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1. Introduction

A plausible strategy for bridging the gap between the seemingly disparate domains of gravity
and quantum theory is to modify the short-distance structure of spacetime [1]. One such modifica-
tion is realized by the introduction of coordinate noncommutativity (NC), which has been initially
envisioned to encode both the symmetries of spacetime and the high-energy cutoffs to QFT [2].
However, NC brings about unexpected complications, in particular for the process of renormaliza-
tion, due to what is known as UV/IR mixing [3]. This phenomenon entangles physics on large
and small scales and undermines their clear separation, a separation that is deemed a necessary
ingredient of a successful effective field theory [4].

In the last two decades, the Grosse-Wulkenhaar (GW) model [5, 6] has shown great success in
solving the generic renormalization problems of NC theories by introducing an additional action
term that can be interpreted as coupling with the curvature of the NC background space [7]. We
have recently proposed that the nice behavior of the GW model is related to the phase structure of
the model and can be explained by the suppression of the NC striped phase [8, 9].

This contribution aims to summarize our numerical and analytical results obtained while
working on this topic in recent years and to present some new methods that could help us to explore
it more efficiently.

2. GW model & matrix action

Let us first introduce our model and say a few words about its native NC space. We start with
the two-dimensional GW model [5]

𝑆GW =

∫
𝑑𝑥2

(
1
2
𝜕𝜇𝜙 ★ 𝜕𝜇𝜙 + 𝑚2

2
𝜙 ★ 𝜙 + 𝜆

4!
𝜙 ★ 𝜙 ★ 𝜙 ★ 𝜙 +

+ Ω2

2
((𝜃−1)𝜇𝜌𝑥𝜌𝜙) ★ ((𝜃−1)𝜇𝜎𝑥𝜎𝜙)

)
, (2.1)

which lives on the Moyal plane equipped with a ★-product

𝑓 ★ 𝑔 = 𝑓 𝑒
𝑖/2 ®𝜕𝜇 𝜃

𝜇𝜈 ®𝜕𝜈 𝑔 (2.2)

and NC coordinates
[𝑥𝜇, 𝑥𝜈]★ = 𝑖𝜃𝜖 𝜇𝜈 . (2.3)

The first line in (2.1) is just the nonrenormalizable 𝜆𝜙4
★ model; thanks to the Ω-term in the second

line, the GW-model in two dimensions becomes superrenormalizable [10].
After applying the Weyl transform and promoting the field 𝜙 into an 𝑁 × 𝑁 Hermitian matrix

Φ, the action (2.1) can be rewritten as a matrix model

𝑆 = 𝑁 tr
(
ΦKΦ − 𝑔𝑟𝑅Φ

2 − 𝑔2Φ
2 + 𝑔4Φ

4
)

(2.4)
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on a background space spanned∗ by NC coordinates

𝑋 =
1

√
2𝑁

©«
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+
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1 +
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+
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2
. . .

. . . +
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+
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𝑁−1

ª®®®®®®¬
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√
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−
√

1

+
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1 −
√

2

+
√

2
. . .

. . . −
√
𝑁−1

+
√
𝑁−1

ª®®®®®®¬
. (2.5)

The price of introducing the finite matrix regularization of the NC coordinates is modification of
their commutation relations and curving of the initial Moyal space, where the curvature 𝑅 in fact
contains the energy levels of the Ω-term harmonic oscillator

𝑅 =
15
2𝑁

− 8
(
𝑋2 + 𝑌2

)
𝑁≫1≈ −16

𝑁
diag (1, 2, . . . , 𝑁) . (2.6)

However, the infinite matrix size limit recovers the original commutation relations. As usual, the
kinetic operator of the model (2.4) is given by a double commutator w.r.t. NC coordinates

KΦ = [𝑋, [𝑋,Φ]] + [𝑌, [𝑌,Φ]] . (2.7)

During the construction of the matrix model, the NC scale 𝜃 is absorbed into definitions of the
matrices and couplings of the model and set to unity in order to ensure dealing with dimensionless
quantities. Finally, we also introduce the unscaled† versions of couplings

𝐺2 = 𝑁𝑔2 , 𝐺4 = 𝑁𝑔4 , (2.8)

as they will appear in the analytical results concerning renormalization.

3. Phase transitions & renormalization

The finite matrices not only provide a way to regularize the model, but can also be easily
simulated on a computer, allowing us to perform nonperturbative calculations. Having defined our
matrix action, we can now probe the relevant observables O by well-defined matrix path integrals

〈
O

〉
=

∫
[𝑑Φ] O 𝑒−𝑆∫
[𝑑Φ] 𝑒−𝑆

, VarO =
〈
O2〉 − 〈

O
〉2. (3.9)

With their help, we can in principle deduce the positions of the phase transition lines, which, as
advertised in the introduction, appear to signal the (non)renormalizability of the model. We will
now discuss the details of this connection.

∗Actually, the background space is 3-dim with coordinates
√
𝑁𝑋 ,

√
𝑁𝑌 , but we are here interested in their rescaled

versions and a subspace where the third coordinate is set to 0 in a weak limit of infinite matrix size, which reproduces
the GW-model. We are here also using the rescaled version of the curvature 𝑅. More details in [7].

†The unscaled parameters contain the factor 𝑁 from the action (2.4).

3
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Figure 1: Eigenvalue distribution 𝜌(𝜆) for the matrix GW model in different phases (𝑁 = 24).

