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1. Introduction

Superstring theory is a promising candidate for a quantum theory of gravity, but it is consistently
defined only in 10–dimensional spacetime. The standard model of particle physics, on the other
hand, is defined in (3+1)–dimensional spacetime. By compactifying the extra dimensions, the
effective spacetime in superstring theory at low energy becomes (3+1)–dimensional. However, there
are infinitely many perturbative vacua including those having spacetime with different dimensions,
and we cannot determine the vacuum that corresponds to our universe, at least at the perturbative
level. Nonperturbative effects are thought to play an important role in lifting this degeneracy.

The type IIB matrix model [1] is a promising candidate for a nonperturbative formulation
of superstring theory. The model is defined by dimensionally reducing 10–dimensional N = 1
super Yang–Mills theory to zero dimensions. Spacetime emerges dynamically from the bosonic
matrix degrees of freedom. The Euclidean version of this model has been studied analytically using
the Gaussian expansion method [2–5] and also numerically using the complex Langevin method
[6, 7], where the emergence of Euclidean 3–dimensional space has been observed. However, the
relationship between the emergent space and our (3+1)–dimensional universe was unclear. On the
other hand, the Lorentzian model has not been studied well due to the severe sign problem, which
prevents us from applying conventional Monte Carlo methods1. Recently, numerical simulations
have been performed using the complex Langevin method [12, 13] to overcome the sign problem
[14–20]. The hope is that the dynamics of the model will result in the emergence of a (3+1)–
dimensional expanding spacetime, where the extra dimensions are compactified via a spontaneous
symmetry breaking (SSB) of the 9–dimensional rotational symmetry of space. See Refs. [21–24]
for recent reviews on this model.

In our previous studies [18–20], we demonstrated that the Euclidean and the Lorentzian
models are connected via analytic continuation. By adding a Lorentz invariant mass term in the
action [25–38], which acts as an IR regulator, the Lorentzian model becomes inequivalent to the
Euclidean model. In particular, we provided evidence for obtaining a smooth expanding spacetime.
The signature of the metric changes dynamically, being Euclidean at early times and becoming
Lorentzian at late times. While we found no evidence for a (3+1)–dimensional expanding spacetime,
we reported that by omitting the fermionic contribution and tuning the model’s parameters, a (1+1)–
dimensional expanding spacetime emerges.

In this paper, we first show that this is merely an artifact resulting from the action of the
Lorentz boost during the simulation due to the Lorentz symmetry of the model. By choosing a
Lorentz frame that offers a natural definition of spacetime, the boost’s effect is eliminated, and
the 1–dimensional expansion disappears. Subsequently, we simulate the model by incorporating
the dynamical effect of the fermions and present evidence suggesting the emergence of a smooth
(3+1)–dimensional expanding spacetime, with six dimensions of space compactified via the SSB
of the SO(9) rotational symmetry, in which supersymmetry (SUSY) plays a crucial role.

The rest of this paper is organized as follows. In Section 2, we explain the regularization of the
Lorentzian model used in this work. In Section 3, we present the results obtained by performing a

1In Refs. [8–10], the Lorentzian model was studied by Monte Carlo methods using an approximation and the emergence
of (3+1)–dimensional expanding spacetime was reported. However, it was found later [11] that the approximation amounts
to replacing the complex weight 𝑒𝑖𝑆 by 𝑒−𝛽𝑆 (𝛽 > 0), and that the emergent space is actually not continuous.
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simulation of the bosonic model and point out that the appearance of the 1–dimensional expanding
space is an artifact of the Lorentz boost. We also explain the method for removing this artifact.
In Section 4, we show our results obtained by simulations of the model including the fermionic
contribution. Section 5 is devoted to a summary and discussions.

