scale. However, when extending this proposal beyond the pure EFT setting to theories of QG, the
example of the fundamental string tells us that one should not cut-off the loop-integrals at a finite
energy scale and keep only the string modes with masses below that scale. In fact, such string loop
amplitudes have nice UV properties precisely by including all infinitely many states from the tower,
as only then we have modular invariance and we can restrict the integration over the fundamental
domain of 𝑆𝐿 (2,Z)/Z2. Hence, despite the treatment of the simple toy example, in the Emergence
Proposal it is implicitly meant that one really integrates out the full infinite tower of states. This is
also compatible with the calculations of [3] (see footnote 46 therein).4

Then the question of which towers one has to integrate out arises: are they only the lightest
one or even all conceivable towers? The latter option can be excluded, as in weakly coupled string
theory, one only integrates out those towers with a mass scale 𝑀𝑠. As mentioned at the beginning of
this section, 𝑝-brane towers are considered as classical non-perturbative objects and are not running
in the loop. In the next section, we will provide evidence that for decompactification limits one also
has to integrate out more than just the lightest tower. Hence, we think that the answer is likely in
the middle and one has to integrate out all full infinite towers of states with mass scale not larger
than the species scale. In analogy to string theory, these will be considered as the perturbative
states in the effective description of QG, while all the heavier towers of states will be classical and
non-perturbative. This means that we identify the scale Λ from (1) with the species scale, i.e Λ = Λ̃.
In addition, while the Emergence Proposal explicitly mentions kinetic terms, one could conceive
that in a fully emerging effective theory also all higher derivative terms are generated by quantum
effects.

The emergent string conjecture tells us that there are only two different kinds of infinite distance
limits: the emerging string limit and the decompactification limit. Can the Emergence Proposal be
true for an emerging string limit? We think that the answer is negative for the following reasons.
First, we notice that even the naive computation around (25)-(26) for a string tower does not give
correct leading order results, as the previously mentioned multiplicative log-terms in the species

4We thank E. Palti for confirming this point.
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scale are transferred to the one-loop corrections [35]. Second and at a more fundamental level, we
know how to quantize the weakly coupled fundamental string and in fact, similarly to QFT, one
obtains a loop expansion in terms of higher genus Riemannian surfaces. Here, e.g. the one-loop
Schwinger integral over the tower of string states gives (tautologically) only the one-loop correction
to certain terms in the low energy effective action. Hence, none of the tree-level terms in the 𝑔𝑠
expansion are generated from quantum effects. This will also be true for other emerging string
limits, like the one discussed in the type IIA Kähler moduli space for a 𝐾3-fibered Calabi-Yau,
as these are conjectured to be dual to a fundamental string. We refer to [13] for more details.
The exclusion of weakly coupled string limits resonates with the pragmatic concept of emergence
described at the beginning of this article.

With the emergent string limit excluded, it is only the decompactification limit that remains,
of which the M-theory limit is the typical example and perhaps the only non-trivial one. In this
respect, we note that in standard (non-coscaled) decompactification limits 𝑅 → ∞ with 𝑔𝑠 � 1 and
the volume V (in string units) of the orthogonal 9 − 𝑑 dimensional compact space held fixed, the
perturbative quantum gravity theory still contains light strings. Certainly, the lightest tower of states
is the KK tower with 𝑚KK ∼ 1/𝑅, whose induced species scale is the finite (𝑑 + 1)-dimensional
Planck scale. However, this is related to the string scale via

Λ̃ ' 𝑀𝑠

(
V
𝑔2
𝑠

) 1
𝑑−1

, (27)

which for 𝑔𝑠 � 1 and V > 1 is larger than the string scale 𝑀𝑠. Therefore, as expected, such a limit
is just a higher dimensional perturbative string theory. Even though the lightest states are given by
KK towers, the QG theory is described by quantized strings and as for the aforementioned emergent
string limit, the Emergence Proposal is not realized.5

As we have seen, the M-theoretic decompactification limit is of a different type as string towers
are heavier than the species scale. The QG theory of M-theory is arguably one of the deepest
mysteries and only partial results are available at present, like a formulation in terms of 𝐷0-branes,
the BFSS matrix model [40] (see [41–43] for reviews). While later on we will present a more
detailed discussion, we can already state that in the BFSS matrix model the interaction between
gravitons was indeed found to be absent classically and only generated via quantum (loop) effects.
This can indicate that there is a good chance for the M-theory limit to be the natural home of the
Emergence Proposal. In this spirit, from our discussion we extrapolate a lesson in the form of an
M-theoretic refinement of the Emergence Proposal:

Emergence Proposal (M-theory): In the infinite distance M-theory limit 𝑀∗𝑅11 � 1
with the Planck scale kept fixed, a perturbative QG theory arises whose low energy
effective description emerges via quantum effects by integrating out the full infinite
towers of states with a mass scale parametrically not larger than the 11D Planck scale.
These are transverse𝑀2-, 𝑀5-branes carrying momentum along the eleventh direction
(𝐷0-branes) and along any potentially present compact direction.

5In fact, there have been examples of the emergence proposal not being straightforwardly realized in such decom-
pactification limits, like the partial emergence of certain quartic gauge couplings analyzed in [39].
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Note that in this limit the longitudinally wrapped 𝑀2-brane, i.e. the type IIA fundamental string,
and the longitudinally wrapped 𝑀5-brane, i.e. the type IIA 𝐷4-brane, have masses

𝑀𝐹1 =
𝑀∗

𝑔
1/2
𝑀

, 𝑀𝐷4 =
𝑀∗

𝑔
1/5
𝑀

, (28)

with the formal coupling constant 𝑔𝑀 = 1/(𝑀∗𝑅11) � 1. Hence, they are not among the light
modes and are considered as non-perturbative classical objects. We note that the BFSS matrix
model is indeed containing these two longitudinal branes as bound states of 𝐷0-branes, which one
might speculate to be the analogue of the description of non-perturbative 𝐷-branes as coherent
(boundary) states of weakly coupled closed string modes. However, the transverse 𝑀5-brane was
lacking in the original BFSS matrix model which in view of the Emergence Proposal might indicate
that it is not yet the complete description of quantum M-theory.6 Before delving too deeply into
such speculations, we provide more evidence for our M-theoretic Emergence Proposal.

3. Evidence for the M-theoretic Emergence Proposal

The central challenge is to provide evidence despite the obvious shortcoming that we do not
understand the full quantization of M-theory, yet. In addition, as M(matrix) theory teaches us,
namely that the leading order supergravity action at the second derivative level is emerging via
loops, also space-time itself should be somehow emergent.

The loophole bypassing these difficulties is that there are certain couplings in the effective
action that are protected by supersymmetry and do only receive contributions from 1/2 BPS states.
These states are under good control and, up to a certain extend, can already be reliably described
by their weak string coupling counterparts, i.e. in the weakly coupled type IIA theory. Hence, this
sector of M-theory is special and admits the usual geometric interpretation we are used to from
string theory. We will see that indeed the string one-loop evaluation for 1/2 BPS states can be
extended to M-theory, providing very reasonable results.

This is reminiscent of the working extension from Double Field Theory (DFT) to Exceptional
Field Theory (ExFT) (see [47–49] for reviews). The section conditions are in fact the 1/2 BPS
conditions for the corresponding 𝑀2-, 𝑀5-branes and KK modes, written as differential operators
on the extended space made from usual and (brane) winding coordinates [50]. In DFT and ExFT
one also truncates the complete spectrum to just KK and brane-wrapping modes leaving out the
string, respectively M-theory, excitations.

In theories with 32 supercharges, the higher derivative 𝑅4-term is 1/2 BPS saturated. Longer
supermultiplets, preserving less supersymmetry, do not contribute to it (see e.g. [51]). This term has
received attention lately in the context of species scale calculations [52, 53] and of the emergence of
species scale black hole horizons [54]. In the former, the coefficient of the 𝑅4-term has been shown
to give the expected cut-off for emergent string and decompactification limits, i.e. the string scale
and the higher dimensional Planck mass respectively. In theories with 16 supercharges, like type
IIA on 𝐾3 or the dual heterotic string on 𝑇4, the 𝐹4-coupling is 1/2 BPS saturated. In theories with
8 supercharges, like 𝑁 = 2 supergravity in 4D, the topological string couplings F𝑔 at arbitrary genus

6Transverse 𝑀5-branes appear in the BMN version of the BFSS matrix model [44] and, more recently, they have
been investigated in cohomotopy and in connection to “Hypothesis H” [45, 46].
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𝑔 are 1/2 BPS saturated. Note that F0 contains information about the second order supergravity
action, namely about the gauge couplings and kinetic terms for the Kähler moduli. In this sense,
such a coupling is special and might be sensitive to issues related to the emergence of space-time
itself.

