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1. Introduction

Random tensors, like matrix models, originated in theoretical physics. In the 70’s the hot stuff
in theoretical physics was to quantize the elementary particles like quarks and gluons. In this period
matrix models had a lot of success in quantizing the strong interaction.

In the 90’s the dominating theory in quantizing gravity was string theory. Random matrix
models were seen at this time as a successful theory for quantizing gravity, but only in two
dimensions. The inventors of random tensor models, such as Ambjorn, Gross and Sasakura,
wanted to replicate the success of matrix models for dimensions three and four. But they lacked an
essential tool, the 1/𝑁 expansion.

Let’s come to 2010’s. The tensor track [1]-[7] is an attempt to quantize gravity in dimensions
greater than two, by combining random tensor models, discrete geometry and the renormalisation
group. The tensor track lies at the crossroad of several closely related approaches to quantize
gravity, most notably causal dynamical triangulations, quantum field theory on non-commutative
spaces and group field theory. Random tensors share with random matrices the fact that they are a
zero-dimensional world, and, as such, they are background-independent; they made no references
whatsoever of any particular space-time.

Moreover, random tensors models, based on the quantum field theory of Feynman, are man-
ageable by renormalisation group techniques. Simple just-renomalizable models even share with
non-Abelian gauge theories the property of asymptotic freedom. The simplest such model is the 𝑇4

5
model.

Random tensors are expected to play a growing role in many areas of mathematics, physics,
and computer science, but communities using random tensors have grown apart, developing their
own tools and results; for an up-to-date review of distinct approaches to quantum gravity exposing
shared challenges and common directions, we suggest consulting [8].

2. The Tensor Track

In [1]-[4] we proposed a new way of looking at the problem of quantum gravity. Let us
summarize briefly what it’s all about. First we would like to say that the tensor track has its birth in
extending the matrix models and their 1/𝑁 expansion to tensor models.

In the Hermitian matrix ensemble (GUE) perturbed by a quadratic interaction, the 1/𝑁 expan-
sion is well known. The free partition function is

∫
𝑑𝑀𝑒−

𝑁
2 Tr 𝑀 2 , where

𝑑𝑀 =
∏
𝑘

𝑑𝑀𝑘𝑘

∏
𝑖< 𝑗

𝑑 Re 𝑀𝑖 𝑗𝑑 Im 𝑀𝑖 𝑗 , (1)

and the expectation values of 𝑈 (𝑁) invariants

< Tr 𝑀 𝑝1 Tr 𝑀 𝑝2 ... Tr 𝑀 𝑝𝑘 > (2)

is entirely determined by the propagator

𝐶𝑖 𝑗 ,𝑘𝑙 =
1
𝑁
𝛿𝑖𝑙𝛿 𝑗𝑘 (3)
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and by Wick’s rule.
Any scalar function of a tensorial quantum field theory can be further decomposed as a

big functional integral on a Gaussian measure and an interactive part. In the tensorial case this
interactive part is a sum of invariants of the tensor. For example the partition function is a scalar
function of 𝑁 , defined by

𝑍 (𝑁) =
∫

𝑑𝜇(𝑇)𝑒−
∑

𝐼𝑛𝑣 𝑆𝐼𝑛𝑣 (𝑇 ) . (4)

The partition function and the corresponding free energy (also a scalar function) are related by a
normalized logarithm

𝐹 (𝑁) = 1
𝑁𝐷

log 𝑍 (𝑁). (5)

The invariants themselves can be classified in terms of graphs. Of course these graphs depend
upon the group symmetries of the tensor. For matrix models the expectation values of the invariants
can be classified by ribbon diagrams. In the case of tensor models Figure 1 depicts a partial list of
connected invariants for

⊗3
𝑖=1 𝑈 (𝑁). To generalize the 1/𝑁 expansion to the tensor case, the first

Figure 1: Examples of 𝑈 (𝑁) invariants. The graphs presented in the left and center panels are melonic,
while the one on the right panel is not.

step is to choose an invariant, for example a quartic invariant, and to normalize the 𝑆𝐼 𝑛𝑣0 (𝑇) for that
invariant:

𝑆𝐼 𝑛𝑣0 (𝑇) →
𝜆

𝑁𝛼
𝑆𝐼 𝑛𝑣0 (𝑇). (6)

Now the partition function and the corresponding free energy depend on two variables. In a
quantum field theory the usual form of perturbation theory is to expand in power series in 𝜆, and
the perturbation is indexed by Feynman amplitudes associated to Feynman graphs. For instance the
perturbation of the free energy is of the following form

𝐹 (𝜆, 𝑁) =
∑︁
𝐺

(−𝜆)𝑣 (𝐺)

𝑠𝑦𝑚(𝐺) 𝐴(𝐺, 𝑁). (7)

Once this is done, the hard step is to find 𝛼 such that 1/N expansion exists, i.e. such that the
perturbation of the free energy is of the following form

𝐹 (𝜆, 𝑁) =
∑︁
𝐺

(−𝜆)𝑣 (𝐺)

𝑠𝑦𝑚(𝐺) 𝐴(𝐺, 𝑁) =
∑︁
𝜔∈N

𝑁−𝜔𝐹𝜔 (𝜆). (8)

In the case of
⊗𝐷

𝑖=1 𝑈 (𝑁) and a quartic 𝐷-melonic invariant, the 1/𝑁 expansion is governed by
the Gurău degree and 𝐹0(𝜆) is formed by all the 𝐷 + 1 melonic graphs (the 0 color being associated
to the Feynman propagators [9]). The family of 𝐷 + 1 melonic graphs [10] which lead the 1/N
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expansion of random tensors models can perhaps be called too trivial from a topologist point of
view; it corresponds to some triangulations of the sphere 𝑆𝐷 . But, as the Gurău degree is not only
purely topological, the interplay between combinatorics and topology in sub-leading terms can be
amazingly complex.