In order to understand the phase structure of the model, we must first classify its vacuum
solutions. Applying the saddle point method to the matrix action (2.4) leads to the following
equation of motion

2KΦ − 𝑔𝑟 (𝑅Φ +Φ𝑅) + 2Φ
(
2𝑔4Φ

2 − 𝑔21
)
= 0 , (3.10)

whose solutions corresponding to the kinetic (K), curvature (𝑅), and pure-potential‡ (𝑔2, 𝑔4) parts
are given, respectively, by

Φ↑↑ =
trΦ
𝑁

1 , Φ↕ = 0 , Φ2
↑↓ =

𝑔2
2𝑔4

1 . (3.11)

The first two solutions are the ordered (↑↑) and the disordered (↕) vacuums that are also present in
commutative models. The third one—the so-called stripe/matrix vacuum (↑↓)—is proportional to
nontrivial square roots of the identity matrix 1 and is therefore the pure consequence of NC. The
stripe phase thus contains both positive and negative eigenvalues, which causes it to vary throughout
space and break the translational symmetry [11–13]. The field eigenvalue distribution in each of
these phases is shown in Figure 1. As their shape suggests, they are also called 1-cut symmetric
(↕), 2-cut (↑↓), and 1-cut asymmetric phase (↑↑).

The general structure of the phase diagram is shown§ in Figure 2, which was obtained¶ by
Hamiltonian Monte Carlo simulations [15, 16] and is quite similar to the phase structure on other
fuzzy spaces, for example the fuzzy sphere [17]. The right-hand plot illustrates a result that is
important for the renormalization of the GW model: When the curvature term is included in the
action, the phases of the model shift towards higher values of the mass parameter 𝑔2, relative to the
model without curvature. The proxy for this shift is the shift in the position of the triple point of
the model 𝛿𝑔tp

2 , which we numerically found [8] to be proportional to the curvature parameter 𝑔𝑟 .
Since the renormalization shift of the GW model mass parameter is [18]

𝛿𝑚2
ren =

𝜆

12𝜋(1 +Ω2)
log

Λ2𝜃

Ω
, (3.12)

‡We are interested in the 𝑔2 > 0 regime with the spontaneous symmetry breaking.
§Figures 2 and 3 are the adapted versions of our figures from [8] and [9].
¶For inspection of the GW model without the kinetic term, we also used the eigenvalue-flipping algorithm [14].
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and the matrix size serves as a cutoff Λ2 ∝ 𝑁 [5], by using the qualitative identification between
𝑚 ↔ 𝐺2 and Ω ↔ 𝑔𝑟 [8], we find the renormalization shift of the matrix GW model to be [8]

𝛿𝐺ren
2 ∼ − log 𝑁 . (3.13)

This means that the bare 𝐺2 has to shift by��𝛿𝐺 ren
2

�� ∼ log 𝑁 (3.14)

to compensate for the quantum corrections. Since this shift is smaller than that of the triple point

𝛿𝐺
tp
2 = 𝑁𝛿𝑔

tp
2 ∼ 𝑁𝑔𝑟 , (3.15)

which is the lowest-most-𝑔2 point the stripe phase (Figure 2), we conclude that the bare mass of
the GW model cannot lie in the stripe phase associated with the UV/IR mixing, but instead in the
disordered phase with the trivial vacuum. The same is true for the renormalized version of the 𝜆𝜙4

★

model‖ that is obtained [5, 10] as a limit of a series of the GW models with vanishing curvature
coupling

Ω ∼ 1
log 𝑁

→ 0 . (3.16)

A detailed review of this matter can be found in [19]. In contrast to these renormalizable models,
the above does not hold for the original 𝜆𝜙4

★ without the curvature term, because its triple point
remains locked to the origin in the large 𝑁 limit [8] as in the 𝑔𝑟 = 0 case in Figure 2.

Let us here also mention that modifications to the kinetic term can also induce shifts in the
position of the triple point of the model [20] and are also capable of resolving the UV/IR mixing
problems [21].

4. Analytical results & RTNI package

Since the conclusions about the connection between the renormalizability of the GW model
and the suppression of the stripe phase critically depend on the numerically obtained phase-diagram
shift, it would be desirable to also confirm the existence of this shift analytically. The first steps in this
direction have been undertaken in [9], where the 𝑂 (𝑔4

𝑟 ) effective action and the disordered-to-stripe
transition line have been found for the GW model without the kinetic term.

Although, as can be seen in Figure 3, the transition lines in the strong coupling regime
show excellent agreement even with crude approximations to the effective action, the position of
the starting point (i.e. the triple point) needs more careful consideration. In fact, we need to
compare the results from several different orders of approximations to demonstrate the convincing
convergence of the transition-line turning points in the perturbative regime. To that end, we will at
least require results from the 𝑂 (𝑔6

𝑟 ) effective action, which will be derived in this section.
Let us now outline the general analytical procedure and present some new results. We saw

in Figure 1 that the phases depend only on the distribution of the field eigenvalues, which means

‖We will denote this model by 𝜆𝜙4
GW.

5
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Figure 2: Phase diagrams of the 𝑁 = 24 matrix GW model with (right) and without (left) the curvature
term. The darker areas in the plots have lower values and the lighter areas have higher values of the specific
heat. The bright stripes therefore represent the transition lines between the phases, which are indicated by
arrows in the corners of the plots. Note that the relative shift of the triple point and the transition lines in the
right-hand plot is 𝛿𝑔tp

2 ≈ 16𝑔𝑟 = 16 · 0.2 = 3.2.

that we must first obtain the effective action by integrating out non-eigenvalue degrees of freedom.
Unfortunately, when we decompose our field Φ into the eigenvalues Λ and the unitary part 𝑈