3.1 Emergence of 𝑅4-terms

Let us start with a theory featuring maximal supersymmetry, i.e. the 10D type IIA superstring
compactified to 𝑑 dimensions on a 𝑘-dimensional torus. The higher derivative 𝑅4-term arises in
the low-energy effective action as

𝑆𝑅4 ' 𝑀𝑑−8
𝑠 𝑉𝑘

∫
𝑑𝑑𝑥

√−𝑔 𝑎𝑑 𝑡8𝑡8 𝑅4 , (29)

where 𝑔𝜇𝜈 denotes the string frame metric and 𝑉𝑘 the volume of the internal torus in string units.
For simplicity, we restrict ourselves to rectangular tori and set 𝐵2 = 0. In the emergent string
limit, i.e. for small 𝑔𝑠, the coefficient 𝑎𝑑 receives at most one-loop perturbative corrections and
space-time instanton corrections. The general form can be schematically written as

𝑎𝑑 =
𝑐0

𝑔2
𝑠

+
(
𝑐1 + O

(
𝑒−𝑆ws

))
︸               ︷︷               ︸

one−loop

+O
(
𝑒−𝑆st

)
, (30)

where 𝑆ws denotes the action of world-sheet instantons and 𝑆st that of space-time instantons.
The tree-level and one-loop coefficients are known to be 𝑐0 = 2𝜁 (3) and 𝑐1 = 2𝜋2/3 where
𝜁 (𝑠) = ∑∞

𝑛=1 𝑛
−𝑠 is the Riemann zeta function. Our task is to compute 𝑎𝑑 in the M-theory limit,

where in particular 𝑔𝑠 � 1. Since the coupling is 1/2 BPS, in both limits one should get the same
result and the Emergence Proposal claims that, in the M-theory limit, 𝑎𝑑 should stem entirely from
quantum effects without any classical contribution.

Before discussing the M-theory limit, it is worthwhile to recall a few aspects of the one-loop
computation for 𝑎𝑑 in the weakly coupled type IIA string. This will help us to sharpen our technical
tools and to understand certain analogies between the string and the M-theory computation.

3.1.1 Emergent string limit

An essential step of computing the one-loop diagram is a proper regularization method for the
real Schwinger integrals that are naively UV divergent, such as

log(𝑝2 + 𝑚2) ∼
∫ ∞

0

𝑑𝑡

𝑡
𝑒−𝜋𝑡 (𝑝

2+𝑚2) . (31)

In string theory it is well established that the real Schwinger parameter 𝑡 is complexified to 𝜏 = 𝜃 + 𝑖𝑡
by implementing the string level-matching condition,

𝐿0 − 𝐿0 = 𝑚𝑖 𝑛
𝑖 + 𝑁 − 𝑁 = 0 , (32)

via a Lagrange multiplier 𝜃 and then using modular invariance to restrict the complex integration to
the fundamental domain F of 𝑆𝐿 (2,Z), thus avoiding the UV singularity. Notice that for vanishing
string excitations, 𝑁 = 𝑁 = 0, the level matching condition becomes the 1/2 BPS condition

13
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𝑚𝑖𝑛
𝑖 = 0 for KK momenta 𝑚𝑖 and string winding modes 𝑛𝑖 . Proceeding in this manner, the

one-loop contribution to the coefficient of the 𝑅4-term in 𝑑 dimensions can be expressed as

𝑎
(1)
𝑑,string ' 2𝜋

𝑉𝑘

∑︁
𝑚𝑖 ,𝑛

𝑖 ∈Z

∫
F

𝑑2𝜏

𝜏
𝑑−6

2
2

𝑒−𝜋𝜏2𝑀
2−2𝜋𝑖𝜏1𝑚𝑖𝑛

𝑖

, (33)

with
𝑀2 = 𝑚𝑖𝐺

𝑖 𝑗𝑚 𝑗 + 𝑛𝑖𝐺𝑖 𝑗𝑛 𝑗 , (34)

and 𝐺𝑖 𝑗 the metric on the torus. In this expression the Gaussian integral over the continuous
momenta along the 𝑑 non-compact directions has already been carried out. Going one step back,
this is the stringy regularization of the initially UV divergent expression

𝑎
(1)
𝑑

' 2𝜋
𝑉𝑘

___∑︁
𝑚𝑖 ,𝑛

𝑖 ∈Z

∫ ∞

0

𝑑𝑡

𝑡
𝑑−6

2
𝛿(BPS) 𝑒−𝜋𝑡𝑀 2

, (35)

which is sort of not taking into account the extended nature of the string, and hence is affected
by UV divergence close to 𝑡 = 0. In (35), the symbol

∑
is denoting the sum with the term with

all 𝑚𝑖 and 𝑛𝑖 vanishing excluded, so that the expression is related to the definition of constrained
Eisenstein series in [24], while 𝛿(BPS) arises from carrying out the unfolded integral over 𝜃 using
𝛿(𝑥) =

∫ ∞
−∞ 𝑑𝜃𝑒

−2𝜋𝑖𝑥𝜃 .
Let us consider the simplest case, 𝑑 = 10. Evaluating the string integral (33) gives the finite

result
𝑎
(1)
10,string ' 2𝜋

∫
F

𝑑2𝜏

𝜏2
2

=
2𝜋2

3
. (36)

On the other hand, introducing a UV cut-off 𝜖 > 0 in the divergent integral (35), one can write

𝑎
(1)
10 ' 2𝜋

∫ ∞

𝜖

𝑑𝑡

𝑡2
=

2𝜋
𝜖
. (37)

One could just minimally subtract this term, but then in 10D one would arrive at 𝑎 (1)10 = 0. Baring
this limitation of (35) in mind, let us have a look at the 𝑑 = 9 case, where the wrapped strings are
particle-like. Here we have KK and winding modes with mass 𝑀2 = 𝑚2/𝜌2 + 𝑛2𝜌2, with 𝜌 the
radius of the circle in string units. The evaluation of (33) yields

𝑎
(1)
9,string ' 2𝜋2

3

(
1 + 1

𝜌2

)
. (38)

Now let us try again to regularize the divergent integral (35). From the BPS condition 𝑚 · 𝑛 = 0 we
see that two different sectors contribute, namely one with only winding, 𝑛 ≠ 0, and the other with
only KK momentum, 𝑚 ≠ 0. We proceed as in the previous 10D case and introduce a UV regulator
𝜖 > 0 to get ∫ ∞

𝜖

𝑑𝑡

𝑡3/2
𝑒−𝜋𝑡 𝐴 =

2
√
𝜖
− 2𝜋

√
𝐴 + O(

√
𝜖) , (39)

where we expanded around 𝜖 ' 0. We regularize this expression via minimal subtraction of the
divergent term, 2/

√
𝜖 , and by sending 𝜖 → 0 afterwards. Thus, the winding sector contribution

becomes
𝑎
(1)
9,𝑚=0 ' 2𝜋

𝜌

∑︁
𝑛≠0

∫ ∞

0

𝑑𝑡

𝑡3/2
𝑒−𝜋𝑡𝜌

2𝑛2
= −4𝜋2

∑︁
𝑛≠0

|𝑛| = 2𝜋2

3
, (40)
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where we regularized the sum over 𝑛 via the zeta-function, 𝜁 (−1) = −1/12. Following the same
procedure for the KK contribution one obtains

𝑎
(1)
9,𝑛=0 ' 2𝜋

𝜌

∑︁
𝑚≠0

∫ ∞

0

𝑑𝑡

𝑡3/2
𝑒
−𝜋𝑡 𝑚2

𝜌2 =
2𝜋2

3
1
𝜌2 , (41)

so that by combining (40) and (41) the full string one-loop result (38) is recovered. In [15] this
regularization method was applied also for lower non-compact spacetime dimensions and was
shown to give consistent results. For later purposes, we provide here the result in 8D

𝑎
(1)
8 ' −2𝜋

𝑇
log

(
𝑇 |𝜂(𝑖𝑇) |4

)
− 2𝜋
𝑇

log
(
𝑈 |𝜂(𝑖𝑈) |4

)
, (42)

with 𝑇 = 𝜌1𝜌2 and 𝑈 = 𝜌2/𝜌1. Notice that the first term shows the presence of world-sheet
instantons.

To summarize, via minimal subtraction of the UV divergence and zeta-function regularization
of the infinite sums, we have found an alternative way to regularize the divergent real Schwinger
integral giving the same result as the known regularization performed in string theory. Only in
10D the method does not apply directly, and we believe this to be related to the fact that the generic
winding string is not particle-like. Nevertheless, one can recover the correct 10D result from the
9D one via decompactification, 𝜌 → ∞, so that in principle the full information about the one-loop
correction to the 𝑅4-term can be computed via the regularization of the divergent expression (35)
just mentioned. In the same vein, one could calculate the one-loop contributions in other emergent
string limits, like e.g. the coscaled strong coupling limit of type IIB. Here one would expect that a
Schwinger integral gives the one-loop corrections in 𝑔𝐸 = 1/𝑔𝑠 � 1 to the 𝑅4-coupling.

3.1.2 Decompactification limit

The question is if and how one can compute the 𝑅4-coefficient 𝑎𝑑 also in the M-theoretic
decompactification limit, 𝑟11 = 𝑀∗𝑅11 � 1. As we will argue, the method for the evaluation of the
real Schwinger integral introduced previously will be very useful in this regard.

Let us recall that, in this limit of strong type IIA coupling, swampland arguments suggest that
we need to integrate out the towers of states with mass scale below the species scale, which is
the 11D Planck scale. These are transverse 𝑀2- and 𝑀5-branes carrying KK momentum along
all compact directions, including the very large eleventh direction. For 𝑑 ≤ 3 (𝑘 ≥ 7), also the
transverse KK-monopole should be taken into account. For simplicity, here we do not consider it
and restrict ourselves to 𝑑 ≥ 4. Note that the light modes do not include the type IIA fundamental
string, i.e. the longitudinal 𝑀2-brane, so that it is a priori non-trivial that the former perturbative
(in 𝑔𝑠) one-loop correction 𝑎 (1)

𝑑
can be recovered.