2. Regularization of the Lorentzian type IIB matrix model

The Lorentzian type IIB matrix model is defined by the partition function

𝑍 =

∫
𝑑𝐴𝑑Ψ 𝑒𝑖 (𝑆b+𝑆f ) ,

𝑆b = −𝑁

4
Tr

{
−2[𝐴0, 𝐴𝑖]2 + [𝐴𝑖 , 𝐴 𝑗]2} ,

𝑆f = −𝑁

2
Tr

{
Ψ𝛼 (𝐶Γ𝜇)𝛼𝛽 [𝐴𝜇,Ψ𝛽]

}
,

(1)

where 𝐴𝜇 and Ψ𝛼 are bosonic and fermionic 𝑁 × 𝑁 Hermitian matrices, respectively. The indices
𝜇 and 𝛼 run from 0 to 9 and 1 to 16, respectively, while the spatial index 𝑖 runs from 1 to 9
only. The 16 × 16 matrices 𝐶 and Γ𝜇 are the charge conjugation matrix and 10d Gamma matrices,
respectively, after the Weyl projection. This model has N = 2 SUSY, which is the maximal SUSY
in 10d, implying that the model includes gravity. Furthermore, from the SUSY algebra, one can
identify the constant shift 𝐴𝜇 → 𝐴𝜇 + 𝑐𝜇1 as the translation in this model. Thus, the eigenvalues
of the matrices 𝐴𝜇 can be identified as the spacetime coordinates. This model also has SO(9,1)
Lorentz symmetry, which should be partially broken at some point in time for the emergence of
(3+1)–dimensional spacetime.

Since the partition function (1) of the Lorentzian model is not absolutely convergent, we need
to regularize it. In this work, we use the Lorentz invariant mass term

𝑆𝛾 = −1
2
𝑁𝛾Tr

(
𝐴𝜇

)2
=

1
2
𝑁𝛾

{
Tr (𝐴0)2 − Tr (𝐴𝑖)2} (2)

as an IR regulator, where 𝛾 is a mass parameter and the 𝛾 → 0 limit should be taken after taking
the large–𝑁 limit. The model with this regulator has been studied in various contexts [25–38].
In particular, Ref. [32] reported the emergence of expanding spacetime by solving the classical
equation of motion, although the dimensionality of space is not determined at the classical level.

3. The (1+1)–dimensional expanding spacetime as an artifact of the Lorentz boost

In this section, we discuss the emergence of the (1+1)–dimensional expanding spacetime
observed in the bosonic model, and show that this is merely an artifact of the Lorentz boost.

In the simulation, we “gauge–fix” the SU(𝑁) symmetry so that the matrix 𝐴0 is diagonalized
as 𝐴0 = diag(𝛼1, 𝛼2, · · · , 𝛼𝑁 ), where 𝛼1 < 𝛼2 < · · · < 𝛼𝑁 . In order to see the structure of the
spatial matrices 𝐴𝑖 in that basis, we define a quantity

A𝑝𝑞 =
1
9

9∑︁
𝑖=1

��(𝐴𝑖)𝑝𝑞
��2 , (3)
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which is shown later in Fig. 4. As in this case, the obtained spatial matrices have a band–diagonal
structure in general when the emergent space shows a clear expanding behavior. Using the band–
width 𝑛, we define the time by

𝑡𝑎 =

𝑎∑︁
𝑖=1

|�̄�𝑖 − �̄�𝑖−1 | , (4)

where �̄�𝑖 is an average of 𝛼’s in the 𝑖–th block with size 𝑛 defined as

�̄�𝑖 =
1
𝑛

𝑛∑︁
𝜈=1

⟨𝛼𝑖+𝜈⟩ . (5)

We also define the 𝑛 × 𝑛 block matrices in the spatial matrices as(
�̄�𝑖

)
𝑘𝑙
(𝑡𝑎) = (𝐴𝑖) (𝑘+𝑎−1) (𝑙+𝑎−1) , (6)

which are interpreted as representing the state of the universe at 𝑡𝑎. In what follows, we omit the
index 𝑎 of 𝑡𝑎 for simplicity and shift the time so that the results are symmetric around 𝑡 = 0. As an
order parameter of the SSB of the SO(9) symmetry, we define the “moment of inertia tensor" as

𝑇𝑖 𝑗 (𝑡) =
1
𝑛

tr
(
�̄�𝑖 (𝑡) �̄� 𝑗 (𝑡)

)
, (7)

where “tr” is used for traces of 𝑛 × 𝑛 block matrices, discriminating it from “Tr” used for traces of
𝑁 × 𝑁 matrices. If the SO(9) symmetry is not spontaneously broken, the nine eigenvalues 𝜆𝑖 (𝑡) of
the tensor 𝑇 (𝑡) become degenerate in the large–𝑁 limit. In all the simulations in this work2, we use
𝑁 = 96, 𝛾 = 4, and the block size is chosen to be 𝑛 = 12.

