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The QHE and the index theorem Brian P. Dolan

1. The quantum Hall Effect (QHE)

The quantum Hall effect is a fascinating phenomenon not just from an experimental and
practical point of view, but also because the theoretical ideas that it has spawned.

1.1 Experiment
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When a very pure thin slab of semi-conducting material (with a thickness that is less than the
Dec Broglie wavelength of the electrons, so it is effectively 2-dimensional) is placed in a strong
magnetic field, at cryogenic temperatures, the Hall resistance no longer follows the classical, linear
dependence on the magnetic field, but develops strong plateaux that are quantised to a very high
level of accuracy. On these plateau the Ohmic resistance drops to zero, as shown below (from [1]):

1.2 The integer QHE

In 2-dimensions resistance has units ℎ

𝑒2 , with ℎ

𝑒2 corresponding to 25.81280745kΩ. In the
integer QHE [2] the Hall resistance is 1 over an integer, in units with 𝑒2

ℎ
= 1. A key ingredient

in understanding the Hall quantisation is the notion of Landau levels. The Hamiltonian for a free
electron moving in a 2-dimensional plane with a uniform, transverse magnetic field 𝐵 is equivalent
to that of a harmonic oscillator, so the energy levels are quantised and equally spaced. A system of
𝑁 such non-interacting electrons has the Hamiltonian

𝐻 =
ℏ2

2𝑚

𝑁∑︁
𝑖=1

(
−𝑖∇𝑖 −

𝑒

ℏ
𝐴(𝑥𝑖 , 𝑦𝑖)

)2
, 𝐴 =

𝐵

2
(𝑥𝑑𝑦 − 𝑦𝑑𝑥). (1)
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The energy levels (Landau levels) are degenerate, and the degeneracy 𝑒A
𝐵

, increases with the area
of the sample A. If the Fermi energy 𝜖𝐹 falls between two Landau levels then all the Landau levels
below 𝜖𝐹 are fully occupied and all those above are completely empty, there is therefore a mass
gap. Landau levels are exactly filled when the magnetic flux per unit area is an integer multiple
of the particle density (and so the total magnetic flux is an integer multiple of the total number of
charge carriers in the sample), this integer measures the number of full Landau levels and is called
the filling factor.
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Figure 1: Landau levels for a charged particle in 2-d with a transverse magnetic field.

For example, it the number of particles is 3 and the total magnetic flux is Φ = 𝐵A = 3Φ0,
(with Φ0 = ℎ

𝑒
), as in the figure below, then the filling factor is 𝜈 = 𝑒𝑛

𝐵
= 1 (in real samples, particle

densities can be 𝑛 ∼ 1011cm−2).

B

Figure 2: the completely filled lowest Landau level, filling factor 1.

On the plateaux the Ohmic conductivity 𝜎𝑥𝑥 = 0 and the Hall conductivity 𝜎𝑥𝑦 = 𝜈 = 1, 2, . . .,
in units with 𝑒2

ℎ
= 1.

1.3 The fractional QHE

Two years after the integral QHE effect was discovered, with even purer samples, states with
𝜎𝑥𝑦 =

𝑝

𝑞
(𝑝 and 𝑞 integral, with 𝑞 odd) were found [3]. One way to view these states is to view the

quasi-particles as composite fermions [4].
Take the wave function Ψ(𝑧1, . . . , 𝑧𝑁 ) for a system consisting of 𝑁 particles at positions

𝑧𝑖 = 𝑥𝑖 + 𝑖𝑦𝑖 , 𝑖 = 1, · · · , 𝑁 in terms of complex coordinates. Now perform the gauge transformation

Ψ̃(𝑧1, . . . , 𝑧𝑁 ) = 𝑒
𝑖𝜃
𝜋
(Σ𝑖< 𝑗 𝜙𝑖 𝑗 )Ψ(𝑧1, . . . , 𝑧𝑁 ) (2)

3
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where 𝜃 is a constant and 𝜙𝑖 𝑗 = arg(𝑧𝑖 − 𝑧 𝑗). Graphically

i

O

φij

j

ji−z z z

z

Figure 3: definition of the statistical angle 𝜙𝑖 𝑗 .