𝑆 = 𝑁 tr
(
(𝑈Λ𝑈†)K(𝑈Λ𝑈†) − 𝑔𝑟𝑅𝑈Λ2𝑈† − 𝑔2Λ

2 + 𝑔4Λ
4
)
, (4.17)

we are faced with rather complicated integrals over the unitary group. Nevertheless, the shift of
the triple point is the sole result of the curvature term so, as a first step, we can try to simplify
our analysis and disregard the kinetic term for the time being. We expect this to reproduce the
magnitude of the triple point shift if not the exact position of the triple point. This expectation is
also backed up by numerical simulations, during which the eigenvalue distribution in the vicinity
of the triple point revealed a field configuration

Φ2
𝑅 =

𝑔21+𝑔𝑟𝑅
2𝑔4

. (4.18)

This configuration is the solution of the equations of motion (3.10) without the kinetic term and its
domain of existence sets a lower bound on the position of the triple point:

𝑔
tp
2 ≥ 16𝑔𝑟 . (4.19)

On the other hand, replacement of the curvature entries by its minimal/maximal eigenvalue, gives
the upper bound on the triple point position [22]

𝑔
tp
2 ≤ 16𝑔𝑟 . (4.20)

6
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Figure 3: Comparison between the analytical phase transition lines for the matrix GW model without the
kinetic term and the results of 𝑁 = 24 numerical simulation. The dotted line is an exact solution for the
𝑂 (𝑔𝑟 ) effective action, the dashed line is an exact solution for the 𝑂 (𝑔2

𝑟 ) effective action and the solid line is
the 𝑂 (𝑔4

𝑟 ) approximation for the 𝑂 (𝑔4
𝑟 ) effective action. We see from the zoomed in portion of the plot that

as we add higher order terms to the effective action, the turning point of the transition line moves towards
(𝑔4, 𝑔2) = (0, 16𝑔𝑟). We also see that already the 𝑂 (𝑔𝑟 ) line is a good approximation for the large 𝑔4 regime.

Together, these two yield
𝑔

tp
2 = 16𝑔𝑟 , (4.21)

and simulations imply that these bounds are indeed saturated.
We can now drop the kinetic term and turn to finding the effective action by performing

integration in the partition function 𝑍:

𝑍 =

∫
[𝑑Φ] 𝑒−𝑆 =

∫
[𝑑Λ] Δ2(Λ) 𝑒−𝑁 tr(−𝑔2Λ

2+𝑔4Λ
4)

∫
[𝑑𝑈] 𝑒 𝑔𝑟𝑁 tr(𝑈𝑅𝑈†Λ2) . (4.22)

Here Δ(Λ) represents the Vandermonde determinant of the eigenvalue matrix Λ:

Δ(Λ) =
∏

1≤𝑖< 𝑗≤𝑁

(𝜆 𝑗 − 𝜆𝑖) , Λ = diag𝜆𝑖 . (4.23)

To find the rightmost integral in 𝑍 , we will consider a general integral (with normalized measure)

𝐼 =

∫
U(𝑁 )

[𝑑𝑈] 𝑒𝑡 tr(𝐴𝑈𝐵𝑈†) (4.24)

for arbitrary Hermitian matrices 𝐴 and 𝐵.
On the one hand, 𝐼 defines the correction 𝛿𝑆 to the effective action

𝑆eff = −𝑔2𝑁 trΛ2 + 𝑔4𝑁 trΛ4 − logΔ2(Λ) + 𝛿𝑆 , (4.25)

7
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𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6

number of terms = (𝑛!)2 1 4 36 576 14,400 518,400

execution time 0.2 s 0.3 s 1 s 19 s 10 min 21 h

Table 1: RTNI package performance for Ryzen 7, 16 GB RAM + 20 GB swap, Ubuntu 20, Python. A
large number of repeated terms were identified and summed with our additional code in Python, reducing
the number of terms in 𝐼𝑛 from (𝑛!)2 to 𝑝2

𝑛. The cause of the repetitions seems to be that RTNI sees each
instance of the matrices 𝐴 and 𝐵 as a different matrix. It is unclear to us whether this is a general feature of
the package or simply due to our unfamiliarity with the appropriate program settings. We would like to point
out that it was very helpful that the package calculates integrals for unspecified matrix sizes.

as

𝐼 = exp (−𝛿𝑆) = exp

(
−

∞∑︁
𝑛=1

𝑡𝑛

𝑛!
𝑆𝑛

)
. (4.26)

On the other, we can expand it as:

𝐼 = 1 +
∞∑︁
𝑛=1

𝑡𝑛

𝑛!
𝐼𝑛 , 𝐼𝑛 =

∫
[𝑑𝑈] tr𝑛

(
𝑈𝐴𝑈†𝐵

)
. (4.27)

When we compare the terms of these two series, we can extract recursive expressions for effective
action terms, which are given here up to 𝑂 (𝑡6):

𝑆1 = −𝐼1 , (4.28)
𝑆2 = 𝑆2

1 − 𝐼2 , (4.29)
𝑆3 = −𝑆3

1 + 3𝑆1𝑆2 − 𝐼3 , (4.30)
𝑆4 = 𝑆4

1 − 6𝑆2
1𝑆2 + 3𝑆2

2 + 4𝑆1𝑆3 − 𝐼4 , (4.31)
𝑆5 = −𝑆5

1 + 10𝑆3
1𝑆2 − 10𝑆2

1𝑆3 − 15𝑆1𝑆
2
2 + 5𝑆1𝑆4 + 10𝑆2𝑆3 − 𝐼5 , (4.32)

and

𝑆6 = 𝑆6
1 − 15𝑆4

1𝑆2 + 45𝑆2
1𝑆

2
2 − 15𝑆3

2 + 20𝑆3
1𝑆3 − 60𝑆1𝑆2𝑆3 +

+ 10𝑆2
3 − 15𝑆2

1𝑆4 + 15𝑆2𝑆4 + 6𝑆1𝑆5 − 𝐼6 . (4.33)