In Fig. 1, we plot the eigenvalues 𝛼𝑖 of the matrix 𝐴0 (Left) and the eigenvalues 𝜆𝑖 (𝑡) of
𝑇𝑖 𝑗 (𝑡) (Right). The eigenvalues 𝛼𝑖 are distributed on a curve which is almost parallel to the real
axis for large |𝛼𝑖 |, indicating the emergence of real time at late times3. We also see that one
out of nine eigenvalues of 𝑇𝑖 𝑗 (𝑡) grows with 𝑡, which suggests the emergence of an expanding
(1+1)–dimensional spacetime at late times for the chosen parameters.

However, this is an artifact of Lorentz boosts as we see below. In Fig. 2 (Left), we plot the
trace of each spatial block matrix in the SO(9) basis which diagonalizes the moment of inertia
tensor 𝑇 (𝑡). We find that one of them grows linearly in time, which indicates that the obtained
configurations are Lorentz boosted. Therefore, we need to remove the effects of the Lorentz boost
to obtain the proper information of the emergent spacetime.

For that purpose, we choose a Lorentz frame by minimizing the quantity

T = Tr
(
𝐴
†
0𝐴0

)
, (8)

with respect to Lorentz transformations on each sampled configuration. This can be achieved by
performing the (1+1)–dimensional Lorentz transformation(

𝐴′
0

𝐴′
𝑖

)
=

(
cosh𝜎 sinh𝜎
sinh𝜎 cosh𝜎

) (
𝐴0

𝐴𝑖

)
(9)

2In order to stabilize the complex Langevin simulations, we have introduced a parameter 𝜂 as described in Ref. [21],
which is taken to be 𝜂 = 0.005 in this work. This procedure is similar to the so-called dynamical stabilization, which has
been used in complex Langevin simulations of finite density QCD [39, 40].

3We have also confirmed that the quantity ⟨tr�̄�𝑖 (𝑡)2⟩ with the spatial matrices 𝐴𝑖 (𝑡) defined by (6) is close to real,
indicating the emergence of real space at late times. This applies to all the cases discussed in this paper.
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Figure 1: (Left) The eigenvalues 𝛼𝑖 of the matrix 𝐴0 are plotted in the complex plane for the bosonic model
with 𝑁 = 96 and 𝛾 = 4. (Right) The real part of the eigenvalues 𝜆𝑖 (𝑡) of 𝑇𝑖 𝑗 (𝑡) are plotted against time for
the bosonic model with 𝑁 = 96 and 𝛾 = 4, where we find that one out of nine eigenvalues starts to grow at
some point in time.

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

R
e

 〈
tr

A−
i(
t)

/n
〉

t

−1

−0.5

 0

 0.5

 1

−2 −1.5 −1 −0.5  0  0.5  1  1.5  2

R
e

 〈
tr

A−
i(
t)

/n
〉

t

Figure 2: (Left) The real part of the trace of each spatial matrix is plotted against time for the bosonic model
with 𝑁 = 96 and 𝛾 = 4. Different colors of the data points correspond to a different index 𝑖 for the spatial
matrices �̄�𝑖 (𝑡). (Right) The real part of the trace of each spatial matrix after the Lorentz transformation is
plotted against time.

iteratively in such a way that the quantity (8) is minimized with respect to 𝜎 at each step, where
𝑖 = 1, 2, ..., 9 and 𝜎 is a real parameter.

Let us discuss how 𝜎 is determined at each step. Plugging 𝐴′
0 in Eq. (8), we get

T ′ = cosh2 𝜎 Tr
(
𝐴
†
0𝐴0

)
+ sinh2 𝜎 Tr

(
𝐴
†
𝑖
𝐴𝑖

)
+ 2 cosh𝜎 sinh𝜎 Re Tr

(
𝐴
†
0𝐴𝑖

)
. (10)

Thus the problem reduces to the minimization of

𝑓 (𝑥) = 𝑎 cosh 𝑥 + 𝑏 sinh 𝑥 , (11)

where we have defined 𝑥 = 2𝜎 and

𝑎 = Tr
(
𝐴
†
0𝐴0

)
+ Tr

(
𝐴
†
𝑖
𝐴𝑖

)
,

𝑏 = 2 Re Tr
(
𝐴
†
0𝐴𝑖

)
.