Now that we have been able to identify the leading terms in the 1/𝑁 expansion, the second step
is to be able to resum them, i.e. to explicitly compute 𝐹0(𝜆). This step has been performed for the
first time by a paper by Gurău and Ryan [11]. From a probabilistic and statistical mechanical point
of view, it corresponds to Aldous phase of branched polymers.

Once we have been able to compute explicitly 𝐹0(𝜆), many possibilities are open to us:
modifying the symmetry of the main tensor, include the renormalization group by modifying in a
specific way our propagators, a non-perturbative treatment of some simple models...

From the perspective of matrix models, to go further in the two parameters approach require
a particular technique, namely double scaling. The first step of applying this technique to tensors
has been done in [12, 13]. The initial papers have been followed by mixed results, some results
suggest the universality of branched polymers, others pointing to the fact that some simple and
natural restrictions change that universality class. But, from the perspective of quantum gravity, the
main goal is to resum the sub-leading terms in order to find a more interesting phase of geometry
pondered by Einstein-Hilbert action.

Let us come to the Sachdev-Ye-Kitaev (SYK) model. Discovered by Kitaev [14], it is a quartic
model of 𝑁 Majorana fermions coupled by a disordered tensor [15]. It is a model of condensed
matter, hence it depends on time though a Hamiltonian. The disordered tensor is centered Gaussian
iid

< 𝐽𝑎𝑏𝑐𝑑 >= 0, < 𝐽2
𝑎𝑏𝑐𝑑 >=

𝜆2

𝑁3 , (9)

and the Hamiltonian is simply 𝐻 = 𝐽𝑎𝑏𝑐𝑑𝜓𝑎𝜓𝑏𝜓𝑐𝜓𝑑 . This model posses three important properties:
it is solvable at large 𝑁 , there is a conformal symmetry at strong coupling, hence it can be a fixed
point of the renormalization group, and, above all from quantum gravity, it is maximally chaotic in
the sense of Maldacena, Shenker and Stanford [16]. Hence the SYK model, although very simple,
offers a path to the main theoretical concepts of quantum gravity, such as Bekenstein-Hawking
entropy and holography.

SYK became a very active field, from the early papers to nowadays. Quite naturally we devoted
our common article with Nicolas Delporte to that subject and we entitled it “Holographic Tensors"
[5].

At large 𝑁 the Schwinger-Dyson equation for the 2-point function is closed. The conformal
symmetry can be broken and the corresponding subject goes under the name of near-𝐴𝑑𝑆2/near-
𝐶𝐹𝑇1 correspondence. This entails a relationship with Jackiw-Teitelboim two-dimensional quantum
gravity.

Witten has found a genuine field theory model (with no disorder), in which the tensors plays
a much more fundamental role [17]. In a nutshell, he discovered that his model has the same
melonic limit as the tensors models pioneered by Gurău. Klebanov and Tarnopolsky [18], when
combined with an earlier work of Carrozza and Tanasa [19], allows on a big simplification of the
group symmetry of the main tensor, from 𝑈 (𝑁)𝐷 (𝐷−1)/2 to 𝑂 (𝑁)𝐷 .
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Unlike the initial SYK model, the field tensor models of [17–19] fit in the framework of local
quantum field theory with 𝐷 = 1. Hence there is a possibility to extend them in 𝐷 > 1! But these
models of SYK-type still are quantum mechanical and lost background-independence since they
make use of a preferred time. We stumbled for a while to that particular problem, namely to restore
background-independence to models of SYK-type. Zero dimensional tensor models create naturally
trees or unicycles as Gromov-Hausdorff limits. If we can approximate the sub-dominant terms as
matter fields living on trees or unicycle (and it’s a big “if”), we shall get in this approximation an
SYK-type model on a random tree or unicycle. Thermal Euclidean, which plays such a natural role
in SYK models, leads us to choose unicycles rather than trees. Models of this type can be studied
first by perturbative field theory techniques.

Then our main result together with Nicolas Delporte [6, 20] is that, under reasonable assump-
tions, the SYK model for bosons averaged on long, infrared unicycles possesses a two-point function
exhibiting much the same behavior, but with a critical infrared exponent different from the one of
ordinary SYK, sensitive to the spectral dimension of the underlying graph.

This can be seen as a simpler version of the well-known 2d CFT coupled to gravity (ie CFT
on R2 but coupled to the Liouville field). The change in critical exponent is a simpler analog of
the Knizhnik-Polyakov-Zamolodchikov and David-Distler-Kawai relations, which tell how critical
exponents change when coupled to 2d gravity. The cycle in a unicycle can be identified to a
lattice-regularized flat 𝑈 (1) thermal circle, and the trees decorating the unicycles are then the
unidimensional analog of the bidimensional Liouville field bumps which are at the source of the
modification of critical exponents. In this way, field theory on random unicycles can be seen as
“gravity in one dimension" or “gravitational time".

We return to a more general problem with Ouerfelli and Tamaazousti; that of making a big
(maybe too ambitious?) jump, from quantum gravity to artificial intelligence [7]. More specifically
the context of that paper is the following. Tensor PCA was introduced in the pioneer work of
[21] and consists in recovering a signal spike 𝑣⊗𝑘0 that has been corrupted by a noise tensor 𝑍:
𝑇 = 𝑍 + 𝛽𝑣⊗𝑘0 where 𝑣0 is a unitary vector and 𝛽 the signal to noise ratio.

Matrix data analysis and principal component analysis (PCA) is mostly stated in the “quantum-
mechanics" language of eigenvalues rather than in the “quantum-field theoretic" language of in-
variants and (Feynman) graphs. For tensors the quantum-field language is the natural one. An
important task in tensor data analysis is therefore to translate the results of matrix data analysis and
PCA into the quantum-field theoretic language of invariants and graphs.

An original connection have been made in [22] between tensorial data analysis and the tensor
track. This connection is based on the introduction of matrices that are built out of a graph and
cutting an edge. Indeed, given a graph invariant, we call “cutting an edge" the fact of not performing
a sum over the index associated to this edge, which gives us a matrix. The eigenvector associated
to the largest eigenvalue of this matrix can then be proven to be correlated to the signal vector 𝑣 for
a significant range of signal-to-noise ratio 𝛽.