In the pioneering work of Green-Gutperle-Vanhove (GGV) [18], such a computation was
performed for the first time. The coefficients 𝑎𝑑 in 10D and 9D were given by a natural generalization
of the weakly coupled one-loop string formula (35), where one was summing over the KK spectrum
along the eleventh direction, i.e. bound states of 𝐷0-branes. This was generalized in [24] (see also
the closely related work [19–23]) to include the (full) 1/2 BPS particle-like states of M-theory in 𝑑
dimensions. The final expression for the one-loop Schwinger integral in perturbative M-theory can
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be compactly written as

𝑎
(1)
𝑑,M ' 2𝜋

𝑟11V𝑘

___∑︁
𝑁 𝐼 ,𝑚∈Z

∫ ∞

0

𝑑𝑡

𝑡
𝑑−6

2
𝛿(BPS) 𝑒

−𝜋𝑡 𝑁 𝐼M𝐼 𝐽𝑁
𝐽−𝜋𝑡 𝑚2

𝑟2
11 , (43)

where all volumes and masses are measured in M-theory units. Apparently, one now also integrates
out the KK momentum 𝑚 along the eleventh direction, which has been isolated from the rest. We
have collectively denoted the transverse KK momenta 𝑚𝑖 , 𝑖 ∈ {1, . . . , 𝑘}, and the various 𝑀-brane
wrapping numbers as

𝑁 𝐼 =

(
𝑚𝑖 , 𝑛

𝑖 𝑗 , 𝑛𝑖 𝑗𝑘𝑙𝑚
)
. (44)

The mass matrix for 1/2 BPS states is given by

M = diag

(
1
𝑟2
𝑖

, 𝑡2𝑖 𝑗 , 𝑡
2
𝑖 𝑗𝑘𝑙𝑚

)
, (45)

where, as throughout the paper, we made the simplifying assumption of a rectangular torus with
vanishing axionic fields. Turning on the latter induces off-diagonal terms in the mass matrix. The
quantity 𝑡𝑖 𝑗 = 𝑟𝑖𝑟 𝑗 (and similarly for 𝑡𝑖 𝑗𝑘𝑙𝑚) denotes the volume wrapped by the corresponding
transverse 𝑀2-brane (and 𝑀5-brane). Finally, the 1/2 BPS conditions involving KK modes and the
transverse 𝑀2- and 𝑀5- wrapping numbers read [23]

𝑛𝑖 𝑗𝑚 𝑗 = 0 , # = 𝑘 , (46)

𝑛 [𝑖 𝑗 𝑛𝑘𝑙 ] + 𝑚𝑝 𝑛𝑝𝑖 𝑗𝑘𝑙 = 0 , # =

(
𝑘

4

)
, (47)

𝑛𝑖 [ 𝑗 𝑛𝑘𝑙𝑚𝑛𝑝] = 0 , # = 𝑘

(
𝑘

6

)
, (48)

where we also indicated their number. The first condition says that the momentum has to be
orthogonal to the world-volume of the 𝑀2-brane. For vanishing 𝑀5-brane wrapping number, the
second condition means that the matrix 𝑛𝑖 𝑗 has rank two.

Before presenting the evaluation of this compact expression for 𝑎 (1)
𝑑,M in a few examples, let us

note that there is a group-theoretic structure behind the number of particle-like states and their 1/2
BPS conditions, which is closely related to a similar structure in exceptional field theory. Following
[24], let us collect all light transverse particle states that we integrate out in the Schwinger integral.
These states form bound states with the unrestricted 𝐷0-branes, i.e. the KK modes along the
eleventh direction, and fit nicely into representations of 𝐸𝑘 (𝑘) (Z), which we denote as 𝐸𝑘 (𝑘) to
simplify our notation. We define as usual 𝐸2(2) = 𝑆𝐿 (2), 𝐸3(3) = 𝑆𝐿 (3) × 𝑆𝐿 (2), 𝐸4(4) = 𝑆𝐿 (5)
and 𝐸5(5) = 𝑆𝑂 (5, 5). In table 1, we list all particle states and how they fit into representations Λ𝐸𝑘

of 𝐸𝑘 (𝑘) as well as the representations 𝜆𝐸𝑘
of the 1/2 BPS conditions (the latter coinciding with the

representation of the string multiplet [55]).

Due to this structure, the Schwinger integral (43) may be viewed as a constrained Eisenstein
series

𝑎
(1)
𝑑,M = E𝐸𝑘 (𝑘)

Λ𝐸𝑘
⊕1,𝑠= 𝑘

2 −1
. (49)

16



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
3
8

Reflections on an M-theoretic Emergence Proposal Ralph Blumenhagen

d k Particles 𝑆𝐿 (𝑘) reps. 𝐸𝑘 (𝑘) (Z) Λ𝐸𝑘
1/2 BPS: 𝜆𝐸𝑘

9 1 [1] 𝑝 1 1 0

8 2 [2] 𝑝 + [1]𝑀2 𝑆𝐿 (2) 3 2

7 3 [3] 𝑝 + [3]𝑀2 𝑆𝐿 (3) × 𝑆𝐿 (2) (3,2) (3,1)

6 4 [4] 𝑝 + [6]𝑀2 𝑆𝐿 (5) 10 5

5 5 [5] 𝑝 + [10]𝑀2 + [1]𝑀5 𝑆𝑂 (5, 5) 16 10

4 6 [6] 𝑝 + [15]𝑀2 + [6]𝑀5 𝐸6 27 27

Table 1: Particle states, 1/2 BPS conditions and their 𝐸𝑘 representations for 𝑘 ≤ 6. [𝑘] 𝑝 denotes KK
momenta along the 𝑘 transverse directions.

Notice that there is a shift by one dimension relatively to the full U-duality group𝐸𝑘+1(𝑘+1) of toroidal
compactifications of M-theory on 𝑇 𝑘+1 down to 𝑑 dimensions. The latter was the guiding principle
in [24], where all 1/2 BPS states were considered, including also the longitudinal 𝑀-branes, which
are instead excluded in our counting. In particular, in [24] the resulting total Schwinger integral is
identified with a constrained Eisenstein series of the type

𝑎
(1)
𝑑,bulk = E𝐸𝑘+1(𝑘+1)

Λ𝐸𝑘+1 ,𝑠=
𝑘
2 −1

, (50)

with 𝑑 + 𝑘 = 10 for 𝑘 > 2. In other words, since we are consistently working in the large 𝑟11 � 1
region the full U-duality group 𝐸𝑘+1(𝑘+1) is broken to a subgroup 𝐸𝑘 (𝑘) × 1, which distinguishes
the eleventh direction. As depicted in figure 1, physically the difference between our approach

Figure 1: Schematic view of the coscaled dilaton moduli space.

and [24] is that we are consistently working in the perturbative decompactification limit where we
only integrate out the perturbative states, i.e. transverse 𝑀-branes, whereas in [24] the Schwinger
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integral involves all states, meaning that they work in the interior (or the desert) of the 𝑟11 moduli
space. Due to supersymmetric protection, in the end both results for the 𝑅4-term should be equal,
as we have shown explicitly for 𝑑 ≥ 8 in [15], while a more general proof is available for 𝑑 ≥ 4 in
the previous work [50, 56].

We notice that in the bulk region, 𝑔𝑠 = O(1), of the type IIB superstring, the complete 𝑅4-
coupling can also be derived from the M-theory expression (50) for 𝑑 ≤ 9 by applying the map (7)
between M-theory and type IIB quantities. As usual, the 10D decompactification limit of type IIB
is given by the 𝑡 = 𝑟1 𝑟11 → 0 limit in M-theory. Hence, in the bulk one always deals with M-theory
and the 𝑅4-couplings are emerging by integrating out all 1/2-BPS states, including transverse and
longitudinal ones. This is certainly the least understood regime of QG, where the species scale is
of the same order as the Planck scale. The lesson one might draw from this is that this genuine QG
theory is expected to feature emergence of space-time and all its interactions. From this perspective,
the all familiar emergent string limits are special in that they admit a weakly coupled perturbation
theory, still fairly analogous to the description of perturbative QFTs.