(12)
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Figure 3: (Left) The eigenvalues 𝛼𝑖 of the matrix 𝐴0 after the Lorentz transformation are plotted in the
complex plane for the bosonic model with 𝑁 = 96 and 𝛾 = 4. (Right) The real part of the eigenvalues 𝜆𝑖 (𝑡)
of 𝑇𝑖 𝑗 (𝑡) after the Lorentz transformation are plotted against time for the bosonic model with 𝑁 = 96 and
𝛾 = 4. The growth of one out of nine eigenvalues has disappeared.

We find that the minimum
√
𝑎2 − 𝑏2 is obtained at 𝑥 = tanh−1

(
− 𝑏

𝑎

)
, where

�� 𝑏
𝑎

�� < 1 as one can prove
from the inequality

Tr (𝐴0 ± 𝐴𝑖)† (𝐴0 ± 𝐴𝑖) ≥ 0 . (13)

Note that the matrix 𝐴0 is no longer diagonal after the Lorentz transformation. Therefore, we
redefine 𝛼𝑖 by diagonalizing 𝐴0 as

𝐴0 → 𝑃−1𝐴0𝑃 ≡ �̃�0 , (14)

where 𝑃 is a general complex matrix and �̃�0 = diag(𝛼1, 𝛼2, · · · , 𝛼𝑁 ) is a complex diagonal matrix
with the ordering

Re 𝛼1 < Re 𝛼2 < · · · < Re 𝛼𝑁 . (15)

Accordingly, we transform the spatial matrices 𝐴𝑖 as

𝐴𝑖 → 𝑃−1𝐴𝑖𝑃 . (16)

In Fig. 2 (Right), we plot the trace of each spatial matrix after the Lorentz transformation.
By comparing this plot with Fig. 2 (Left), we find that the linear growth of the trace of the block
matrices has disappeared.

In Fig. 3, we plot the eigenvalues 𝛼𝑖 of the matrix 𝐴0 (Left) and the eigenvalues 𝜆𝑖 (𝑡) of
𝑇𝑖 𝑗 (𝑡) (Right) after the Lorentz transformation, which should be compared with Fig. 1. While the
eigenvalue distribution of 𝛼𝑖 is not affected significantly by the Lorentz transformation, the nine
eigenvalues of 𝑇𝑖 𝑗 (𝑡) come quite close to each other after the Lorentz transformation, indicating
that the 1–dimensional expansion is indeed an artifact of the Lorentz boost.

4. The effect of SUSY

When we include the fermionic contribution, the existence of near–zero eigenvalues of the
Dirac operator makes the complex Langevin simulations untrustable. This problem is known as the

6
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Figure 4: The structure of the spatial matrices is shown by A𝑝𝑞 defined in (3) for the model including the
fermionic contribution with 𝑁 = 96, 𝛾 = 4, 𝑚f = 3.5, 𝑑 = 5 and 𝜉 = 16.

singular drift problem [41, 42]. In order to overcome this problem, we add a fermionic mass term

𝑆𝑚f = 𝑖𝑁𝑚fTr
[
Ψ̄𝛼

(
Γ7Γ

†
8Γ9

)
𝛼𝛽

Ψ𝛽

]
, (17)

where 𝑚f is a mass parameter. We eventually need to make the 𝑚f → 0 extrapolation to retrieve the
original model. Note that, at 𝑚f = ∞, the fermionic degrees of freedom decouple and the model
becomes equivalent to the bosonic model.