Another article with Ouerfelli and Tamaazousti refers to an heuristic algorithm named SMPI
[23]. This algorithm seems to be considerably better that the state of the art; more progress is
expected during the coming months and years.
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3. Recent work from our group

Rasvan Gurău is busy by combining random tensors and conformal field theory, and he
performed recently a beautiful set of lectures entitled “From random tensors to tensor field theory"
in a six-weeks program at Institut Henri Poincaré in the winter of 2023. From his recent output I
have extracted three papers that I consider emblematic of his activity in Heidelberg.

With Dario Benedetti, Sabine Harribey and Davide Lettera, he consider the long-range bosonic
𝑂 (𝑁)3 model where 𝑁 gets large enough [24]. The model displays four large-𝑁 fixed points and the
authors confirm that the 𝐹-theorem holds in this case. This result is subtle, as one of the couplings
(the “tetrahedral" coupling) is imaginary, and therefore the model is non-unitary at finite 𝑁 .

In the same vein, with his collaborators Jürgen Berges and Thimo Preis, he studied further
the quantum field theory with global 𝑂 (𝑁)3 symmetry where 𝑁 is sufficiently large. He find that
both asymptotic freedom and boundedness from below can be realized in this theory [26]. To
uncover its scale dependence, the authors analyze the renormalization group flow for the tensor
field which features two real quartic couplings, 𝑔1 and 𝑔2 (which correspond to the pillow and to the
double-trace), and an imaginary tetrahedral coupling 𝑖𝑔 (it is here that the link with [24] is used).
It turns out that all the couplings exhibit asymptotic freedom, leading to a just-renormalizable field
theory with an ultraviolet limit and a strongly coupled infrared limit in four space-time Euclidean
dimensions, just like QCD!

On the other hand, from his “constructive vein" and with his collaborators Dario Benedetti,
Hannes Keppler and Davide Lettera, he has begun a study of Ecalle’s trans-series, again on the
𝑂 (𝑁) model, but this time at small 𝑁 . They recover that both the partition function 𝑍 (𝑔, 𝑁) and
𝑊 (𝑔, 𝑁) = log 𝑍 (𝑔, 𝑁) are Borel summable functions. Then, using our constructive field theory
techniques such as the loop vertex expansion [27], they prove that the trans-series expansion of
the Taylor coefficients of these expansions, 𝑍𝑛 (𝑔) and 𝑊𝑛 (𝑔), are different. What I find especially
strong in their article is the fact that they were able to extend the Borel transform to the angle 3

2𝜋 and
to prove that, while 𝑊 (𝑔, 𝑁) displays contributions from arbitrarily many multi-instantons, 𝑊𝑛 (𝑔)
exhibits contributions of only up to 𝑛-instanton sectors.

Recently Razvan and I made a review entitled “Quantum Gravity and Random Tensors" in the
context of the Poincaré Seminar [28].

Joseph Ben Geloun has defended his french “Habilitation à diriger des recherches". Along the
many gems of his HdR, I choose one which is particularly spectacular. With Sanjaye Ramgoolam
they have been able to give a combinatorial interpretation of the Kronecker coefficients, a problem
which existed since 85 years! Kronecker coefficients are widely studied in mathematics from
many points of view: symmetric polynomials, complexity theory, combinatorics... The standard
mathematical approach is to think of them as the structure constants of irreducible representations
of symmetric groups and it’s around this approach that they’ve built their results [29].

Joseph Ben Geloun is a most active researcher and we would like to stressed four recent
contributions of him. With Dina Andriantsiory and Mustapha Lebbah, he propose a method of
clustering for 3-order tensors of different dimensions via an affinity matrix. Based on a notion of
similarity between the tensor slices and the spread of information of each slice, their model builds an
matrix on which they apply advanced clustering methods. The combination of all clusters delivers
the desired multiway clustering. Their method and their associated algorithm, which they baptized

6
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MCAM, achieves competitive results compared with other known algorithms, both on synthetics
and real datasets [33–35].

With Reiko Toriumi, he wants to escape the branched polymer phase of tensor models. They
explore two just-renormalizable quartic enhanced1 tensor field theories [31], and they obtain results
which I find interesting. At all orders, both models have a constant wave function renormalization
and therefore no anomalous dimension. They also analyse their RG flow, which depend of two
coupling constants. They compute the perturbative 𝛽-functions of these coupling constants at one-
loop. For the first model, the flow exhibits neither asymptotic freedom nor the ordinary Landau
ghost of 𝜙4

4: one of the coupling stays fixed, and the other has a linear behavior in the time scale.
For the second model both couplings do not flow at all, according this one-loop approximation.

In the article with Andreas Pithis and Johannes Thüringen [32], their goal is to find a phase
transition from discrete quantum-gravitational to continuum geometry starting with tensor invari-
ants. In the so-called cyclic-melonic potential approximation of a tensorial field theory on the
𝑟-dimensional torus, Andreas Pithis and Johannes Thüringen recently showed, using functional
renormalization group techniques, that no such phase transition is possible. In [32] they show how
to overcome this limitation by introducing local degrees of freedom on R𝑑 . They find that the
effective 𝑟 − 1 dimensions of the torus part dynamically vanish along the renormalization group
flow while the 𝑑 local dimensions persist up to small momentum scales. Consequently, for 𝑑 > 2
they find a possibility to allow some phase transitions.

Recently Joseph Ben Geloun and Sanjaye Ramgoolam propose a theory of complexity per-
taining to data analysis [30]. Their goal is to detect projectors in associative algebras, labelled
by representation data. To illustrate this theory they propose three examples. One is based on a
quantum algorithm based on quantum phase estimation, and they compare it to a classical algo-
rithm based on the AdS/CFT correspondence. The other two, around the line of [29], are projectors
labelled by a triple of Young diagrams, all having 𝑛 boxes, or with 𝑚, 𝑛 and 𝑚 + 𝑛 boxes, and
having non-vanishing Kronecker coefficients in the case of having 𝑛 boxes, or having non-vanishing
Littlewood-Richardson coefficients in the case of having 𝑚, 𝑛 and 𝑚 + 𝑛 boxes.