Let 𝜙(𝑧1, · · · , 𝑧𝑁 ) =
∑

𝑖< 𝑗 𝜙𝑖 𝑗 , if any two particles are interchanged 𝑖 ↔ 𝑗 , then 𝜙𝑖 𝑗 → 𝜙𝑖 𝑗 + 𝜋

and the phase changes by 𝜃. If 𝜃 is an integral multiple of 𝜋,

𝜃 = 𝜋𝑠, 𝑠 ∈ Z

then the wavefunction will change sign under this interchange if 𝑠 is even, because the particles are
fermions, but if 𝑠 odd there is an extra minus sign and the wavefunction does not change sign under
particle interchange: the gauge transformation has mapped a fermionic system to a bosonic system.

In the Hamiltonian −𝑖ℏ∇ − 𝑒A → −𝑖ℏ∇ − 𝑒(A + a) with

𝑎𝛼 (𝑧𝑖) = −ℏ𝜃

𝑒𝜋

∑︁
𝑗≠𝑖

∇(𝑖)
𝛼 𝜙𝑖 𝑗 ⇒ 𝜖𝛽𝛼∇(𝑖)

𝛽
𝑎𝛼 (𝑧𝑖) = −2ℏ𝜃

𝑒

∑︁
𝑗≠𝑖

𝛿(𝑧𝑖 − 𝑧 𝑗),

with 𝛼 = 1, 2.
In the gauge transformation 𝐴 → 𝐴 + 𝑎, 𝑎 = − 𝑠ℏ

𝑒
𝑑𝜙 is called the Statistical Gauge Field,

because it can change the statistics of the multiparticle wavefunction. It gives rise to a statistical
magnetic field.

𝑏 = 𝑑𝑎 = −2𝜋𝑠ℏ
𝑒

∑︁
𝑖≠ 𝑗

𝛿(𝑧𝑖 − 𝑧 𝑗) = −𝑠
∑︁
𝑖< 𝑗

𝛿(𝑧𝑖 − 𝑧 𝑗)
ℎ

𝑒
.

If the number of particles is large, we can chose the origin to coincide with the position of one of
the particles and use a fluid dynamical picture with particle density 𝑛(𝑧) to write

𝑏(𝑧) := 𝜖𝛽𝛼∇𝛽𝑎𝛼 (𝑧) = −2ℏ𝜃
𝑒

𝑛(𝑧) = − 𝑠ℎ

𝑒
𝑛(𝑧).

The gauge transformation (2) is singular if any two particles sit at the same point, giving rise to
𝛿-functions in 𝑏(𝑧), but we have ignored Coulomb repulsion: charged particles with the same
charge can never be at the same point, so (2) is a perfectly good gauge transformation for a system
of charged particles, and Coulomb repulsion is an essential ingredient in the understanding of the
fractional QHE.

For integral 𝑠 this gauge transformation effectively attaches 𝑠 units of statistical magnetic flux
to each particle, and so goes under the name of flux attachment. The picture for 𝑠 = 2, with filling
factor 𝑒𝑛

𝐵
= 1

2 , is shown below: The statistical gauge field exactly cancels the background field and
filling factor 1

2 with 𝑠 = 2 is equivalent to a system of composite fermions with no magnetic field:
it is a standard fermi liquid, albeit of composite fermions.

4
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B

b

B B

Figure 4: composite fermions in effectively zero field

If we now crank up the external field slightly, as shown in figure 5,

Figure 5: filling factor 𝜈 = 1
3 is the integer QHE for composite fermions.

we have a system of composite fermions, effectively with 𝜈 = 1, although with 9 units of external
magnetic field and 3 electrons the experimenter would measure 𝜈 = 1

3 , the fractional QHE. This
is Jain’s composite fermion picture [4]: the fractional QHE is the integral QHE with composite
fermions. The notion that the quasi-particles underpinning the fractional QHE are composite
fermions is reminiscent the Seiberg-Witten low energy effective action for N = 2 supersymmetric
Yang-Mills theory in 4-dimensions [5, 6], in which the effective degrees of freedom at low energy
are also composite fermions: in this case dyons consisting of quarks attached to an even number of
magnetic monopoles with unit charge, [7].