Emergence of 𝑅4-term in 10D

Let us evaluate the expression (43) in 10D, i.e. for 𝑑 = 10 and 𝑘 = 0. As already mentioned,
the coefficient of the 𝑅4-term contains only a string tree-level and a one-loop term,

𝑎10 ' 2𝜁 (3)
𝑔2
𝑠

+ 2𝜋2

3
. (51)

The M-theoretic Schwinger integral involves only a sum over KK modes and hence simplifies
considerably to

𝑎
(1)
10,M ' 2𝜋

𝑟11

∑︁
𝑚≠0

∫ ∞

0

𝑑𝑡

𝑡2
𝑒
−𝜋𝑡 𝑚2

𝑟2
11 . (52)

As in the string case, this real integral is divergent for 𝑡 → 0, so that we proceed with its regularization
along the same line as for the divergent real string-theoretic Schwinger integrals (35). First, we
introduce a regulator 𝜖 > 0 and perform a minimal subtraction of the divergence to arrive at

𝑎
(1)
10,M ' 2𝜋2

𝑟3
11

∑︁
𝑚≠0

𝑚2 log
(
𝑚2

𝜇2

)
, (53)

with a constant 𝜇2. Next, the sum over 𝑚 is carried out employing zeta-function regularization.
Using 𝜁 (−2) = 0, the 𝜇-dependent term drops out and what remains can be expressed as

𝑎
(1)
10,M ' 2𝜁 (3)

𝑟3
11

=
2𝜁 (3)
𝑔2
𝑠

, (54)

where we employed ∑︁
𝑚≥1

𝑚2 log(𝑚) = −𝜁 ′(−2) = 𝜁 (3)
4𝜋2 . (55)

Thus, the Schwinger integral for the tower of 𝐷0-branes reproduces precisely the tree-level term in
the expansion of (51) at small 𝑔𝑠 . This result was already obtained in the original work of GGV
[18], but can now be interpreted as first evidence for the M-theoretic Emergence Proposal.
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However, the string one-loop term in (51) is missing in our computation above.7 As we will
see, this is completely analogous to the missing 2𝜋2/3 term in the 10D real Schwinger integral (35).
More specifically, the object that generates it is not particle-like in 10D. Let us mention that in the
𝑔𝑠 � 1 limit, the one-loop term in (51) is leading over the tree-level term.

Emergence of 𝑅4-term in 9D

For 𝑑 = 9 and 𝑘 = 1, the Schwinger integral (43) with still only KK contributions is given by

𝑎
(1)
9,M ' 2𝜋

𝑟11 𝑟1

∑︁
(𝑚,𝑛)≠(0,0)

∫ ∞

0

𝑑𝑡

𝑡3/2
𝑒
−𝜋𝑡

(
𝑚2

𝑟2
11
+ 𝑛2

𝑟2
1

)
. (56)

In order to compare the result to weakly coupled type IIA, one has to apply a couple of steps to even-
tually obtain an expression that admits an interpretation in terms of string loop and instanton correc-
tions. For that purpose, one first splits the sum according to

∑
(𝑚,𝑛)≠(0,0) =

∑
𝑚=0,𝑛≠0 +

∑
𝑚≠0,𝑛∈Z .

The first piece (𝑚 = 0) can be treated straightforwardly to obtain

𝑎
(1)
9,M;(𝑚=0) '

2𝜋2

3
1

𝑟2
1 𝑟11

. (57)

For the second piece (𝑚 ≠ 0), one performs a Poisson resummation of the sum over 𝑛 ∈ Z to obtain

𝑎
(1)
9,M;(𝑚≠0) '

2𝜋
𝑟11

∑︁
𝑚≠0

∑︁
𝑛∈Z

∫ ∞

0

𝑑𝑡

𝑡2
𝑒
−𝜋𝑡 𝑚2

𝑟2
11
− 𝜋

𝑡
𝑛2𝑟2

1
. (58)

The 𝑛 = 0 term gives precisely the sum (52) from the previous section, that is equal to 2𝜁 (3)/𝑟3
11,

while for the remaining sum over 𝑛 ≠ 0 one employs the relation∫ ∞

0

𝑑𝑥

𝑥1−𝜈 𝑒
− 𝑏

𝑥
−𝑐𝑥 = 2

����𝑏𝑐 ���� 𝜈2 𝐾𝜈 (
2
√︁
|𝑏 𝑐 |

)
, (59)

where 𝐾𝜈 (𝑥) denotes the modified Bessel-function of order 𝜈. In this manner, one obtains

𝑎
(1)
9,M;(𝑚≠0) '

2𝜁 (3)
𝑟3

11
+ 8𝜋
𝑟2

11 𝑟1

∑︁
𝑚≠0

∑︁
𝑛≥1

���𝑚
𝑛

���𝐾1

(
2𝜋 |𝑚 |𝑛 𝑟1

𝑟11

)
. (60)

Expressing the two terms (57) and (60) in string units, one recovers almost all contributions from
the expected result

𝑎9 ' 2𝜁 (3)
𝑔2
𝑠

+ 2𝜋2

3

(
1 + 1

𝜌2
1

)
+ 8𝜋
𝑔𝑠

∑︁
𝑚≠0

∑︁
𝑛≥1

���𝑚
𝑛

���𝐾1

(
2𝜋 |𝑚 |𝑛 𝜌1

𝑔𝑠

)
, (61)

except again for the one-loop term 2𝜋2/3. The second term in (60) has the correct dependence on
𝑔𝑠 to be interpreted as the contribution from 𝐸𝐷0-brane instantons wrapping the circle of radius
𝜌1. This result can be considered as evidence for emergence, arguably even more striking than the
previous example, as not only the correct tree-level but also the space-time instantons are recovered
from a single Schwinger integral. The full Schwinger integral including also the longitudinal
𝑀2-brane, i.e. the type IIA fundamental string, was evaluated in [51], which also reproduced the
constant 2𝜋2/3 term.

7In this respect, we recall that GGV added an (infinite) constant 𝐶 that was fixed in a subsequent step to the correct
value 2𝜋2/3 by invoking T-duality in 9D.
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Emergence of 𝑅4-term in 8D

In 8D, i.e. 𝑑 = 8 and 𝑘 = 2, an interesting novelty arises, namely the fact that one has to
include also contributions from wrapped transverse 𝑀2-branes in the Schwinger integral. As we
will see, these are the particle-like states generating the missing 2𝜋2/3 term. The full coefficient of
the 𝑅4-term in perturbative type IIA theory is [18]

𝑎8 ' 2𝜁 (3)
𝑔2
𝑠

− 2𝜋
𝑇

log
(
𝜌2

2 |𝜂(𝑖𝑈) 𝜂(𝑖𝑇) |4
)

+ 8𝜋
𝜌1𝑔𝑠

∑︁
𝑚≥1

(𝑛1,𝑛2)≠(0,0)

𝑚

|𝑛1 + 𝑖𝑛2𝑈 |𝐾1

(
2𝜋
𝜌1
𝑔𝑠
𝑚 |𝑛1 + 𝑖𝑛2𝑈 |

)
,

(62)

with 𝑇 = 𝜌1𝜌2 and 𝑈 = 𝜌2/𝜌1. Similarly to the 9D case, the M-theoretic Schwinger integral
with only 𝐷0-brane contributions gives the tree-level term, the 𝐸𝐷0 instanton corrections, the
𝑈-dependent part of the one-loop contribution and in principle also the logarithmic contribution
−2𝜋 log(𝜌2

2)/𝑇 . More details can be found in [15].
Besides, one receives a contribution from transverse 𝑀2-branes carrying KK momentum only

along the eleventh direction. (Recall that additional KK momentum along 𝑇2 would spoil the
1/2 BPS property.) The masses of the particle-like states arising from these wrapped transverse
𝑀2-branes are

𝑀2 = 𝑛2𝑡212 +
𝑚2

𝑟2
11
, (63)

where 𝑡12 = 𝑟1𝑟2 denotes the area of 𝑇2 in M-theory units. Thus, the total Schwinger integral also
includes a contribution

𝑎
(1)
8,M;𝑀2 ' 2𝜋

𝑟11𝑡12

∑︁
𝑛≠0

∑︁
𝑚∈Z

∫ ∞

0

𝑑𝑡

𝑡
𝑒
−𝜋𝑡

(
𝑛2𝑡212+

𝑚2

𝑟2
11

)
. (64)

This integral can be regularized following our usual procedure. After performing Poisson resum-
mation with respect to the KK momentum 𝑚 and applying (59), one gets

𝑎
(1)
8,M;𝑀2 ' 2𝜋

𝑟11𝑡12

(
𝜋

3
𝑟11 𝑡12 + 4

∑︁
𝑛1,𝑛2≥1

1
𝑛2
𝑒−2𝜋𝑛1𝑛2𝑟11𝑡12

)
= −2𝜋

𝑇
log

(
|𝜂(𝑖𝑇) |4

)
, (65)

where we used 𝐾1/2(𝑥) =
√︁
𝜋

2𝑥 𝑒
−𝑥 . Thus, this 𝑀2-brane contribution is indeed the missing part

so that the complete M-theoretic Schwinger integral, obtained by combining the pure 𝐷0-brane
contribution with (65), reproduces (62). Let us notice that in the original work of GGV [18], the
term (65) had to be somehow added by hand. In contrast, here it stems from considering wrapped
transverse 𝑀2-branes as required by the physical prescription of integrating out towers of states
with typical mass not larger than the species scale.

As explained in [18], the exponential terms in (65) describe type IIA (fundamental) string
instantons wrapped on the 𝑇2. However, let us emphasize once more that in our approach the 𝑀2-
branes are transversely wrapped so that they are not type IIA fundamental string winding modes.
In addition, 𝑎 (1)8,M;𝑀2 also contains the constant term 2𝜋2/3, which was so far missing in 9D and
10D. This is completely analogous to the string story, where our method in 10D was also missing
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this constant term, while it could be obtained in 9D from integrating out the string winding modes
along the compact direction. Here, the relevant object is the transverse 𝑀2-brane which can be
particle-like only for 𝑑 ≤ 8. Similar to string theory, upon decompactification of the 8D result, we
can deduce the presence of the same constant term, 2𝜋2/3, also in 9D and 10D.