In order to find 𝑆𝑛, we must first calculate 𝐼𝑛. We have done this with the help of the RTNI∗∗

computing package [24] (for its performance see Table 1). The first two integrals are

𝐼1 =
tr𝐴 tr𝐵

𝑁
, 𝐼2 =

tr2𝐴 tr2𝐵 + tr𝐴2 tr𝐵2

𝑁2 − 12 − tr2𝐴 tr𝐵2 + tr2𝐵 tr𝐴2

𝑁 (𝑁2 − 12)
. (4.34)

In general, 𝐼𝑛 consists of 𝑝2
𝑛 terms, where 𝑝𝑛 represents the number of possible partitions of the

integer 𝑛. Interestingly, the first six 𝑝𝑛 coincide with prime numbers. Due to their length, the
expressions for 𝐼3 to 𝐼6 are left for the Appendices.

∗∗In the meantime, an updated version of RTNI has been released [23].
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It turns out that 𝑆𝑛 can be compactly written with the help of the normalized symmetrized
moments:

A𝑛 =
tr(𝐴 − (tr𝐴/𝑁) 1)𝑛

𝑁
, B𝑛 =

tr(𝐵 − (tr𝐵/𝑁) 1)𝑛

𝑁
. (4.35)

The first three of them read:

𝑆1 = − tr𝐴 tr𝐵
𝑁

, 𝑆2 = −𝑁2 A2 B2

𝑁2 − 12 , 𝑆3 = − 2𝑁3 A3 B3

(𝑁2 − 12) (𝑁2 − 22)
. (4.36)

To find higher order terms in the effective action, we will assume that they can similarly be written
as sums of products of As and Bs, such that in each term the powers of both 𝐴 and 𝐵 separately
add up to the order of the effective action term. Since in As, tr𝐴𝑛 is always coupled with tr𝑚𝐴,
and likewise for 𝐵, it follows that the term tr𝐴𝑚 tr𝐴𝑛 tr𝐵𝑚 tr𝐵𝑛 comes solely from A𝑛A𝑚B𝑛B𝑚,
therefore their coefficients are the same, and can be easily extracted from the expression for 𝑆𝑛+𝑚.
The 4th order term is, for example,

𝑆4 = − 6𝑁2(𝑁2 + 1)
(𝑁2 − 12) (𝑁2 − 22) (𝑁2 − 32)

· A4 B4

− 18𝑁2(𝑁2 + 1) (𝑁2 − 3)
(𝑁2 − 12)2(𝑁2 − 22) (𝑁2 − 32)

· A2
2 B2

2

+ 6𝑁 (2𝑁2 − 3)
(𝑁2 − 12) (𝑁2 − 22) (𝑁2 − 32)

·
(
A4 B

2
2 + B4 A

2
2

)
, (4.37)

while the higher order terms are again given in the Appendices. These formulas correctly reproduce
our earlier results for 𝑆1 to 𝑆4 [9] which were derived by expanding the HCIZ formula [25, 26]. In
our special case where 𝐴 = 𝑅 and 𝐵 = Λ2, we find that

𝑆3 = 0 , 𝑆5 = 0 . (4.38)

We will now prove that, in fact, all odd-order terms in the effective action vanish, except the first
one.

First note that, due to its diagonality and equidistant eigenvalues, the curvature 𝑅 obeys the
following relation (

𝑅 − tr𝑅
𝑁

1

)𝑇 ′

= −
(
𝑅 − tr𝑅

𝑁
1

)
, (4.39)

where 𝑇 ′ denotes the transpose w.r.t. the antidiagonal. For a diagonal matrix 𝐷, this antitranspose
can be written as

𝐷𝑇 ′
= 𝐽𝐷𝐽, 𝐷 = 𝐽𝐷𝑇 ′

𝐽, (4.40)

where 𝐽 = 𝐽−1 is the unitary exchange matrix

𝐽 =

©«

1
1

· · ·

1
1

ª®®®®®®¬
. (4.41)

9



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
6
9

(Non)renormalizable NC in (non)uniform phase D. Prekrat

We can use this fact about 𝑅 to absorb 𝑔𝑟 (tr𝑅/𝑁)Λ2 = 8𝑔𝑟𝑁Λ2 into the mass term before the
expansion††, so that we are left with

𝐴 = 𝑅 − tr𝑅
𝑁

1 , 𝐵 = Λ2, (4.42)

such that tr𝐴 = 0 and 𝐴𝑇 ′
= −𝐴. If we consider the general Hermitian matrix 𝐴 with these

properties, we can then write‡‡∫
[𝑑𝑈] tr𝑛

(
𝑈𝐴𝑈†𝐵

)
=

∫
[𝑑 (𝑈𝐽)] tr𝑛

[
(𝑈𝐽)𝐴(𝑈𝐽)†𝐵

]
=

∫
[𝑑 (𝑈𝐽)] tr𝑛

[
𝑈 (𝐽𝐴𝐽)𝑈†𝐵

]
=

∫
[𝑑𝑈] tr𝑛

(
𝑈𝐴𝑇 ′

𝑈†𝐵
)
= (−1)𝑛

∫
[𝑑𝑈] tr𝑛

(
𝑈𝐴𝑈†𝐵

)
. (4.43)

In the last line we have taken advantage the fact that in the product 𝑈𝐽 the exchange matrix merely
permutes the entries of the matrix 𝑈, so that the Jacobian of this transformation is equal to 1.
Applying the derived formula for odd 𝑛 = 2𝑚 − 1 results in∫