2. Laughlin wavefunctions

The Hamiltonian (1) does not capture all of the physics of the QHE, any real crystal has
impurities and there is Coulomb repulsion between the electrons. In 1983 Laughlin suggested an
analytic form for a trial ground state wavefunction for the full Hamiltonian that is found to have very
good overlap with the numerically determined true ground state [8]. In an infinite plane Laughlin’s
wavefunction for 𝜈 = 1 is

Ψ(𝑧1, . . . , 𝑧𝑁 ) =
∏
𝑖< 𝑗

(𝑧𝑖 − 𝑧 𝑗)𝑒
− 1

4𝑙2
𝐵

∑
𝑖 | �̄�𝑖𝑧𝑖 | (𝑙2

𝐵
= ℏ
𝑒𝐵

)

= 𝑒𝑖Φ
∏
𝑖< 𝑗

|𝑧𝑖 − 𝑧 𝑗 |𝑒
− 1

4𝑙2
𝐵

∑
𝑖 | �̄�𝑖𝑧𝑖 |

,

where Φ =
∑

𝑖< 𝑗 𝜙𝑖 𝑗 , which is equivalent to 𝜃 = 𝜋, 𝑠 = 1 with a statistical gauge field. This can be
interpreted as a condensation of composite bosons in zero field,

5
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b

B

Figure 6: the Laughlin ground state wave function for 𝜈 = 1: a Bose condensate of composite bosons.

Laughlin also proposed trial wavefunctions for the fractional effect:

Ψ(𝑧1, . . . , 𝑧𝑁 ) =
∏
𝑖< 𝑗

(𝑧𝑖 − 𝑧 𝑗)3𝑒
− 1

4𝑙2
𝐵

∑
𝑖 | �̄�𝑖𝑧𝑖 |

,

for 𝜈 = 1
3 , or, more generally,

Ψ(𝑧1, . . . , 𝑧𝑁 ) =
∏
𝑖< 𝑗

(𝑧𝑖 − 𝑧 𝑗)2𝑘+1𝑒
− 1

4𝑙2
𝐵

∑
𝑖 | �̄�𝑖𝑧𝑖 |

,

for 𝜈 = 1
𝑞

, with 𝑞 = 2𝑘 +1 an odd integer. The exponential factors serve to localise the wavefunction
near the origin.

3. The quantum Hall effect on a sphere

Alternatively one can use a spherical geometry with the normal magnetic field generated by a
magnetic monopole 𝑀Φ0 at the centre of a 2-dimensional sphere, with Φ0 = ℎ

𝑒
and 𝑀 an integer,

[9]. The Hamiltonian for a charged particle of mass 𝑚 moving on the surface of a sphere of radius
𝑅 is

𝐻 =
1

2𝑚𝑅2

𝑁∑︁
𝑖=1

| ®Λ𝑖 |2, ®Λ = ®𝑟 × (−𝑖ℏ®∇ − 𝑒 ®𝐴(®𝑟)). (3)

Without loss of generality we can choose 𝑀 > 0. The gauge potential cannot be defined globally,
but different gauges can be used on the northern and southern hemispheres in polar coordinates
(𝜗, 𝜑),

𝐴(±) =
𝑀ℏ

2𝑒
(±1 − cos 𝜗)𝑑𝜑. (4)

Haldane calculated the energy eigenvalues,

𝐸𝑛 =
ℏ2

2𝑚𝑅2

{
𝑛(𝑛 + 1) +

(
𝑛 + 1/2

)
𝑀
}

and showed that the ground state, 𝑛 = 0, has degeneracy 𝑀 + 1.
In Dirac’s original description of a magnetic monopole he used 𝐴(+) on the whole sphere and

introduced a vortex at the south pole which was a gauge artefact — the famous “Dirac string”.
Using the complex coordinate 𝑧 = tan

(
𝜗
2

)
𝑒−𝑖𝜑 , in the gauge

𝐴(+) =
𝑖𝑀ℏ

2𝑒

(
𝑧𝑑𝑧 − 𝑧𝑑𝑧

1 + 𝑧𝑧

)
, (5)

6
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Figure 7: Dirac string.