Adrian Tanasa is very active in Bordeaux. His book on combinatorial physics has been
published [36] and his scientific interests often revolve around the problem of the double scaling
of many models [37–39]. With Hannes Keppler, Thomas Krajewski and Thomas Muller, he is also
interested in so called negative dimension theorems, or 𝑁 to −𝑁 dualities, relating the orthogonal
and symplectic group vial the formal relation 𝑆𝑂 (−𝑁) ' 𝑆𝑝(𝑁) [40].

Sabine Harribey is currently a postdoc in Nordita. With her, Igor Klebanov and Zimo Sun
explore a new approach to boundaries and interfaces in the 𝑂 (𝑁) model where they add certain
localized cubic interactions. They use the technique of 1/𝜖 expansion and they show that the
one-loop beta functions of the cubic couplings are affected by the quartic bulk interactions. For
the interfaces, they find real fixed points up to the critical value 𝑁crit ≈ 7, while for 𝑁 > 4 there
are IR stable fixed points with purely imaginary values of the cubic couplings [41]. Recently with
Dario Benedetti, Razvan Gurau and Davide Lettera, she publishes an article on finite-size versus
finite-temperature effets in the O(N) model [42]. In it they consider the classical model, which is
conformally invariant at criticality, and they introduce one compact spatial direction. They show

1Enhanced tensor field theories have dominant graphs that do not correspond to melonic graphs.
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that the finite size dynamically induces an effective mass and they compute the one-point functions
for bilinear primary operators with arbitrary spin and twist. Second, they study the quantum model,
mapped to a Euclidean anisotropic field theory, local in Euclidean time and long-range in space,
which the authors dub fractional Lifshitz field theory. They show that this model admits a fixed
point at zero temperature,

Dario Benedetti and Valentin Bonzom have both defended their HDR. Dario Benedetti has
defended his HdR in the Ecole Polytechnique [43] and Valentin Bonzom has defended his HdR in
the Paris Nord university [53]. Dario Benedetti, Sylvain Carrozza, Reiko Toriumi and Guillaume
Valette studied the double and triple-scaling limits of a complex multi-matrix model. Their main
result is, in a double-scaling limit, to characterize the Feynman graphs of arbitrary genus, and in
the triple-scaling limit, to classify all the three-edge connected dominant graphs and to prove that
their critical behavior falls in the universality class of Liouville quantum gravity [44].

Sylvain Carrozza has been recruited permanently in Université de Bourgogne in Dijon. We
would like to stressed one recent contributions in his domain (apart from [44]). For 𝑝 = 3 and
𝑝 = 5 there exist a melonic large 𝑁 limit for 𝑝-irreducible tensors in the sense of Young tableaux.
Sylvain Carrozza and Sabine Harribey overcome huge difficulties to solve the case 𝑝 = 5 [45]. They
demonstrate that random tensors transforming under rank-5 irreducible representations of O(𝑁)
can support melonic large 𝑁 expansions. Their construction is based on models with sextic (5-
simplex) interaction, which generalize previously studied rank-3 models with quartic (tetrahedral)
interaction. Their proof relies on recursive bounds derived from a detailed combinatorial analysis
of the Feynman graphs. Their results provide further evidence that the melonic limit is a universal
feature of irreducible tensor models in arbitrary rank.

Luca Lionni has been recruited permanently in mathematics at Institut Camille Jordan in
Lyon. With Benoit Collins and Razvan Gurău, he explore a generalization of the Harish-Chandra–
Itzykson–Zuber integral to tensors and its expansion over trace-invariants of the two external
tensors. This gives rise to natural generalizations of monotone double Hurwitz numbers. They find
an expression of these numbers in terms of monotone simple Hurwitz numbers and they give an
interpretation of their different combinatorial quantities in terms of enumeration of nodal surfaces
[47]. Still with Benoit Collins and Razvan Gurău, they analyze a two-parameter class of asymptotic
scalings when 𝑁 , the size of the tensors, is large enough, uncovering several non-trivial asymptotic
regimes. This study is relevant for analyzing the entanglement properties of multipartite quantum
systems [48].

With Timothy Budd, his research is centered in random triangulations of manifolds, a goal
which is central to the random geometry approach to quantum gravity. In case of the 3-sphere
the pursuit is held back by serious challenges, including the wide open problem of enumerating
triangulations. First, they identify a restricted family of triangulations, of which the enumeration
appears less daunting. Then they prove that these are in bijection with a combinatorial family of
triples of plane trees satisfying restrictions. An important ingredient is a reconstruction of the
triangulations from triples of trees that results in a subset of the so-called locally constructible
triangulations. Finally, several exponential enumerative bounds are deduced from the triples of
trees and some simulation results are presented [49].

Stephane Dartois with Camille Male and Ion Nechita studied the tensor flattenings appear
naturally in quantum information when one produces a density matrix by partially tracing the

8
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degrees of freedom of a pure quantum state. In their paper, they study the joint distribution of
the flattenings of large random tensors under mild assumptions, in the sense of free probability
theory. They show the convergence toward an operator-valued circular system with amalgamation
on permutation group algebras for which we describe the covariance structure. As an application
they describe the law of large random density matrix of bosonic quantum states [51].