[𝑑𝑈] tr2𝑚−1
(
𝑈𝐴𝑈†𝐵

)
= 0 . (4.44)

Since 𝑆𝑛 in this case contains either powers of odd terms or products of odd and even terms, this
means it must hold

𝑆2𝑚−1 = 0 . (4.45)

Using the expression from the Appendices and keeping only the leading terms in 𝑁 , we finally
arrive at the 𝑂 (𝑔6

𝑟 ) effective action

𝑆eff = − (𝑔2 − 8𝑔𝑟 )𝑁 trΛ2 +
(
𝑔4 −

32
3
𝑔2
𝑟

)
𝑁 trΛ4 + 32

3
𝑔2
𝑟 tr2Λ2

+ 1024
45

𝑔4
𝑟𝑁 trΛ8 + 1024

15
𝑔4
𝑟 tr2Λ4 − 4096

45
𝑔4
𝑟 trΛ6 trΛ2 (4.46)

− 262144
2835

𝑔6
𝑟𝑁 trΛ12 + 524288

945
𝑔6
𝑟 trΛ2 trΛ10 − 262144

189
𝑔6
𝑟 trΛ4 trΛ8 + 524288

567
𝑔6
𝑟 tr2Λ6

− logΔ2(Λ) ,

or more transparently

𝑆eff = − (𝑔2 − 8𝑔𝑟 )𝑁 trΛ2 +
(
𝑔4 −

1
6
(8𝑔𝑟 )2

)
𝑁 trΛ4 + 1

6
(8𝑔𝑟 )2 tr2Λ2

+ 1
180

(8𝑔𝑟 )4𝑁 trΛ8 + 1
60

(8𝑔𝑟 )4 tr2Λ4 − 1
45

(8𝑔𝑟 )4 trΛ6 trΛ2 (4.47)

− 1
2835

(8𝑔𝑟 )6𝑁 trΛ12 + 2
945

(8𝑔𝑟 )6 trΛ2 trΛ10 − 1
189

(8𝑔𝑟 )6 trΛ4 trΛ8 + 2
567

(8𝑔𝑟 )6 tr2Λ6

− logΔ2(Λ) .
††This will only shift 𝑆1 to 0, while the higher order 𝑆𝑛s will remain unaffected.
‡‡using the normalized Haar measure
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Here, the expansion/shift parameter 8𝑔𝑟 comes from a large 𝑁 limit of 𝑔𝑟 tr𝑅/𝑁 . The effective action
is now ready to be varied and used in the eigenvalue distribution equation§§ for the calculation of
the correction to the phase transition lines and better analytical estimation of the shift of the triple
point. This is part of an ongoing research.

Using the same expansion method, work has also begun on separate effects of the here dis-
regarded kinetic term of the GW model [28], the first non-trivial terms of its effective action
being:

𝑆kin
eff = 𝑁 trΛ2 − tr2Λ + 97

120
𝑁 trΛ4 − 565

120𝑁2 tr4Λ+

+ 113
12𝑁

tr2Λ trΛ2 − 137
60

tr2Λ2 − 97
30

trΛ trΛ3. (4.48)

5. Conclusions & outlook

In this contribution, we have compiled the results of our recent studies on the phase structure of
the GW model and its impact on the renormalizability of the model. First, the numerical simulations
yielded the phase diagram consisting of the ordered, disordered and NC stripe phases. The obtained
diagram revealed that the curvature term, which is responsible for the renormalizability of the model,
causes the overall shift of the transition lines towards the larger values of the mass parameter. This
was partially confirmed analytically by the 4th order perturbative derivation of the ↕→↑↓ transition
line in the strong interaction regime for the model without the kinetic term. Here we went one step
further and also derived the 6th order effective action with the help of the RTNI computing package.
The next step would be to calculate the 6th order correction of the ↕→↑↓ transition line as well as
the ↑↓→↑↑ transition line and then try to extrapolate the positions of their turning points in different
orders of approximation in the hope of confirming the numerically obtained position of the triple
point. It is also important to continue working on the kinetic term of the model and to compare and
combine its effects with the effects of the curvature term.

When viewed in terms of the unscaled model parameters, the shift of the triple point leads to the
removal of the stripe phase in the renormalizable GW model and also in the renormalizable 𝜆𝜙4

GW

model obtained by switching off the curvature coupling with increasing matrix size, but not in the
original nonrenormalizable 𝜆𝜙4

★ model without the curvature. We believe that this correspondence
between the (non)renormalizability and the presence of the stripe phase has a broader validity and
also applies to other NC models. To check this, a natural step would be to simulate the related
nonrenormalizable𝑈 (1) gauge model [29]. This model has two possible classical vacua—the zero-
vacuum and the stripe vacuum proportional to the NC coordinates—and numerical simulations
would show which one is actually energetically preferred. We expect that its nonrenormalizability
is also caused by the stripe phase. This would hopefully bring us a bit closer to the successful
formulation of a renormalizable NC gauge model.