Comments on emergence in 𝑑 ≤ 7

One could now move forward and consider compactifications on higher dimensional tori. The
complete evaluation of the Schwinger integral (43) becomes increasingly complicated, as there will
be additional sectors contributing and the 1/2 BPS conditions become more involved and harder to
solve explicitly. The 𝑑 = 7 case is discussed in detail in [15] and confirms the expectation that the
Schwinger integral (43) produces the full 𝑅4-term, including also all instanton corrections, which
will now also comprise type IIA Euclidean 𝐸𝐷2-brane instantons. It would be very interesting to
go to 𝑑 = 5, where also particle-like 𝑀5-branes would contribute for the first time. In [15] we only
provide partial results, as the full amplitude turns out to be highly complicated.

On the technical level, we have seen that instantons arise via Poisson resummation of certain
wrapping numbers and by applying then the relation (59). In particular, from the argument of the
appearing Bessel function we could read off the action of the corresponding instanton. In this
way, we have been recovering the 𝐸𝐷0 and 𝐸𝐹1 instantons from combinations of (𝐷0,KK) and
(𝐷2, 𝐷0) particles upon Poisson resummation of the wrapping number of the second entry. Going
through all possible such combinations one arrives at table 2. This constitutes another non-trivial

Particle states Instantons

(𝐷0,KK(𝑘) ) 𝐸𝐷0(𝑘)

(𝐷2(𝑖 𝑗) ,KK(𝑘) ) 𝐸𝐷2(𝑖 𝑗𝑘)

(𝑁𝑆5(𝑖 𝑗𝑘𝑙𝑚) ,KK(𝑛) ) 𝐸𝑁𝑆5(𝑖 𝑗𝑘𝑙𝑚𝑛)

(𝐷2(𝑖 𝑗) , 𝐷0) 𝐸𝐹1(𝑖 𝑗)

(𝑁𝑆5(𝑖 𝑗𝑘𝑙𝑚) , 𝐷0) 𝐸𝐷4(𝑖 𝑗𝑘𝑙𝑚)

(𝑁𝑆5(𝑖 𝑗𝑘𝑙𝑚) , 𝐷2(𝑙𝑚) ) 𝐸𝐷2(𝑖 𝑗𝑘)

Table 2: Particle (in loop) - instanton correspondence for elementary states.

check of the M-theoretic Emergence Proposal. Even though in the Schwinger integral one only
integrates out the perturbative towers of states, all expected instanton actions eventually appear,
i.e. also 𝐸𝐹1, 𝐸𝐷4 instantons which correspond to longitudinal Euclidean 𝑀2- and 𝑀5-branes.

3.2 Emergence of 4D 𝑁 = 2 topological couplings

So far we discussed only a single term in the derivative expansion of the spacetime low energy
effective theory. The leading order two-derivative terms, like the Einstein-Hilbert term and the
kinetic terms for the type IIA 𝐶1 and 𝐶3 gauge fields, are not 1/2 BPS saturated and currently

21



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
3
8

Reflections on an M-theoretic Emergence Proposal Ralph Blumenhagen

out of reach with our method. However, upon compactification on a space that breaks part of
the supersymmetry these kinetic terms can become 1/2 BPS saturated as well. This happens for
compactifications of type IIA string theory on a Calabi-Yau threefold 𝑋 yielding 𝑁 = 2 supergravity
in 4D.

Since this is a standard class of models, let us recall some relevant facts just very briefly. The
resulting moduli space is locally a product of decoupled hyper- and vector-multiplet moduli spaces.
The scalar fields in the vector-multiplets are complexified Kähler moduli denoted as 𝑇 𝑖 = 𝑡𝑖 + 𝑖𝑏𝑖 ,
with 𝑖 = 1, . . . , ℎ11(𝑋), where 𝑏𝑖 are Kalb-Ramond axions, while 𝑡𝑖 are real Kähler moduli, defining
the Kähler cone 𝑡𝑖 > 0. The vector fields are given by the RR 𝐶3-form dimensionally reduced on
ℎ11(𝑋) homologically two-cycles. There is one more vector field, the graviphoton, residing in
the 𝑁 = 2 gravity multiplet and given by the type IIA RR 𝐶1-form. The kinetic terms for the
Kähler moduli and the gauge couplings are determined by the holomorphic prepotential F0(𝑇),
which is known to only receive perturbative corrections up to one-loop. However, for type IIA the
prepotential is even completely classical, as the four-dimensional dilaton lies in a hypermultiplet.8
In addition, there are non-perturbative corrections from world-sheet instantons, so that the full
prepotential enjoys an expansion9

F0(𝑇) = − 1
𝑔2
𝑠

[
1
3!
𝐶𝑖 𝑗𝑘𝑇

𝑖𝑇 𝑗𝑇 𝑘 + 𝜁 (3)
2

𝜒(𝑋) −
∑︁

𝛽∈𝐻2 (𝑋,Z)
𝛼
𝛽

0 Li3
(
𝑒−𝛽 ·𝑇

) ]
, (66)

where 𝐶𝑖 𝑗𝑘 denote the triple intersection numbers and 𝜒(𝑋) the Euler characteristic of the Calabi-
Yau threefold. Moreover, the integers 𝛼𝛽0 are the genus zero Gopakumar-Vafa invariants [26, 27],
which are topological invariants of the Calabi-Yau. For a recent work relating the Gopakumar-Vafa
invariants to the emergent string conjecture see [58].

The prepotential is only the first in an infinite series of topological higher derivative couplings
of the form F𝑔 (𝑇,𝑇)𝑅2

+𝐹
2𝑔−2
+ , where 𝑅+ and 𝐹+ are the self-dual parts of the Riemann tensor and

of the graviphoton field strength. Up to an additive term independent of the Kähler moduli, the
coupling splits into a harmonic piece and the so-called holomorphic anomaly

F𝑔 (𝑇,𝑇) = Re(F𝑔 (𝑇)) + 𝑓 𝑎𝑛𝑜𝑚𝑔 (𝑇,𝑇) , (67)

with 𝜕𝑖𝜕𝚥 𝑓 𝑎𝑛𝑜𝑚𝑔 (𝑇,𝑇) ≠ 0. The genus 𝑔 holomorphic topological string amplitudes F𝑔 (𝑇) are not
corrected in type IIA beyond the string 𝑔-loop level.

The one-loop topological free energy F1(𝑇,𝑇) is the quantity that was proposed to be a measure
for the number of light species, as recalled in section 2.3. Its holomorphic part has an expansion in
terms of a linear term and an infinite sum of instanton corrections

F1(𝑇) = − 1
24
𝑐2,𝑖 𝑇

𝑖 −
∑︁

𝛽∈𝐻2 (𝑋,Z)

(
𝛼
𝛽

0
12

+ 𝛼𝛽1

)
Li1(𝑒−𝛽 ·𝑇 ) , (68)

where the integers 𝛼𝛽1 are the genus one Gopakumar-Vafa invariants and 𝑐2,𝑖 =
∫
𝑋
𝑐2(𝑇𝑋 ) ∧ 𝜔𝑖

denotes the coefficient of the second Chern class of the tangent bundle of 𝑋 , with the Kähler form
expanded in a basis of cohomological 2-forms as 𝐽 =

∑ℎ11
𝑖=1 𝑡𝑖 𝜔𝑖 .

8For 𝐾3 fibrations, the heterotic dual models indeed feature non-vanishing one-loop corrections.
9Note that mirror symmetry also fixes the a priori ambiguous quadratic and linear terms in the prepotential [57].
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Emergence of the topological amplitudes

In the weakly coupled emergent string limit, 𝑔𝑠 � 1, mirror symmetry to type IIB is a very
powerful tool to derive the exact expansion (66). For a concretely chosen Calabi-Yau, this allows
to read off the genus zero Gopakumar-Vafa invariants from the periods upon employing the mirror
map. Like for the 𝑅4-term, let us now consider the M-theory limit. Since the F𝑔 (𝑇) are known
to be 1/2 BPS saturated, in this limit one might expect to find a Schwinger-like integral where one
integrates out the light towers of states, which are 1/2 BPS bound states of KK momentum along
the M-theory circle (𝐷0-branes) and transverse 𝑀2-branes. Indeed, these are the objects that carry
charge under the central extensions of the 𝑁 = 2 supersymmetry algebra,10

𝑍𝑛 (𝛽) =
2𝜋
𝑔𝑠

(𝛽 · 𝑇 + 𝑖𝑛) . (69)

Here 𝑛 is the number of 𝐷0-branes and 𝛽 ∈ 𝐻2(𝑋,Z) denotes the homology class wrapped
by the 𝑀2-brane, whose complexified size is 𝛽 · 𝑇 . Remarkably, this is precisely the proposal of
Gopakumar-Vafa [26, 27], who provided such a Schwinger integral for all of the holomorphic F𝑔 (𝑇).
For our purposes it is sufficient to concentrate on F0(𝑇) and F1(𝑇), for which Gopakumar-Vafa
provided the expressions

F0 =
∑︁
𝛽

𝛼
𝛽

0

∑︁
𝑛∈Z

∫ ∞

0

𝑑𝑠

𝑠3
𝑒−𝑠𝑍𝑛 (𝛽) ,

F1 = −
∑︁
𝛽

𝛼
𝛽

1

∑︁
𝑛∈Z

∫ ∞

0

𝑑𝑠

𝑠
𝑒−𝑠𝑍𝑛 (𝛽) − 1

12

∑︁
𝛽

𝛼
𝛽

0

∑︁
𝑛∈Z

∫ ∞

0

𝑑𝑠

𝑠
𝑒−𝑠𝑍𝑛 (𝛽) .