Nicolas Delporte has defended his PhD [52]. With Dario Benedetti he revisit the Amit-
Roginsky (AR) model in the light of recent studies on SYK and tensor models. It is a model of
𝑁 scalar fields transforming in an 𝑁-dimensional irreducible representation of 𝑆𝑂 (3). The most
relevant (in renormalization group sense) invariant interaction is cubic in the fields and mediated
by a Wigner 3 𝑗𝑚 symbol. The latter can be viewed as a particular rank-3 tensor coupling, thus
highlighting the similarity to the SYK model, in which the tensor coupling is however random and
of even rank. As in the SYK and tensor models, in the large-𝑁 limit the perturbative expansion
is dominated by melonic diagrams. The lack of randomness, and the rapidly growing number of
invariants that can be built with 𝑛 fields, makes the AR model somewhat closer to tensor. In the
short range version of the model, they find, for 5.74 < 𝑑 < 6, a fixed-point defining a real CFT,
while for smaller 𝑑 complex dimensions appear. They also introduce and study a long-range version
of the model, for which the cubic interaction is marginal at large 𝑁 , and they find a real and unitary
CFT for any 𝑑 < 6, both for real and imaginary coupling constant, up to a critical coupling [54].

Riccardo Martini and Reiko Toriumi give a procedure to construct trisection diagrams for
closed pseudo-manifolds generated by colored tensor models without restrictions on the number of
simplices in the triangulation, therefore generalizing previous works in the context of crystallizations
and PL-manifolds. They further speculate on generalization of similar constructions for a class of
pseudo-manifolds generated by simplicial colored tensor models [55].

The authors of [56] introduce a dually-weighted multi-matrix model that for a suitable choice
of weights reproduce two-dimensional Causal Dynamical Triangulations (CDT) coupled to the
Ising model. When Ising degrees of freedom are removed, this model corresponds to the 2d CDT-
matrix model introduced by Dario Benedetti and Joe Henson [57]. They present exact as well as
approximate results for the Gaussian averages of characters of a Hermitian matrix 𝐴 and 𝐴2 for
a given representation and establish the present limitations that prevent them to solve the model
analytically. This sets the stage for the formulation of more sophisticated matter models coupled to
two-dimensional CDT as dually weighted multi-matrix models providing a complementary view to
the standard simplicial formulation of CDT-matter models.

Vincent Lahoche together with Corinne de Lacroix and Harold Erbin [58] compute the gravi-
tational action of a free massive Majorana fermion coupled to two-dimensional gravity on compact
Riemann surfaces of arbitrary genus. The structure is similar to the case of the massive scalar.
The small-mass expansion of the gravitational yields the Liouville action at zeroth order, and they
can identify the Mabuchi action at first order. While the massive Majorana action is a conformal
deformation of the massless Majorana CFT, they find an action different from the one given by the
David-Distler-Kawai (DDK) ansatz.

Bio Wahabou Kpera, Vincent Lahoche and Dine Samary want to study the probability laws
associated with random tensors or tensor field theories. Their approach is to the quantize through a
Langevin type equation. The method they propose use the self averaging property of the tensorial
invariants in the large 𝑁 limit. In this regime, the dynamics is governed by the melonic sector.

9
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Their work focuses on the cyclic (i.e. non-branching) melonic sector, and they study the way that
the system returns to the equilibrium regime. In particular, they provide a general formula for
the transition temperature between these regimes. Numerical simulations are made to support the
theoretical analysis [59]. Also they explored with Seke Yerima the Ward-Takahashi identities in
tensorial group field theories. Ward’s identities result from a expansion around the identity, and it
is expected that a first-order expansion is indeed sufficient. They show that it doesn’t occur for a
complex tensor theory model with a kinetic term involving a Laplacian [60].

4. Blitz Review of Stochastic Analysis

Stochastic analysis has been revolutionized by the work of Martin Hairer on regularity structures
[61], which provides a framework for studying a large class of stochastic partial differential equations
arising from quantum field theory. This framework covers the Kardar–Parisi–Zhang equation, the
Φ4

3 equation and the parabolic Anderson model, all of which require renormalization in order to have
a well-defined notion of solution. Among the fashionable follows-up we shall cite the dynamical
approach of Barashkov and Gubinelli [62] and the variational approach of Gubinelli and Hofmanová
[63].

Regularity structures and associated models are a way of solving a stochastic equation by
choosing objects replacing the polynomials of the Taylor expansion with non-polynomial coefficients
of the increase ℎ between 𝑥 and 𝑥 + ℎ. This generalized expansion is based on non-integer powers
and even negatives ones. In doing so, we perform intelligently a renormalization which depends
only the form of the stochastic equation, not the constants involved or the stochastic noise.

This point of view follows the footsteps of the fathers of differential calculus, where 𝑑 𝑓

𝑑𝑥

can make sense without having to make sense of 𝑑𝑓 and 𝑑𝑥 separately, and the point of view of
distributions, where

∫
𝜙(𝑥)𝛿(𝑥)𝑑𝑥 makes sense for a test function 𝜙 without having to make sense

of 𝛿(𝑥), the Dirac “function". But the later developments overcome the main obstacle of the latter
theory, the multiplication of distributions!

Like Wilson’s, Hairer’s point of view is susceptible to many generalizations. Let’s start with a
trivial example:

𝐴𝜖 = {[𝑥𝜖 (𝑡), 𝑦 𝜖 (𝑡)] , 𝑡 ∈ R}, 𝑥𝜖 (𝑡) = 𝜖𝑡 + 1
𝜖
, 𝑦 𝜖 (𝑡) = 𝜖 cos(𝑡).

At 𝑡 fixed and 𝜖 → 0, [𝑥𝜖 (𝑡), 𝑦 𝜖 (𝑡)] → [∞, 0], does not converge. If we perform a reparametrization
𝑡 ↦→ 𝑡/𝜖 − 1/𝜖2, the solution reparametrised

[𝑥𝜖 (𝑡) = 𝑡 , 𝑦̂ 𝜖 (𝑡) = 𝜖 cos
(
𝑡

𝜖
− 1
𝜖2

)
] → 𝐴0 = R × {0}

indeed converges. In this analogy (𝑥𝜖 , 𝑦 𝜖 ) plays the role of the ’bare’ solution 𝜙𝜖 , while (𝑥𝜖 , 𝑦̂ 𝜖 )
plays the role of the renormalized solution.