§§A nice overview of the derivation of the eigenvalue distribution and possible classes of solutions can be found in
[27].
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A. 3rd order integral

𝐼3 =
1

𝑁 (𝑁2 − 12) (𝑁2 − 22)
×

(
(𝑁2 − 2) · tr3𝐴 tr3𝐵

+2𝑁2 · tr𝐴3 tr𝐵3

+4 · (tr3𝐴 tr𝐵3 + tr3𝐵 tr𝐴3)
−3𝑁 · (tr3𝐴 tr𝐵2 tr𝐵 + tr3𝐵 tr𝐴2 tr𝐴)
−6𝑁 · (tr𝐴3 tr𝐵2 tr𝐵 + tr𝐵3 tr𝐴2 tr𝐴)

+3(𝑁2 + 2) · tr𝐴2 tr𝐴 tr𝐵2 tr𝐵
)

(A.49)

B. 4th order integral

𝐼4 =
1

𝑁2(𝑁2 − 12) (𝑁2 − 22) (𝑁2 − 32)
×

×
(
(𝑁4 − 8𝑁2 + 6) · tr4𝐴 tr4𝐵

+6𝑁2(𝑁2 + 1) · tr𝐴4 tr𝐵4

+3(𝑁4 − 6𝑁2 + 18) · tr2𝐴2 tr2𝐵2

+8(𝑁4 + 3𝑁2 + 12) · tr𝐴3 tr𝐴 tr𝐵3 tr𝐵
+6𝑁2(𝑁2 + 1) · tr2𝐴 tr𝐴2 tr2𝐵 tr𝐵2

−30𝑁 · (tr4𝐴 tr𝐵4 + tr4𝐵 tr𝐴4)
+3(𝑁2 + 6) · (tr4𝐴 tr2𝐵2 + tr4𝐵 tr2𝐴2)

−6𝑁 (2𝑁2 − 3) · (tr𝐴4 tr2𝐵2 + tr𝐵4 tr2𝐴2)
+8(2𝑁2 − 3) · (tr4𝐴 tr𝐵3 tr𝐵 + tr4𝐵 tr𝐴3 tr𝐴)

−24𝑁 (𝑁2 + 1) · (tr𝐴4 tr𝐵3 tr𝐵 + tr𝐵4 tr𝐴3 tr𝐴)
−6𝑁 (𝑁2 − 22) · (tr4𝐴 tr2𝐵 tr𝐵2 + tr4𝐵 tr2𝐴 tr𝐴2)

+60𝑁2 · (tr𝐴4 tr2𝐵 tr𝐵2 + tr𝐵4 tr2𝐴 tr𝐴2)
−6𝑁 (𝑁2 + 6) · (tr2𝐴2 tr2𝐵 tr𝐵2 + tr2𝐵2 tr2𝐴 tr𝐴2)
+24(2𝑁2 − 3) · (tr𝐴3 tr𝐴 tr2𝐵2 + tr𝐵3 tr𝐵 tr2𝐴2)
−24𝑁 (𝑁2 + 1) · (tr𝐴3 tr𝐴 tr2𝐵 tr𝐵2 + tr𝐵3 tr𝐵 tr2𝐴 tr𝐴2)

)
(B.50)
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C. 5th order integral

𝐼5 =
1

𝑁2(𝑁2 − 12) (𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42)
×

×
(
𝑁 (𝑁4 − 20𝑁2 + 78) · tr5𝐴 tr5𝐵

+24𝑁2(𝑁2 + 5)𝑁 · tr𝐴5 tr𝐵5

+336𝑁 · (tr5𝐴 tr𝐵5 + tr5𝐵 tr𝐴5)
+30𝑁 (𝑁4 + 5𝑁2 + 84) · tr𝐴4 tr𝐴 tr𝐵4 tr𝐵

+10𝑁 (𝑁2 − 32) (𝑁2 + 4) · tr3𝐴 tr𝐴2 tr3𝐵 tr𝐵2

+20𝑁 (𝑁4 + 24) · (tr𝐴3 tr2𝐴 tr𝐵3 tr2𝐵 + tr𝐴3 tr𝐴2 tr𝐵3 tr𝐵2)
+15𝑁 (𝑁4 − 10𝑁2 + 114) · tr2𝐴2 tr𝐴 tr2𝐵2 tr𝐵

−30(5𝑁2 − 24) · (tr5𝐴 tr𝐵4 tr𝐵 + tr5𝐵 tr𝐴4 tr𝐴)
−120𝑁2(𝑁2 + 5) · (tr𝐴5 tr𝐵4 tr𝐵 + tr𝐵5 tr𝐴4 tr𝐴)

−10(𝑁2 − 12) (𝑁2 − 2) · (tr5𝐴 tr3𝐵 tr𝐵2 + tr5𝐵 tr3𝐴 tr𝐴2)
−840𝑁2 · (tr𝐴5 tr3𝐵 tr𝐵2 + tr𝐵5 tr3𝐴 tr𝐴2)

+40𝑁 (𝑁2 − 32) · (tr5𝐴 tr𝐵3 tr2𝐵 + tr5𝐵 tr𝐴3 tr2𝐴)
−40(𝑁2 + 12) · (tr5𝐴 tr𝐵3 tr𝐵2 + tr5𝐵 tr𝐴3 tr𝐴2)

+120𝑁 (3𝑁2 + 8) · (tr𝐴5 tr𝐵3 tr2𝐵 + tr𝐵5 tr𝐴3 tr2𝐴)
−120𝑁2(𝑁2 − 2) · (tr𝐴5 tr𝐵3 tr𝐵2 + tr𝐵5 tr𝐴3 tr𝐴2)
+15𝑁 (𝑁2 − 2) · (tr5𝐴 tr2𝐵2 tr𝐵 + tr5𝐵 tr2𝐴2 tr𝐴)
+360𝑁 (𝑁2 − 2) · (tr𝐴5 tr2𝐵2 tr𝐵 + tr𝐵5 tr2𝐴2 tr𝐴)
+300𝑁 (𝑁2 − 2) · (tr𝐴4 tr𝐴 tr3𝐵 tr𝐵2 + tr𝐵4 tr𝐵 tr3𝐴 tr𝐴2)
−120(𝑁4 + 24) · (tr𝐴4 tr𝐴 tr𝐵3 tr2𝐵 + tr𝐵4 tr𝐵 tr𝐴3 tr2𝐴)
+600𝑁 (𝑁2 − 2) · (tr𝐴4 tr𝐴 tr𝐵3 tr𝐵2 + tr𝐵4 tr𝐵 tr𝐴3 tr𝐴2)