𝐴(+) is actually well defined everywhere, except at the south pole where there is a (fictitious in
Dirac’s picture) vortex,

The field strength is

𝐹 = 𝑑𝐴 = −
(
𝑖𝑀ℏ

𝑒

)
𝑑𝑧 ∧ 𝑑𝑧

(1 + 𝑧𝑧)2 =

(
𝑀ℏ

2𝑒

)
sin 𝜃𝑑𝜃 ∧ 𝑑𝜙.

A basis for the ground state wave function of (3), in the gauge (5) away from the S-pole, is

𝜓𝑝 (𝑧) =
𝑧𝑝

(1 + 𝑧𝑧) 𝑀
2
,

with 𝑝 = 0, . . . , 𝑀 , [10].
For a system of 𝑁 particles the most general ground state wavefunction of the Hamiltonian (3)

is

Ψ(𝑧1, . . . , 𝑧𝑁 ) =
𝑁∏
𝑖=1

1
(1 + 𝑧𝑖𝑧𝑖)

𝑀
2

𝑀∑︁
𝑝𝑖=0

𝐶𝑝1...𝑝𝑁
𝑧
𝑝1
1 · · · 𝑧𝑝𝑁

𝑁
,

with 𝐶𝑝1...𝑝𝑁
arbitrary constants. The ground state is not unique, but for fermions 𝐶𝑝1...𝑝𝑁

should
be anti-symmetric and, when 𝑁 = 𝑀 + 1, it must be proportional to the (𝑀 + 1)-dimensional
𝜖-tensor. For the special case 𝑁 = 𝑀 + 1 the normalised ground state is unique [9]

Ψ(𝑧1, . . . , 𝑧𝑁 ) =
𝑁∏
𝑖=1

1
(1 + 𝑧𝑖𝑧𝑖)

𝑀
2

∏
𝑖< 𝑗

(𝑧𝑖 − 𝑧 𝑗),

and there is a mass gap. For 𝑁 = 𝑀 + 1 the filling factor is 𝜈 = 𝑁
𝑀

= 𝑁
𝑁−1 and. For a large number

of particles lim𝑁→∞ 𝜈 = 1 and we recover the integer QHE, with 𝜈 = 1 (in numerical analyses,
with 𝑁 finite, the numerator in this expression is usually augmented by one manually in order to
get 𝜈 = 1 — a process known as “the shift”). Of course this analysis has ignored interactions, but
the mass gap ensures stability of the Haldane ground state under perturbations.

The fractional effect is not so clear. When 𝑁 = 𝑀
𝑞
+ 1 the filling factor is 𝜈 = 𝑁

𝑀
= 𝑁

(𝑁−1)𝑞 ,
with 𝜈 = lim𝑁→∞ = 1

𝑞
, and

Ψ(𝑧1, . . . , 𝑧𝑁 ) =
𝑁∏
𝑖=1

1
(1 + 𝑧𝑖𝑧𝑖)

𝑀
2

∏
𝑖< 𝑗

(𝑧𝑖 − 𝑧 𝑗)𝑞, (6)

with 𝑞 ≤ (𝑁 − 1)𝑀 , is a ground state, but it is not unique if 𝑞 > 1. For example, for 𝑞 = 𝑀 = 3,
𝑁 = 2 the most general anti-symmetric ground state is

Ψ =
1

{(1 + 𝑧1𝑧1) (1 + 𝑧2𝑧2)}
3
2

3∑︁
𝑝𝑖=0

𝐶[𝑝1𝑝2 ]𝑧
𝑝1
1 𝑧

𝑝2
2

7
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with𝐶[𝑝1𝑝2 ] a 4×4 anti-symmetric matrix, so this ground state is 6-fold degenerate. However there
is an angular momentum operator [9] that commutes with the Hamiltonian and which can be used
to classify the ground states: for example 𝑞 = 3 in (6) is 𝐽 = 0, while 𝑞 = 1 is 𝐽 = 2, 𝐽3 = −2.
Haldane argues that perturbations that affect quantum hall systems will lift the degeneracy of states
with 𝐽 ≠ 0, but will leave the 𝐽 = 0 sates unaffected, so that the true ground state will be the 𝐽 = 0
singlet.