Let us come the heart of Hairer’s formalism.

Definition 1. A regularity structure is a triple T = (𝐴,𝑇, 𝐺) consisting of:

• a subset 𝐴 (index set) of R that is bounded from below and has no accumulation points;

10
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• the model space: a graded vector space 𝑇 = ⊕𝛼∈𝐴𝑇𝛼, where each 𝑇𝛼 is a Banach space;

• and the structure group: a group 𝐺 of continuous linear operators Γ : 𝑇 → 𝑇 such that, for
each 𝛼 ∈ 𝐴 and each 𝜏 ∈ 𝑇𝛼, we have

(Γ − 1)𝜏 ∈ ⊕𝛽<𝛼𝑇𝛽 . (10)

Moreover Γ1 = 1 for each Γ ∈ 𝐺.

Let us use the notation 𝑋 𝑘 for 𝑋 𝑘1
1 · · · 𝑋 𝑘𝑑

𝑑
for any multi-index 𝑘 . The polynomial canonical

model we’re trying to generalize is then given by

• 𝐴 = N,

• 𝑇𝑘 the linear space generated by monomials of degree 𝑘 ,

• a group of structure 𝐺 (in this case R𝑑 endowed with addition) which acts on 𝑇 via Γℎ𝑋
𝑘 =

(𝑋 − ℎ)𝑘 , ℎ ∈ R𝑑 .

However, it’s not the complete algebraic structure that describes Taylor developments. An essential
element is that a development around a certain point 𝑥0 can be developed around any other point 𝑥1

by the formula

(𝑥 − 𝑥0)𝑚 =
∑︁

𝑘+ℓ=𝑚

(
𝑚

𝑘

)
(𝑥1 − 𝑥0)𝑘 · (𝑥 − 𝑥1)ℓ .

Such a redevelopment application Γ𝑠𝑡 has the property that

{Γ𝑠𝑡𝜏 − 𝜏} ∈
⊕
𝛽<𝛼

𝑇𝛽 =: 𝑇<𝛼.

In other words, when redeveloping a homogeneous monomial around a different point, the leading-
order coefficient remains the same, but lower-order monomials may appear. This is the meaning of
the condition (10).

With the algebraic skeleton so defined, we move on to the associated analytical flesh. A further
key notion is that of a model, which is a way of associating to any 𝜏 ∈ 𝑇 and 𝑥0 ∈ R𝑑 a “Taylor
polynomial" based at 𝑥0 and represented by 𝜏, subject to some consistency requirements. Concretely
it consisting of a family of applications

Π : R𝑑 → L
(
𝑇,S′(R𝑑)

)
; Γ : R𝑑 × R𝑑 → 𝐺

where S′(R𝑑) is the space of distributions (not necessarily temperate) on R𝑑 . In the polynomial
natural canonical model this family of applications is(

Π𝑥𝑋
𝑘
)
(𝑦) = (𝑦 − 𝑥)𝑘 , Γ𝑥𝑦 = Γ𝑦−𝑥 , Γ𝑥𝑦Γ𝑦𝑧 = Γ𝑥𝑧 , Π𝑥Γ𝑥𝑦 = Π𝑦 .

A first difficulty arises. We want to allow 𝜏 elements in 𝑇𝛼 to represent distributions and not
just functions that cancel each other out to order 𝛼 around a point. But then we cannot evaluate
them point by point.

11
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A second difficulty lies in the notion to “cancel to the order of 𝛼" when 𝛼 is negative. It can
only say tend to infinity slowly enough as a function of 𝛼. We therefore need a extended notion of
“cancelling to the order of 𝛼". We will achieve this by controlling the size of our distributions in a
small region around the given point 𝑥0. Consider a test function 𝜙 and define

𝜙𝜆𝑥 (𝑦) := 𝜆−𝑑𝜙
(
𝜆−1(𝑦 − 𝑥)

)
.

Let 𝑟 be a natural number and B𝑟 the set of test functions 𝜙 : R𝑑 → R with support in the ball
𝐵(0, 1) such as ‖𝜙‖C𝑟 ≤ 1. Combining intelligently everything, we can define at last the notion of
models:

Definition 2. Given a regularity structure T and an integer 𝑑 ≥ 1, a model for T over R𝑑 consists
applications

Π : R𝑑 → L
(
𝑇,S′(R𝑑)

)
Γ : R𝑑 × R𝑑 → 𝐺

𝑥 ↦→ Π𝑥 (𝑥, 𝑦) ↦→ Γ𝑥𝑦

so that Γ𝑥𝑦Γ𝑦𝑧 = Γ𝑥𝑧 and Π𝑥Γ𝑥𝑦 = Π𝑦 (Chen relations). Moreover, given 𝑟 > | inf 𝐴|, for any
compact set K ⊂ R𝑑 and constant 𝛾 > 0 there exists a constant 𝐶 such that the bounds�� (Π𝑥𝜏

)
(𝜙𝜆𝑥)

�� ≤ 𝐶𝜆 |𝜏 | ‖𝜏‖𝛼 , ‖Γ𝑥𝑦𝜏‖𝛽 ≤ 𝐶 |𝑥 − 𝑦 |𝛼−𝛽 ‖𝜏‖𝛼 ,

are satisfied uniformly over 𝜙 ∈ B𝑟 , (𝑥, 𝑦) ∈ K, 𝜆 ∈ (0, 1], 𝜏 ∈ 𝑇𝛼, with 𝛼 ≤ 𝛾 and 𝛽 < 𝛼.

Let us make a few remarks.

• Chen’s relations Γ𝑥𝑦Γ𝑦𝑧 = Γ𝑥𝑧 and Π𝑥Γ𝑥𝑦 = Π𝑦 are natural.

• The first bound indicates precisely what we mean when we say that 𝜏 ∈ 𝑇𝛼 represents a term
of the order of 𝛼.