(70)

Note that F1 receives contributions both from genus one and genus zero curves. In general,
the Gopakumar-Vafa invariants 𝛼𝛽𝑔 count the number of BPS configurations from the transverse
𝑀2-branes wrapping genus 𝑔 curves in the class 𝛽 ∈ 𝐻2(𝑋).

It is important to keep in mind that Gopakumar-Vafa invariants are topological index-like
quantities hard to determine from first principles. Our previous general analysis revealed that
there are more light modes in the decompactification limit, which do not carry any central charge
appearing in the 𝑁 = 2 supersymmetry algebra. These are discrete KK momenta and transverse
𝑀5-branes wrapping 4-cycles of the Calabi-Yau. We observe that the latter would give strings in
4D and upon quantization could result in contributions to the Gopakumar-Vafa invariants that grow
exponentially. Whether this is the right picture remains to be seen.

Evidently, the Schwinger integrals (70) are of the same type as those encountered in the previous
section on 𝑅4-terms. In particular, the integrals for both F0 and F1 are UV divergent close to 𝑠 ' 0,
so that we can proceed by regularizing them in the same way as the 𝑅4-terms. To be concrete, let
us focus on two simple examples.

The resolved conifold

First, we look at the non-compact resolved conifold that has only a single 𝑆2 of size 𝑇 on
which an 𝑀2-brane can wrap. This can be considered the prototypical example for learning how

10To compare to (66) and (68), 𝑇 has to be rescaled by a factor 2𝜋. We have also set 𝑀𝑠 = 2𝜋 throughout this
calculation.
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to evaluate the integrals before eventually taking the infinite sum over all 2-cycles in the homology
lattice for a compact Calabi-Yau 𝑋 . Here, we only sketch the computation and refer to [13] for more
details.

Starting with the simpler integral, namely that of F1, we introduce a UV cut-off and minimally
subtract the divergent terms to arrive at

F 𝑀2
1 =

1
12

∑︁
𝑛∈Z

log
(
𝑇 + 𝑖𝑛
𝜇

)
, (71)

with a constant 𝜇 depending on the cut-off and on some numerical factors. Applying zeta-function
regularization for the infinite sum over 𝑛 and using the identity

sinh(𝜋𝑇)
𝜋𝑇

=

∞∏
𝑛=1

(
1 + 𝑇

2

𝑛2

)
(72)

we can bring this to the form

F 𝑀2
1 =

2𝜋𝑇
24

− 1
12

Li1(𝑒−2𝜋𝑇 ) . (73)

We observe that this is identical to the topological free energy computed for the resolved conifold
in [59], including the linear term. Formally, the resolved conifold has 𝑐2 = −1 and the single non-
vanishing Gopakumar-Vafa invariant 𝛼1

0 = 1. The sum over only the 𝐷0-branes gives an ambiguous
logarithmic factor F 𝐷0

1 ' log(2𝜋𝜇), possibly reflecting the existence of the holomorphic anomaly.
For the holomorphic prepotential, F0, one can proceed analogously. After introducing a UV

cut-off and minimally subtracting the divergent terms one gets the infinite sum

F 𝑀2
0 = −2𝜋2

𝑔2
𝑠

∑︁
𝑛∈Z

(𝑇 + 𝑖𝑛)2 log
(
𝑇 + 𝑖𝑛
𝜇

)
, (74)

with another constant 𝜇, related to the cut-off. Again, applying zeta-function regularization and a
descendant of the relation (72) obtained after performing two integrations, one finally arrives at

F 𝑀2
0 =

1
𝑔2
𝑠

[
− (2𝜋𝑇)3

12
+ Li3(𝑒−2𝜋𝑇 )

]
. (75)

In addition, there is a also a non-trivial contribution from bound states of only 𝐷0-branes, given by

F 𝐷0
0 = −2𝜋2

𝑔2
𝑠

∑︁
𝑛≠0

𝑛2 log
(
𝑛

𝜇

)
= − 1

𝑔2
𝑠

𝜁 (3) . (76)

The total, unambiguous part of the prepotential also agrees with [59], where the triple intersection
number is formally 𝐶 = 1/2 and the Euler characteristic is 𝜒 = 2(ℎ11 − ℎ21) = 2.

One might be worried that this is a too trivial example and that a large portion of the complica-
tions for compact Calabi-Yau threefolds is actually absent. These complications involve the sum over
the full infinite homology lattice and in particular the a priori unknown index-like Gopakumar-Vafa
invariants. However, for each individual genus zero curve, the evaluation of the Schwinger integrals
will proceed as for the resolved conifold and for both F0 and F1 we will get a cubic and a linear
contribution, respectively. How these contributions do add up to finally give the triple intersection
numbers and the second Chern class is far from being obvious and deserves further investigation.
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The Enriques Calabi-Yau

To better illustrate what the challenge of taking the sum over the infinite homology lattice
is, let us consider a second simple example, this time on a compact Calabi-Yau. The Enriques
Calabi-Yau manifold is defined as the free quotient 𝑋 = (𝐾3 ×𝑇2)/Z2, where the Z2 acts via a free
action on 𝐾3 and an inversion 𝑧 → −𝑧 on the 𝑇2. The free quotient of 𝐾3 is the Enriques surface
E with Euler characteristic 𝜒(E) = 𝑐2(𝑇E) = 12, leading to a Calabi-Yau with Hodge numbers
(ℎ11(𝑋), ℎ21(𝑋)) = (11, 11). This Calabi-Yau is a 𝐾3 fibration over a base P1, with the fibration
reducing to E over the four Z2 fixed points in the base. In [60, 61] the one-loop topological free
energy has been computed using the duality to the heterotic string on 𝐾3 × 𝑇2 giving

F1 = −𝜋𝑇 − 12
∑︁
𝑛≥1

Li1(𝑒−2𝜋𝑛𝑇 ) + . . . , (77)

where we omitted the known contribution depending on the 10 Kähler moduli related to the 2-cycles
of the Enriques surface.

The question is whether we can reproduce this result by adding up appropriate 𝐷2/𝐷0 bound
state contributions (73); we are especially interested in the linear term, −𝜋𝑇 , which is usually
obtained upon dimensional reduction but not really from a Schwinger computation. Since the
action of the Z2 orbifold is free on the 𝐾3, the relevant 2-cycle is indeed a genus one curve. This
curve is the 𝑇2 sitting at any point of the Enriques surface and which can be multiply wrapped.
Apparently, its contribution to the Gopakumar-Vafa invariant 𝛼𝑛1 is just the Euler characteristic of
the Enriques surface 𝛼𝑛1 = 𝜒(E) = 12, which can be read off from the instanton series in (77).
Taking into account that for the contribution of a genus one curve the prefactor 1/12 in (73) is
replaced by one, the linear term becomes∑︁

𝑛≥1
𝜒(E)𝑛 𝜋𝑇 = −𝜋 𝑇 , (78)

where for the sum over 𝑛 we employed zeta-function regularization, i.e. 𝜁 (−1) = −1/12. Since
this expression agrees precisely with the general expansion (68) for 𝑐2(E) = 12, by taking the sum
over the homology of all individual contributions we have reproduced the known result including in
particular the linear term. We conclude that the full holomorphic one-loop topological free energy
(for the 𝑇 modulus) emerges just from the Schwinger integral11.

This example reveals also a puzzle. In [60] it was shown that the prepotential is just

F0 ' − 1
𝑔2
𝑠

𝐶𝐼 𝐽𝑇
𝐼𝑇 𝐽𝑇𝐵, (79)

with 𝐶𝐼 𝐽 denoting the Cartan matrix of 𝐸8 × Γ1,1 and 𝑇𝐵 the Kähler modulus of the base P1. This
means that all genus zero Gopakumar-Vafa invariants are vanishing.

Hence, we face the following question: how can a sum over the individual contributions (75)
ever lead to a finite cubic term? While we have no clear answer yet, considering all the evidence we
have collected for emergence, we believe that this puzzle will likely not falsify it but reveal some

11The logarithmic ambiguity can be used to include the non-holomorphic term needed for modular invariance of
𝐹1 (𝑇,𝑇) = −6 log

(
(𝑇 + 𝑇) |𝜂(𝑖𝑇) |4

)
.
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important subtleties on how emergence is realized for F0. Recall that the prepotential contains
information on kinetic terms. Since space-time is expected to emerge together with these terms12, it
is conceivable that one has to go beyond this quasi-geometric approach, with (BPS) branes wrapping
cycles, to reliably compute F0.

Perhaps this is also related to the more radical proposal made in [16], where the initial real
Schwinger integral for F0 was deformed in two ways. First, the integral was taken over a contour in
the complex plane and the integrand was changed from the simple exponential form, exp(−𝑠𝑍𝑛 (𝛽)),
so that in the end one arrives at a contour representation of F0 familiar from period computations.
It was shown that this yields the full expansion of the prepotential as derived from the period
computation in the weakly coupled emergent string limit, 𝑔𝑠 � 1. This calculation was supported
and refined by relating the UV degrees of freedom that are being integrated out to Fermi gas degrees
of freedom [17]. The relation between this and our approach remains to be investigated. We have
now reached our present level of understanding of the subject and hence refer the reader to future
research.