In the following section the fermionic nature of the charge carriers is incorporated into the
picture.

3.1 The integer QHE: monopoles and the index theorem

For a system of non-interacting fermions on a sphere the non-relativistic Hamiltonian can be
written in terms of the Dirac operator,

𝐻 = − ℏ2

2𝑚𝑅2

𝑁∑︁
𝑖=1

𝐷𝑖/ 2, 𝑖𝐷/ = 𝜎𝛼
(
𝑖∇𝛼 − 𝑒

ℏ
𝐴𝛼 (®𝑟)

)
. (7)

The energy levels differ from those of (3),

𝐸𝑛 =
ℏ2

2𝑚𝑅2 𝑛(𝑛 + 𝑀),

and the ground state 𝑛 = 0 now has degeneracy 𝑀 , rather than 𝑀 + 1 as in Haldane’s picture.
Indeed the ground state degeneracy is determined by the Atiyah-Singer index theorem: a magnetic
monopole of charge 𝑀 gives 𝑛+ − 𝑛− zero modes, where 𝑛+ is the number of positive chirality zero
modes and 𝑛− the number of negative chirality zero modes, with

𝑛+ − 𝑛− =

∫
𝑆2

𝐹 = 𝑀

in units with Φ0 = ℎ
𝑒
= 𝑒2

ℎ
= 1, ℏ = 1

2𝜋 . On a sphere there are no zero modes without a magnetic
monopole and no negative chirality zero modes when 𝑀 > 0. Ground state wave functions for a
single particle are1

𝜓+, 𝑝 (𝑧) =
𝑧𝑝

(1 + 𝑧𝑧) 𝑀−1
2

, 𝜓− = 0, 𝑝 = 0, . . . , 𝑀 − 1.

For a system of 𝑁 particles there is a unique ground state, with a mass gap ∼ ℏ2

𝑚𝑅2 , if and only
if 𝑁 = 𝑀 , in which case

Ψ(𝑧1, . . . , 𝑧𝑁 ) =
𝑁∏
𝑖=1

1
(1 + 𝑧𝑖𝑧𝑖)

𝑀−1
2

∏
𝑖< 𝑗

(𝑧𝑖 − 𝑧 𝑗).

This has filling factor 𝜈 = 𝑁
𝑀

= 1 for any finite 𝑁 . In contrast to Haldane’s model, there is no need
to perform a “shift” to get the integer QHE when the spinorial nature of the electrons is taken into
account, the shift is accounted for geometrically — it arises from the spin connection for fermions
moving on a sphere.

1More details are given in [10], though 𝑧 here is 𝑧 in that reference, 𝑧 is used here for a slight notational simplicity.
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3.2 The fractional QHE: vortices and the index theorem

To analyse the fractional QHE on a sphere we invoke Jain’s composite fermion picture. A
uniform monopole field of charge −v plus a vortex at a point 𝑧𝑖 is generated by a gouge potential

𝑎(𝑧) = 𝑖v
4𝜋

(
𝑑𝑧

𝑧 − 𝑧𝑖
− 𝑑𝑧

𝑧 − 𝑧𝑖

)
− 𝑖v

4𝜋

(
𝑧𝑑𝑧 − 𝑧𝑑𝑧

1 + 𝑧𝑧

)
.

The total magnetic flux vanishes of course,∫
𝑆2

𝑓 =

∫
𝑆2

𝑑𝑎 = 0,

in particular the vortex is real, it is not taken to be a ghostly gauge artefact.

v<0

Figure 8: a dressed vortex

In 3-dimensions there is a real string, not a Dirac string. This real string is on the same footing as
that associated with effective magnetic monopoles that can be created in spin ice in the laboratory
[11]. In contrast to spin ices, we wish to focus on the vortex rather than the uniform background,
so this configuration will be referred to as a dressed vortex.

Now consider a true Dirac monopole with charge 𝑀 ′, and 𝑁 charged particles at points 𝑧𝑖 ,
with dressed vortices attached to the particles. Including the statistical gauge field 𝑓 = 𝑑𝑎 the total
magnetic flux through the sphere is ∫

𝑆2
(𝐹 + 𝑓 ) = 𝑀 ′.