• The second bound is also very natural: it indicates that when developing a monomer of order
𝛼 around a new point at a distance ℎ from the old one, the coefficient in front of monomials
of order 𝛽 is at most of order ℎ𝛼−𝛽 .

• In many interesting cases, it’s natural to scale the different directions of R𝑑 in a different
way. For example to construct solutions for stochastic parabolic PDEs, where the time
direction “counts double", we define 𝜙𝜆𝑥 so that the 𝑖th direction is dilated by 𝜆𝑠𝑖 , where
𝑠 = {𝑠𝑖 , 𝑖 = 1, · · · , 𝑑}. In this case, the corresponding scaled distance is |𝑥 |𝑠 =

∑
𝑖 |𝑥𝑖 |1/𝑠𝑖 .

• For a given structure and regularity pattern, the distribution represented by 𝑓 should be
R 𝑓 (𝑥) := [Π𝑥 𝑓 ] (𝑥). However, this definition is not correct since Π𝑥 𝑓 (𝑥) is in general a
distribution, and therefore may not be evaluated in 𝑥! In addition the models must be subject to
a “reconstruction theorem" which says that in a unique way the distribution is reconstructible
by its generalized Taylor expansion. And this theorem cannot be obtained in a linear way.

12
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Hairer’s theory solves this difficulty by defining another space that Hairer calls 𝐷𝛾 , endowed
with a topology metrizable but not normable which reflects the non-linearity of the problem.

Definition 3. Consider a regularity structure T equipped with a model (Π, Γ) defined on R𝑑 . The
space D𝛾 = D𝛾 (T, Γ) is given by the set of functions 𝑓 : R𝑑 →

⊕
𝛼<𝛾 𝑇𝛼 such that, for each

compact set K and each 𝛼 < 𝛾, there exists a constant 𝐶 with

‖ 𝑓 (𝑥) − Γ𝑥𝑦 𝑓 (𝑦)‖𝛼 ≤ 𝐶 |𝑥 − 𝑦 |𝛾−𝛼 (11)

uniformly over 𝑥, 𝑦 ∈ K.

Let us comment on this definition. M n D𝛾 := {(Π, Γ, 𝐹)} is a metrizable space but not a
normed space. The distance between (Π, Γ, 𝑓 ) and (Π̄, Γ̄, 𝑓 ) is given by inf 𝜌 such that

‖ 𝑓 (𝑥) − 𝑓 (𝑥) − Γ𝑥𝑦 𝑓 (𝑦) + Γ̄𝑥𝑦 𝑓 (𝑦)‖𝛼 ≤ 𝜌 |𝑥 − 𝑦 |𝛾−𝛼,
|
(
Π𝑥𝜏 − Π̄𝑥𝜏

)
(𝜙𝜆𝑥) | ≤ 𝜌𝜆𝛼‖𝜏‖,

‖Γ𝑥𝑦𝜏 − Γ̄𝑥𝑦𝜏‖𝛽 ≤ 𝜌 |𝑥 − 𝑦 |𝛼−𝛽 ‖𝜏‖ ,

uniformly for 𝑥, 𝑦 in a compact set. So we can formulate the reconstruction theorem:

Theorem 1. Let T be a regularity structure as above and let (Π, Γ) be a model for T over R𝑑 .
There is a unique linear map R : D𝛾 → S′(R𝑑) such that�� (R 𝑓 − Π𝑥 𝑓 (𝑥)

)
(𝜙𝜆𝑥)

�� . 𝜆𝛾 , (12)

uniformly over 𝜙 ∈ B𝑟 and 𝜆 and locally uniformly over 𝑥.

Uniqueness is much easier than existence. The existence of such a function appealed in a
crucial way to the existence of a wavelet basis consisting of 𝐶𝑟 functions with compact support,
which was demonstrated in 1988 by Ingrid Daubechies.

We take as a dynamic point of view the example of Φ4 which stochastic equation is

𝜕𝑡Φ = ΔΦ −Φ3 + 𝜉 , (13)

• We place ourselves in dimension 3 on a torus 𝑇3 in direct space,

• 𝜉 is a stochastic variable, for example Gaussian with covariance

E𝜉 (𝑡, 𝑥)𝜉 (𝑠, 𝑦) = 𝛿(𝑡 − 𝑠)𝛿(𝑦 − 𝑥) . (14)

• 𝜌𝜖 is a “mollifier" smooth with compact support which tends when 𝜖 → 0 to 𝛿(𝑡− 𝑠)𝛿(𝑦−𝑥),

• the smoothed stochastic equation 𝑢𝜖 for 𝜉𝜖 = 𝜌𝜖 ∗ 𝜉,

𝜕𝑡𝑢𝜖 = Δ𝑢𝜖 + 𝐶𝜖 𝑢𝜖 − 𝑢3
𝜖 + 𝜉𝜖 , (15)

should tend to the sought solution when 𝜖 → 0.
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In this figure, we show the factorization of the application 𝜉 𝜖 ↦→ 𝑢𝜖 into 𝜉 𝜖 ↦→ X𝜖 ↦→ Φ(X𝜖 ) =
𝑢𝜖 . We can also see that in the space of M models we have several antecedents of 𝜉 𝜖 ∈ S′(R𝑑),
for example the canonical model X𝜖 and the renormalized model X̂𝜖 ; it’s the latter that converges
to a X̂ model, thus offering a bearing on 𝜉. Note that 𝑢̂𝜖 = Φ(X̂𝜖 ) and 𝑢̂ = Φ(X̂).

The BPHZ solution goes through the following steps

• Algebraic step: Construction of the space of models (M, d) and renormalization of the
canonical model M 3 X𝜖 ↦→ X̂𝜖 ∈ M [64].

• Analytical step: Continuity of application M → S′(R𝑑) [61].

• Probabilistic step: Convergence in the sense of probabilities from the renormalized model
X̂𝜖 to X̂ ∈ (M, d) [65].

• Second algebraic step: Identification of the final applicationΦ(X̂𝜖 ) with the classical solution
with local counterterms at the BPHZ [66].