−30(2𝑁4 + 25𝑁2 − 72) · (tr𝐴4 tr𝐴 tr2𝐵2 tr𝐵 + tr𝐵4 tr𝐵 tr2𝐴2 tr𝐴)
−20(𝑁2 − 6) (3𝑁2 + 8) · (tr3𝐴 tr𝐴2 tr𝐵3 tr2𝐵 + tr3𝐵 tr𝐵2 tr𝐴3 tr2𝐴)

+100𝑁 (𝑁2 + 12) · (tr3𝐴 tr𝐴2 tr𝐵3 tr𝐵2 + tr3𝐵 tr𝐵2 tr𝐴3 tr𝐴2)
−30(𝑁4 + 24) · (tr3𝐴 tr𝐴2 tr2𝐵2 tr𝐵 + tr3𝐵 tr𝐵2 tr2𝐴2 tr𝐴)

−20(𝑁4 + 60𝑁2 − 96) · (tr𝐴3 tr2𝐴 tr𝐵3 tr𝐵2 + tr𝐵3 tr2𝐵 tr𝐴3 tr𝐴2)
+300𝑁 (𝑁2 − 2) · (tr𝐴3 tr2𝐴 tr2𝐵2 tr𝐵 + tr𝐵3 tr2𝐵 tr2𝐴2 tr𝐴)
−60(𝑁4 + 24) · (tr𝐴3 tr𝐴2 tr2𝐵2 tr𝐵 + tr𝐵3 tr𝐵2 tr2𝐴2 tr𝐴)

)
(C.51)
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D. 6th order integral

𝐼6 =
1

𝑁2(𝑁2 − 12)2(𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)
×

×
(
(𝑁8 − 41𝑁6 + 458𝑁4 − 1258𝑁2 + 240) · tr6𝐴 tr6𝐵

+120𝑁2(𝑁2 − 1) (𝑁4 + 15𝑁2 + 8) · tr𝐴6 tr𝐵6

−5040𝑁 (𝑁2 − 1) · (tr6𝐴 tr𝐵6 + tr6𝐵 tr𝐴6)
+40(𝑁8 − 28𝑁6 + 477𝑁4 − 1890𝑁2 − 2400) · tr2𝐴3 tr2𝐵3

+15(𝑁8 − 35𝑁6 + 376𝑁4 + 18𝑁2 − 3600) · tr3𝐴2 tr3𝐵2

+160(𝑁4 + 29𝑁2 − 90) · (tr6𝐴 tr2𝐵3 + tr6𝐵 tr2𝐴3)
−15𝑁 (𝑁4 + 𝑁2 + 358) · (tr6𝐴 tr3𝐵2 + tr6𝐵 tr3𝐴2)

−120𝑁 (𝑁2 − 1) (3𝑁4 − 11𝑁2 + 80) · (tr𝐴6 tr2𝐵3 + tr𝐵6 tr2𝐴3)
+840𝑁2(𝑁2 − 1) (𝑁2 − 7) · (tr𝐴6 tr3𝐵2 + tr𝐵6 tr3𝐴2)

−480𝑁 (4𝑁4 − 59𝑁2 + 235) · (tr2𝐴3 tr3𝐵2 + tr2𝐵3 tr3𝐴2)
+2016(𝑁2 − 12) (𝑁2 − 10) · (tr6𝐴 tr𝐵5 tr𝐵 + tr6𝐵 tr𝐴5 tr𝐴)

−720𝑁 (𝑁2 − 1) (𝑁4 + 15𝑁2 + 8) · (tr𝐴6 tr𝐵5 tr𝐵 + tr𝐵6 tr𝐴5 tr𝐴)
−15𝑁 (𝑁2 − 32) (𝑁4 − 24𝑁2 + 38) · (tr6𝐴 tr4𝐵 tr𝐵2 + tr6𝐵 tr4𝐴 tr𝐴2)

−90𝑁 (𝑁2 − 42) (5𝑁2 − 13) · (tr6𝐴 tr𝐵4 tr2𝐵 + tr6𝐵 tr𝐴4 tr2𝐴)
+450(𝑁4 + 15𝑁2 + 8) · (tr6𝐴 tr𝐵4 tr𝐵2 + tr6𝐵 tr𝐴4 tr𝐴2)
+15120𝑁2(𝑁2 − 1) · (tr𝐴6 tr4𝐵 tr𝐵2 + tr𝐵6 tr4𝐴 tr𝐴2)

+2520𝑁2(𝑁2 − 1) (𝑁2 + 11) · (tr𝐴6 tr𝐵4 tr2𝐵 + tr𝐵6 tr𝐴4 tr2𝐴)
−720𝑁 (𝑁2 − 12) (𝑁2 − 22) (𝑁2 + 5) · (tr𝐴6 tr𝐵4 tr𝐵2 + tr𝐵6 tr𝐴4 tr𝐴2)

+45(𝑁2 − 22) (𝑁4 − 3𝑁2 + 10) · (tr6𝐴 tr2𝐵2 tr2𝐵 + tr6𝐵 tr2𝐴2 tr2𝐴)
−5040𝑁 (𝑁2 − 1) (2𝑁2 − 5) · (tr𝐴6 tr2𝐵2 tr2𝐵 + tr𝐵6 tr2𝐴2 tr2𝐴)