4. Final comments on emergence

In the previous sections, we reviewed our current indications for the M-theoretic Emergence
Proposal. These are based mainly on the evaluation of certain 1/2 BPS saturated couplings that
were also subject to perturbative non-renormalization theorems beyond the one-loop level. In these
cases it was possible to recover the full couplings in a small 𝑔𝑠 expansion from just a single one-loop
Schwinger integral in M-theory, where one integrates out solely the light, perturbative towers of
particle-like states with masses not larger than the species scale, i.e. the 11D Planck scale. From
where we stand, let us reflect on two natural next questions.

First let us recall that, in string theory, by implementing the 1/2 BPS condition via a Lagrange
multiplier and using modular invariance, one could define a complex version of the Schwinger
integral that also gives the correct constant term, 2𝜋2/3, in 10D. The non-trivial question is whether
one can generalize this to M-theory and as such provide a higher-dimensional definition of the
Schwinger integrals that upon evaluation also yields the correct result in 10D and 9D. The essential
difference to the string-theoretic case is that, in M-theory, the number of 1/2 BPS conditions
increases with the number 𝑘 of compactified directions. As we have seen, the latter transform in
the representation 𝜆𝐸𝑘

of the group 𝐸𝑘 (𝑘) so that after imposing them via Lagrange multipliers, we
arrive at an integral over dim(𝜆𝐸𝑘

) + 1 dimensions. The question is whether this can be interpreted
as the moduli space M𝑘 of something like an 𝑀2-𝑀5 world-sheet. At the moment, this is not
obvious (to us) at all and it might not even be the right way to proceed. Indeed, the BFSS matrix
model has taught us that the quantization of the 𝑀2-brane should rather be thought of as a second
quantized theory and not as a first quantized world-volume theory, like for the string.

Second, the Schwinger integral approach has been performed in this still sort of geometric
manner thanks to the 1/2 BPS nature of the involved states. The ultimate question is whether
emergence is just a special aspect of such a simplified set-up or whether it is a general property of
M-theory. In the latter case, all terms in the low energy effective action, including the 10D tree-level

12We thank Ivano Basile and Eran Palti for comments on this point.
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kinetic terms, have to arise from quantum effects. However, the high degree of supersymmetry
forbids such couplings to be generated via loops so that we cannot expect to find a simple Schwinger
integral that gives these second derivative couplings right away.

Nevertheless, to conclude that this already spoils the M-theoretic Emergence Proposal might be
premature for the following reasons. First, for non-BPS saturated couplings, like the kinetic terms
in 10D with maximal supersymmetry, all the excitations of M-theory will matter and contribute.
The only candidate we have at present to deal with this situation is the BFSS matrix model.
Second, recall that also in string theory one is computing the low-energy effective action only
indirectly. Indeed, one has to compute the appropriate on-shell scattering amplitudes that allow to
gain information about the underlying EFT. This is done by comparing part of the string amplitude
with the corresponding amplitude computed in the expected or proposed EFT. Therefore, to see
the emergence of the 2-derivative kinetic terms one has to compute the appropriate object. In the
context of the BFSS matrix model this problem has already been approached. Here, we are not
reviewing all these efforts, but we just recall that in such matrix model two gravitons (i.e. two
𝐷0-branes) do not interact classically. Instead, the leading order interaction is generated at the
one-loop level (in matrix theory) leading to an effective potential

𝑉 = −15
16
𝑣4

𝑟7 + . . . , (80)

where 𝑣 denotes the relative velocity of the two gravitons. Note that a non-vanishing 𝑣 breaks
supersymmetry. This potential is precisely the leading order classical interaction in the supergravity
theory. Due to supersymmetry, the latter is vanishing for 𝑣 = 0, i.e. the forces due to graviton and
𝑝-form exchange do cancel. Only upon breaking supersymmetry one gets a non-trivial potential but
this is generated at one-loop in the M(atrix) theory. We think that this is very much in accordance
with the Emergence Proposal and also features the expected correlated emergence of the kinetic
terms and space itself, here from non-commutative matrix degrees of freedom. As a word of
caution, it is not a priori clear that the BFSS matrix model is the theory that emerges in the coscaled
infinite distance limit we are taking. This deserves further study.

Connecting to the concept of emergence from the very beginning of this article, we note
that the behavior (80) can already be derived from the familiar annulus diagram [62] for an open
string connecting two 𝐷0-branes with relative velocity 𝑣 and distance 𝑟 . Hence, we are tempted
to speculate that the M-theoretic Emergence Proposal might be closely related to the celebrated
loop-channel tree-channel equivalence for the 𝐷0-branes (and 𝐷2-branes), which happen to be the
lightest states in the 𝑀∗𝑅11 � 1 region of M-theory. In this respect, the transverse 𝑀5-brane,
i.e. the type IIA 𝑁𝑆5-brane, is of a different type, pointing to the main open issue of the BFSS
matrix model.

Acknowledgments. We thank Carlo Angelantonj, Ivano Basile, Álvaro Herráez, Elias Kiritsis,
Wolfgang Lerche, Dieter Lüst, Eran Palti, Andreas Schachner, Timo Weigand and Max Wiesner
for useful discussions. The work of R.B. and A.G. is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2094 –
390783311. R.B. and N.C. thank the hospitality of the Corfu Summer Institute 2023, where part of
the research reviewed here has been performed.

27



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
3
8

Reflections on an M-theoretic Emergence Proposal Ralph Blumenhagen

References

[1] J. Butterfield, “Emergence, Reduction and Supervenience: A Varied Landscape,” Foundations
of Physics 41, no. 6, 920-959 (2011)

[2] D. Oriti, “Levels of spacetime emergence in QG,” [arXiv:1807.04875 [physics.hist-ph]].

[3] E. Palti, “The Swampland: Introduction and Review,” Fortsch. Phys. 67, no.6, 1900037 (2019)
[arXiv:1903.06239 [hep-th]].

[4] M. van Beest, J. Calderón-Infante, D. Mirfendereski and I. Valenzuela, “Lectures on
the Swampland Program in String Compactifications,” Phys. Rept. 989, 1-50 (2022)
[arXiv:2102.01111 [hep-th]].

[5] N. B. Agmon, A. Bedroya, M. J. Kang and C. Vafa, “Lectures on the string landscape and the
Swampland,” [arXiv:2212.06187 [hep-th]].

[6] H. Ooguri and C. Vafa, “On the Geometry of the String Landscape and the Swampland,” Nucl.
Phys. B 766, 21-33 (2007) [arXiv:hep-th/0605264 [hep-th]].

[7] S. J. Lee, W. Lerche and T. Weigand, “Emergent strings from infinite distance limits,” JHEP
02, 190 (2022) [arXiv:1910.01135 [hep-th]].

[8] G. Dvali, “Black Holes and Large N Species Solution to the Hierarchy Problem,” Fortsch.
Phys. 58, 528-536 (2010) [arXiv:0706.2050 [hep-th]].

[9] G. Dvali and M. Redi, “Black Hole Bound on the Number of Species and Quantum Gravity at
LHC,” Phys. Rev. D 77, 045027 (2008) [arXiv:0710.4344 [hep-th]].

[10] B. Heidenreich, M. Reece and T. Rudelius, “The Weak Gravity Conjecture and Emergence
from an Ultraviolet cut-off,” Eur. Phys. J. C 78, no.4, 337 (2018) [arXiv:1712.01868 [hep-th]].

[11] T. W. Grimm, E. Palti and I. Valenzuela, “Infinite Distances in Field Space and Massless
Towers of States,” JHEP 08, 143 (2018) [arXiv:1802.08264 [hep-th]].

[12] B. Heidenreich, M. Reece and T. Rudelius, “Emergence of Weak Coupling at Large Distance
in Quantum Gravity,” Phys. Rev. Lett. 121, no.5, 051601 (2018) [arXiv:1802.08698 [hep-th]].

[13] R. Blumenhagen, N. Cribiori, A. Gligovic and A. Paraskevopoulou, “Demystifying the Emer-
gence Proposal,” JHEP 04 (2024), 053 [arXiv:2309.11551 [hep-th]].

[14] R. Blumenhagen, N. Cribiori, A. Gligovic and A. Paraskevopoulou, “Emergent M-theory
limit,” Phys. Rev. D 109, no.2, L021901 (2024) [arXiv:2309.11554 [hep-th]].

[15] R. Blumenhagen, N. Cribiori, A. Gligovic and A. Paraskevopoulou, “Emergence of 𝑅4-terms
in M-theory,” [arXiv:2404.01371 [hep-th]].

[16] J. Hattab and E. Palti, “On the particle picture of Emergence,” JHEP 03, 065 (2024)
[arXiv:2312.15440 [hep-th]].

28



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
3
8

Reflections on an M-theoretic Emergence Proposal Ralph Blumenhagen

[17] J. Hattab and E. Palti, “Emergence in String Theory and Fermi Gases,” [arXiv:2404.05176
[hep-th]].

[18] M. B. Green, M. Gutperle and P. Vanhove, “One loop in eleven-dimensions,” Phys. Lett. B
409, 177-184 (1997) [arXiv:hep-th/9706175 [hep-th]].

[19] M. B. Green and P. Vanhove, “D instantons, strings and M theory,” Phys. Lett. B 408, 122-134
(1997) [arXiv:hep-th/9704145 [hep-th]].