5. The work of Léonard Ferdinand

In this section we summarize briefly the articles of Léonard Ferdinand, a PhD of mine.
Léonard Ferdinand, Razvan Gurău, Carlos Perez-Sanchez and Fabien Vignes-Tourneret con-

sider a quartic 𝑂 (𝑁)-vector model [50]. Using the loop vertex expansion, they prove the Borel
summability in 1/𝑁 for the cumulants (including the free energy, which one considers the cumulant
of zero order). The Borel summability holds uniformly in the coupling constant, as long as the
latter belongs to a cardioid domain of the complex plane. Among their toolbox, let’s remark that
they use ciliated trees in a relatively new sense.

14
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Then we summarize briefly the articles of Ismail Bailleul, Nguyen Viet Dang, Léonard Ferdi-
nand and Tat Dat Tô [67, 68]. These authors deal with the Φ4

3 measure, but what is more original,
on a arbitrary 3-dimensional compact Riemannian manifold without boundary. They prove the non-
triviality and the local covariance under Riemannian isometries of the corresponding measure. This
answers a longstanding open problem of constructive quantum field theory on curved backgrounds
in dimension 3. To control analytically several Feynman diagrams appearing in the construction of
a number of random fields, they introduce a novel approach of renormalization using microlocal
and harmonic analysis. This allows them to obtain a renormalized equation which involves some
universal constants independent of the manifold.

In a companion paper [68], they develop in a self-contained way all the tools from paradiffer-
ential and microlocal analysis that they use in [67], setting a number of analytic and probabilistic
objects. In [69] the authors argue that the spectrally cut-off Gaussian free field ΦΛ on a compact
riemannian manifold or on R𝑛 cannot satisfy the spatial Markov property.

Finally we want to summarize the article of Ajay Chandra and Léonard Ferdinand [70]. These
authors present two different arguments using stochastic analysis to construct super-renormalizable
tensor field theories, namely the 𝑇4

3 and 𝑇4
4 models. The first approach is the construction of a

Langevin dynamic [61, 63] combined with a PDE energy estimate while the second is an application
of the variational approach of Barashkov and Gubinelli [62]. By leveraging the melonic structure of
divergences, regularising properties of non-local products, and controlling certain random operators,
they demonstrate that for tensor field theories these arguments can be significantly simplified in
comparison to what is required for Φ4

3 model.
In their most recent article [71] Ajay Chandra and Léonard Ferdinand show that the flow

approach of Duch [Duc21] can be adapted to prove local well-posedness for the generalised KPZ
equation. The key step is to extend the flow approach so that it can accommodate semi-linear equa-
tions involving smooth functions of the solution instead of only polynomials - this is accomplished
by introducing coordinates for the flow built out of the elementary differentials associated to the
equation.

6. Conclusion

This review is a modest step in the direction of bring closer the different people working on
random tensors and stochastic analysis and it suggests research in many directions, among which:

• our next goal is 𝑇4
5 which is just renormalizable and asymptotically free. We are reasonably

confident that it can be solvable soon among the strategy and the tactics defined by [71, 72],

• for the future one should further develop the model of Razvan Gurau and collaborators [26]
in the direction of constructive field theory. This promising model lies in the class of tensor
field theory with imaginary tetrahedral coupling, and, what is more important for the physics,
it is asymptotically free and in dimension four,

• in the more distant future, the common goal of all the people working on field theory with
stochastic analysis (including Martin Hairer himself [73]) is to tackle gauge theories in the
spirit of Parisi-Wu [74].
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7. Appendix: Besov spaces

In mathematics, the Besov space 𝐵𝑠
𝑝,𝑞 (R) is a complete quasinormed space which is a Banach

space when 1 ≤ 𝑝, 𝑞 ≤ ∞. These spaces serve to generalize more elementary function spaces such
as Sobolev spaces and are effective at measuring regularity properties of functions.

Let Δℎ 𝑓 (𝑥) = 𝑓 (𝑥 − ℎ) − 𝑓 (𝑥) and define the modulus of continuity by

𝜔2
𝑝 ( 𝑓 , 𝑡) = sup

|ℎ | ≤𝑡



Δ2
ℎ 𝑓




𝑝
. (16)

Let 𝑛 be a non-negative integer and define: 𝑠 = 𝑛 + 𝛼 with 0 < 𝛼 ≤ 1. The Besov space 𝐵𝑠
𝑝,𝑞 (R)

contains all functions 𝑓 such that

𝑓 ∈ 𝑊𝑛,𝑝 (R),
∫ ∞

0

�����𝜔2
𝑝

(
𝑓 (𝑛) , 𝑡

)
𝑡𝛼

�����𝑞 𝑑𝑡

𝑡
< ∞. (17)

The Besov space 𝐵𝑠
𝑝,𝑞 (R) is equipped with the norm

‖ 𝑓 ‖𝐵𝑠
𝑝,𝑞 (R) =

(
‖ 𝑓 ‖𝑞

𝑊 𝑛,𝑝 (R) +
∫ ∞

0

�����𝜔2
𝑝

(
𝑓 (𝑛) , 𝑡

)
𝑡𝛼

�����𝑞 𝑑𝑡

𝑡

) 1
𝑞

. (18)

The Besov spaces 𝐵𝑠
2,2(R) coincide with the more classical Sobolev spaces 𝐻𝑠 (R).

Next, on a variety such as 𝐵𝑠
𝑝,𝑞 (T𝑑), the authors of [67] want to define a number of operators on

functions spaces by using local charts. For that task they import some known regularity properties
of the corresponding objects from the flat to the curved setting. They denote as usual by 𝐵

𝛾
𝑝,𝑞 (T𝑑)

the Besov spaces over T𝑑 and by 𝐶𝛾 (T𝑑) the Besov-Hölder space 𝐵
𝛾
∞,∞(T𝑑), with associated norm

denoted by ‖ · ‖𝐶𝛾 . And so they define and use of the Besov spaces in their analysis.
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