Particles are influenced by a uniform background field 𝑀 = 𝑀 ′ +𝑁v, together with 𝑁 vortices each
with magnetic charge v. For example, the configuration with v = −𝑠 = −2, 𝑁 = 𝑀 ′ = 3 is shown
in figure 9

We now invoke the Atiyah-Singer index theorem to deduce that, in general,

𝑛+ − 𝑛− = 𝑀 ′ = 𝑀 − 2𝑘𝑁,

where v = −2𝑘 . Again, 𝑛− = 0 if 𝑀 > 0, and the ground state is [10]

Ψ(𝑧1, . . . , 𝑧𝑁 ) =
𝑁∏
𝑖=1

1
(1 + 𝑧𝑖𝑧𝑖)

𝑀−1
2

∏
𝑖< 𝑗

|𝑧𝑖 − 𝑧 𝑗 |2𝑘 (𝑧𝑖 − 𝑧 𝑗),

which is unique if 𝑁 = 𝑀 ′.
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νs=2,      =N/M=1/3, M’=3

Figure 9: dressed vortices with 𝑠 = 2, 𝑁 = 𝑀 ′ = 3, 𝑀 = 9.

Since 𝑀 = 𝑀 ′ + 2𝑘𝑁 = 𝑁 (2𝑘 + 1) we have

𝜈 =
1

2𝑘 + 1
.

The ground state is unique and there is a mass gap, making this composite fermion ground state
stable under any perturbation, not just the 𝐽 = 0 perturbations that Haldane’s analysis requires.

Wave functions with this analytic form, albeit with an exponential factor for planar geometry
rather than 1

1+�̄�𝑖𝑧𝑖 factors for spherical geometry, were introduced in [12]. There spherical analogues
were analysed numerically in [13] for 𝑁 = 10 and were found to give very good overlap with the
true ground state of the full Hamiltonian.

4. Conclusions

It has been shown that including the spin connection for charged fermions confined to the
surface of a sphere with a magnetic monopole at the centre tidies up Haldane’s analysis in a number
of ways:

• The Atiyah-Singer index theorem allows the degeneracy of the ground state to be determined
by topological methods alone.

• In contrast to the work of Haldane, when vortices are introduced in order to use Jain’s
composite fermion model to describe the fractional quantum Hall effect, the ground state is
the unique 𝐽 = 0 state, there is no 𝐽 ≠ 0 contamination and there is no need to use angular
momentum arguments to argue that perturbations will lift any 𝐽 ≠ 0 contribution to the
ground state.

• The shift that is necessary for a finite number of scalar particles on a sphere is not necessary
for fermions, it is accounted for by the spin connection associated with the curved geometry.
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The vortices used in the above description of Jain’s construction are taken to be 𝛿-function
singularities for simplicity, but these could be smeared out to 2-dimensional Skyrmions without
affecting the index theorem.

A non-abelian higher dimensional quantum Hall effect was proposed in [14]. The basic idea is
that an 𝑆𝑈 (2) instanton over a 4-sphere has a similar fibre bundle structure to a magnetic monopole
inside a sphere 𝑆2:

𝑈 (1) :
𝑆1 → 𝐸

↓
𝑆2

𝑆𝑈 (2) :
𝑆3 → 𝐸

↓
𝑆4

and Zhang constructed a ground state wave function for fermions on 𝑆4 interacting with an 𝑆𝑈 (2)
instanton (the abelian QHE in 4-dimensions was developed in [15] using the complex projective
space 𝑪𝑷2, analogous to 𝑆2 ≈ 𝑪𝑷1), It would be interesting to investigate whether one could get a
non-abelian fractional higher dimensional quantum Hall effect by introducing a second gauge field
with point-like (𝛿-function) 𝑆𝑈 (2) Skyrmions on 𝑆4.

Effectively 4-dimensional systems, using bosons in an optical lattice to mimic to create two
2-dimensional systems coupled by a weak magnetic field to mimic a 4-dimensional torus, were
proposed in [16] and observed in [17].
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