[20] E. Kiritsis and B. Pioline, “On R**4 threshold corrections in IIb string theory and (p, q) string
instantons,” Nucl. Phys. B 508, 509-534 (1997) [arXiv:hep-th/9707018 [hep-th]].

[21] J. G. Russo and A. A. Tseytlin, “One loop four graviton amplitude in eleven-dimensional
supergravity,” Nucl. Phys. B 508, 245-259 (1997) [arXiv:hep-th/9707134 [hep-th]].

[22] B. Pioline and E. Kiritsis, “U duality and D-brane combinatorics,” Phys. Lett. B 418, 61-69
(1998) [arXiv:hep-th/9710078 [hep-th]].

[23] N. A. Obers and B. Pioline, “U duality and M theory,” Phys. Rept. 318, 113-225 (1999)
[arXiv:hep-th/9809039 [hep-th]].

[24] N. A. Obers and B. Pioline, “Eisenstein series and string thresholds,” Commun. Math. Phys.
209, 275-324 (2000) [arXiv:hep-th/9903113 [hep-th]].

[25] C. Angelantonj, I. Florakis and B. Pioline, “A new look at one-loop integrals in string theory,”
Commun. Num. Theor. Phys. 6, 159-201 (2012) [arXiv:1110.5318 [hep-th]].

[26] R. Gopakumar and C. Vafa, “M theory and topological strings. 1.,” [arXiv:hep-th/9809187
[hep-th]].

[27] R. Gopakumar and C. Vafa, “M theory and topological strings. 2.,” [arXiv:hep-th/9812127
[hep-th]].

[28] G. Veneziano, “Large N bounds on, and compositeness limit of, gauge and gravitational
interactions,” JHEP 06 (2002), 051 [arXiv:hep-th/0110129 [hep-th]].

[29] I. Basile, D. Lüst and C. Montella, “Shedding black hole light on the emergent string conjec-
ture,” [arXiv:2311.12113 [hep-th]].

[30] N. Cribiori, D. Lüst and C. Montella, “Species entropy and thermodynamics,” JHEP 10 (2023),
059 [arXiv:2305.10489 [hep-th]].

[31] I. Basile, N. Cribiori, D. Lüst and C. Montella, “Minimal Black Holes and Species Thermo-
dynamics,” [arXiv:2401.06851 [hep-th]].

[32] A. Bedroya, C. Vafa and D. H. Wu, “The Tale of Three Scales: the Planck, the Species, and
the Black Hole Scales,” [arXiv:2403.18005 [hep-th]].

[33] F. Marchesano and L. Melotti, “EFT strings and emergence,” JHEP 02, 112 (2023)
[arXiv:2211.01409 [hep-th]].

29



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
3
8

Reflections on an M-theoretic Emergence Proposal Ralph Blumenhagen

[34] A. Castellano, A. Herráez and L. E. Ibáñez, “The emergence proposal in QG and the species
scale,” JHEP 06, 047 (2023) [arXiv:2212.03908 [hep-th]].

[35] R. Blumenhagen, A. Gligovic and A. Paraskevopoulou, “The emergence proposal and the
emergent string,” JHEP 10, 145 (2023) [arXiv:2305.10490 [hep-th]].

[36] D. van de Heisteeg, C. Vafa, M. Wiesner and D. H. Wu, “Moduli-dependent Species Scale,”
[arXiv:2212.06841 [hep-th]].

[37] N. Cribiori and D. Lüst, “A Note on Modular Invariant Species Scale and Potentials,” Fortsch.
Phys. 71 (2023) no.10-11, 2300150 [arXiv:2306.08673 [hep-th]].

[38] A. Castellano, A. Herráez and L. E. Ibáñez, “IR/UV mixing, towers of species and swampland
conjectures,” JHEP 08 (2022), 217 [arXiv:2112.10796 [hep-th]].

[39] S. J. Lee, W. Lerche and T. Weigand, “Physics of infinite complex structure limits in eight
dimensions,” JHEP 06 (2022), 042 [arXiv:2112.08385 [hep-th]].

[40] T. Banks, W. Fischler, S. H. Shenker and L. Susskind, “M theory as a matrix model: A
Conjecture,” Phys. Rev. D 55, 5112-5128 (1997) [arXiv:hep-th/9610043 [hep-th]].

[41] A. Bilal, “M(atrix) theory : A Pedagogical introduction,” Fortsch. Phys. 47, 5-28 (1999)
[arXiv:hep-th/9710136 [hep-th]].

[42] D. Bigatti and L. Susskind, “Review of matrix theory,” NATO Sci. Ser. C 520, 277-318 (1999)
[arXiv:hep-th/9712072 [hep-th]].

[43] W. Taylor, “M(atrix) Theory: Matrix Quantum Mechanics as a Fundamental Theory,” Rev.
Mod. Phys. 73, 419-462 (2001) [arXiv:hep-th/0101126 [hep-th]].

[44] J. M. Maldacena, M. M. Sheikh-Jabbari and M. Van Raamsdonk, “Transverse five-branes in
matrix theory,” JHEP 01 (2003), 038 [arXiv:hep-th/0211139 [hep-th]].

[45] H. Sati and U. Schreiber, “Differential Cohomotopy implies intersecting brane observables via
configuration spaces and chord diagrams,” Adv. Theor. Math. Phys. 26 (2022) no.4, 957-1051
[arXiv:1912.10425 [hep-th]].

[46] D. Corfield, H. Sati and U. Schreiber, “Fundamental weight systems are quantum states,” Lett.
Math. Phys. 113 (2023) no.6, 112 [arXiv:2105.02871 [math.GT]].

[47] G. Aldazabal, D. Marques and C. Nunez, “Double Field Theory: A Pedagogical Review,”
Class. Quant. Grav. 30, 163001 (2013) [arXiv:1305.1907 [hep-th]].

[48] O. Hohm, D. Lüst and B. Zwiebach, “The Spacetime of Double Field Theory: Review,
Remarks, and Outlook,” Fortsch. Phys. 61, 926-966 (2013) [arXiv:1309.2977 [hep-th]].

[49] D. S. Berman and C. D. A. Blair, “The Geometry, Branes and Applications of Exceptional
Field Theory,” Int. J. Mod. Phys. A 35, no.30, 2030014 (2020) [arXiv:2006.09777 [hep-th]].

30



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
3
8

Reflections on an M-theoretic Emergence Proposal Ralph Blumenhagen

[50] G. Bossard and A. Kleinschmidt, “Loops in exceptional field theory,” JHEP 01, 164 (2016)
[arXiv:1510.07859 [hep-th]].

[51] B. de Wit and D. Lüst, “BPS amplitudes, helicity supertraces and membranes in M theory,”
Phys. Lett. B 477, 299-308 (2000) [arXiv:hep-th/9912225 [hep-th]].

[52] D. van de Heisteeg, C. Vafa, M. Wiesner and D. H. Wu, “Species Scale in Diverse Dimensions,”
[arXiv:2310.07213 [hep-th]].

[53] A. Castellano, A. Herráez and L. E. Ibáñez, “On the Species Scale, Modular Invariance and
the Gravitational EFT expansion,” [arXiv:2310.07708 [hep-th]].

[54] J. Calderón-Infante, M. Delgado and A. M. Uranga, “Emergence of species scale black hole
horizons,” JHEP 01, 003 (2024) [arXiv:2310.04488 [hep-th]].

[55] B. Pioline, “R**4 couplings and automorphic unipotent representations,” JHEP 03 (2010),
116 [arXiv:1001.3647 [hep-th]].

[56] G. Bossard and B. Pioline, “Exact ∇4𝑅4 couplings and helicity supertraces,” JHEP 01, 050
(2017) [arXiv:1610.06693 [hep-th]].

[57] S. Hosono, A. Klemm, S. Theisen and S. T. Yau, “Mirror symmetry, mirror map and ap-
plications to complete intersection Calabi-Yau spaces,” Nucl. Phys. B 433, 501-554 (1995)
[arXiv:hep-th/9406055 [hep-th]].

[58] T. Rudelius, “Gopakumar-Vafa invariants and the Emergent String Conjecture,” JHEP 03, 061
(2024) [arXiv:2309.10024 [hep-th]].

[59] R. Gopakumar and C. Vafa, “On the gauge theory / geometry correspondence,” Adv. Theor.
Math. Phys. 3, 1415-1443 (1999) [arXiv:hep-th/9811131 [hep-th]].

[60] A. Klemm and M. Marino, “Counting BPS states on the enriques Calabi-Yau,” Commun.
Math. Phys. 280, 27-76 (2008) [arXiv:hep-th/0512227 [hep-th]].

[61] T. W. Grimm, A. Klemm, M. Marino and M. Weiss, “Direct Integration of the Topological
String,” JHEP 08, 058 (2007) [arXiv:hep-th/0702187 [hep-th]].

[62] M. R. Douglas, D. N. Kabat, P. Pouliot and S. H. Shenker, “D-branes and short distances in
string theory,” Nucl. Phys. B 485, 85-127 (1997) [arXiv:hep-th/9608024 [hep-th]].

31


	Introduction
	Preliminaries
	The swampland distance conjecture
	The Emergent String Conjecture
	The species scale
	The Emergence Proposal

	Evidence for the M-theoretic Emergence Proposal
	Emergence of TEXT-terms
	Emergent string limit
	Decompactification limit

	Emergence of 4D TEXT topological couplings

	Final comments on emergence