We find that the complex Langevin method works only for 𝑚f ≳ 3.5 with the present matrix
size 𝑁 = 96. The results for 𝑚f = 3.5, however, are still qualitatively the same as those of the
bosonic model. In order to enhance the effect of SUSY without decreasing 𝑚f , we attempt to
suppress the bosonic fluctuations by modifying the Lorentz invariant mass term as

𝑆𝛾 =
1
2
𝑁𝛾

Tr (𝐴0)2 −
𝑑∑︁
𝑖=1

Tr (𝐴𝑖)2 − 𝜉

9∑︁
𝑗=𝑑+1

Tr
(
𝐴 𝑗

)2
 , (18)

where 𝜉 (≥ 1) is an additional parameter, which is introduced to suppress the fluctuations of (9− 𝑑)
bosonic matrices. Note that this term breaks the Lorentz symmetry4 from SO(9,1) to SO(𝑑,1) for
𝜉 > 1. We show our results for this modified model with 𝑁 = 96, 𝛾 = 4, 𝑚f = 3.5, 𝑑 = 5 and
𝜉 = 16 after the Lorentz transformation that removes the artifact of the Lorentz boost.

In Fig. 4, we plot the quantity A𝑝𝑞 defined in (3), where we see a band–diagonal structure of
the spatial matrices. In Fig. 5 (Left), we plot the eigenvalues of 𝐴0. We find that the distribution of

4The idea of introducing a mass term of this kind is inspired by a BMN–type deformation [43] of the type IIB matrix
model, which preserves SUSY [44]. See also Ref. [45] for complex Langevin simulations of the Euclidean model with
this SUSY deformation.
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Figure 5: (Left) The eigenvalues 𝛼𝑖 of the matrix 𝐴0 are plotted in the complex plane for the model including
the fermionic contribution with 𝑁 = 96, 𝛾 = 4, 𝑚f = 3.5, 𝑑 = 5 and 𝜉 = 16. (Right) The real part of the
eigenvalues 𝜆𝑖 (𝑡) of 𝑇𝑖 𝑗 (𝑡) are plotted against time for the same model. Three out of nine eigenvalues start
to grow at some point in time, which clearly indicates the emergence of an expanding 3–dimensional space.

the eigenvalues becomes parallel to the real axis at late times, which implies that the time becomes
real in that region. In Fig. 5 (Right), we plot the eigenvalues 𝜆𝑖 (𝑡) of 𝑇𝑖 𝑗 (𝑡). While the SO(𝑑) spatial
rotational symmetry seems to be preserved at early times, it is broken spontaneously to SO(3) at
some point in time. After this SSB, only three eigenvalues start to grow. This result suggests that
the expanding (3+1)–dimensional spacetime appears at late times in the presence of SUSY.

5. Summary

We have performed first–principle calculations of the Lorentzian type IIB matrix model using
the Lorentz invariant mass term as an IR regulator. From the simulation of the bosonic model,
we found that the Lorentz boosts may cause severe artifacts in the emergent spacetime structure.
We performed a Lorentz transformation on the sampled configurations to remove these artifacts.
We then found that the SSB of SO(9) does not occur in the bosonic model. Hence, the fermionic
contribution is expected to be crucial for the emergence of (3+1)–dimensional spacetime.

When we include the fermionic contribution, we have to modify the model by adding the
fermionic mass term (17) in order to make the complex Langevin method work. We find that,
at 𝑚f = 3.5, which is the minimal value that we were able to achieve for the present matrix size
𝑁 = 96, the results are qualitatively the same as those of the bosonic model.

In order to enhance the effect of SUSY without decreasing 𝑚f further, we reduced the quantum
fluctuations of the bosonic matrices by modifying the Lorentz invariant mass term as in Eq. (18)
with the parameter 𝜉. We performed simulations in the 𝑑 = 5 case and found that the SO(𝑑) spatial
rotational symmetry is spontaneously broken, and (3+1)–dimensional expanding spacetime appears
at some point in time. Note that these results are obtained after the Lorentz transformation that
removes the artifact of the Lorentz boosts. Recently it has been proposed [46] that the Lorentz
symmetry should be "gauge–fixed" in defining the Lorentzian type IIB matrix model. Then the
configurations will not get Lorentz boosted during the simulation.

In order to investigate whether the (3+1)–dimensional spacetime emerges in the original model,
we need to take the limits of 𝑚f → 0, 𝜉 → 1, 𝑁 → ∞ and 𝛾 → 0, eventually. Performing these
extrapolations is an important future direction.
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