+40(2𝑁6 − 51𝑁4 + 229𝑁2 − 60) · (tr6𝐴 tr3𝐵 tr𝐵3 + tr6𝐵 tr3𝐴 tr𝐴3)
−6720𝑁 (𝑁2 − 1) (𝑁2 + 5) · (tr𝐴6 tr3𝐵 tr𝐵3 + tr𝐵6 tr3𝐴 tr𝐴3)

−120𝑁 (𝑁2 − 32) (2𝑁2 + 13) · (tr6𝐴 tr𝐵3 tr𝐵2 tr𝐵 + tr6𝐵 tr𝐴3 tr𝐴2 tr𝐴)
+5040𝑁2(𝑁2 − 12)2 · (tr𝐴6 tr𝐵3 tr𝐵2 tr𝐵 + tr𝐵6 tr𝐴3 tr𝐴2 tr𝐴)

+720(𝑁2 − 12) (3𝑁4 − 11𝑁2 + 80) · (tr2𝐴3 tr𝐵5 tr𝐵 + tr2𝐵3 tr𝐴5 tr𝐴)
−480𝑁 (𝑁4 + 29𝑁2 − 90) · (tr2𝐴3 tr4𝐵 tr𝐵2 + tr2𝐵3 tr4𝐴 tr𝐴2)
−7200𝑁 (𝑁4 − 6𝑁2 + 29) · (tr2𝐴3 tr𝐵4 tr2𝐵 + tr2𝐵3 tr𝐴4 tr2𝐴)

+1800(𝑁6 − 10𝑁4 + 25𝑁2 + 80) · (tr2𝐴3 tr𝐵4 tr𝐵2 + tr2𝐵3 tr𝐴4 tr𝐴2)
+360(𝑁6 + 18𝑁4 − 59𝑁2 − 200) · (tr2𝐴3 tr2𝐵2 tr2𝐵 + tr2𝐵3 tr2𝐴2 tr2𝐴)
+160(𝑁6 + 62𝑁4 − 183𝑁2 + 600) · (tr2𝐴3 tr3𝐵 tr𝐵3 + tr2𝐵3 tr3𝐴 tr𝐴3)

−240𝑁 (𝑁6 + 2𝑁4 + 177𝑁2 − 1140) · (tr2𝐴3 tr𝐵3 tr𝐵2 tr𝐵 + tr2𝐵3 tr𝐴3 tr𝐴2 tr𝐴)
−5040𝑁 (𝑁2 − 1) (𝑁2 − 7) · (tr3𝐴2 tr𝐵5 tr𝐵 + tr3𝐵2 tr𝐴5 tr𝐴)
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+45𝑁2(𝑁4 + 𝑁2 + 358) · (tr3𝐴2 tr4𝐵 tr𝐵2 + tr3𝐵2 tr4𝐴 tr𝐴2)
+90(2𝑁6 + 95𝑁4 − 577𝑁2 − 600) · (tr3𝐴2 tr𝐵4 tr2𝐵 + tr3𝐵2 tr𝐴4 tr2𝐴)

−90𝑁 (𝑁2 − 22) (2𝑁4 − 37𝑁2 + 395) · (tr3𝐴2 tr𝐵4 tr𝐵2 + tr3𝐵2 tr𝐴4 tr𝐴2)
−45𝑁 (𝑁6 − 11𝑁4 + 220𝑁2 + 870) · (tr3𝐴2 tr2𝐵2 tr2𝐵 + tr3𝐵2 tr2𝐴2 tr2𝐴)

−360𝑁 (2𝑁4 + 23𝑁2 − 145) · (tr3𝐴2 tr3𝐵 tr𝐵3 + tr3𝐵2 tr3𝐴 tr𝐴3)
+360(2𝑁6 − 13𝑁4 + 71𝑁2 + 300) · (tr3𝐴2 tr𝐵3 tr𝐵2 tr𝐵 + tr3𝐵2 tr𝐴3 tr𝐴2 tr𝐴)

+144(𝑁2 − 12) (𝑁6 + 10𝑁4 + 325𝑁2 + 240) · tr𝐴5 tr𝐴 tr𝐵5 tr𝐵
−5040𝑁 (𝑁2 − 1) (𝑁2 − 7) · (tr𝐴5 tr𝐴 tr4𝐵 tr𝐵2 + tr𝐵5 tr𝐵 tr4𝐴 tr𝐴2)

−720𝑁 (𝑁2 − 1) (𝑁4 + 𝑁2 + 106) · (tr𝐴5 tr𝐴 tr𝐵4 tr2𝐵 + tr𝐵5 tr𝐵 tr𝐴4 tr2𝐴)
+4320(𝑁2 − 12) (𝑁2 − 22) (𝑁2 + 5) · (tr𝐴5 tr𝐴 tr𝐵4 tr𝐵2 + tr𝐵5 tr𝐵 tr𝐴4 tr𝐴2)
+2160(𝑁2 − 12) (𝑁2 − 22) (𝑁2 + 5) · (tr𝐴5 tr𝐴 tr2𝐵2 tr2𝐵 + tr𝐵5 tr𝐵 tr2𝐴2 tr2𝐴)
+720(𝑁2 − 12) (3𝑁4 − 11𝑁2 + 80) · (tr𝐴5 tr𝐴 tr3𝐵 tr𝐵3 + tr𝐵5 tr𝐵 tr3𝐴 tr𝐴3)
−720𝑁 (𝑁2 − 1) (𝑁4 + 15𝑁2 + 8) · (tr𝐴5 tr𝐴 tr𝐵3 tr𝐵2 tr𝐵 + tr𝐵5 tr𝐵 tr𝐴3 tr𝐴2 tr𝐴)

+15(𝑁8 − 19𝑁6 − 64𝑁4 + 922𝑁2 − 1200) · tr4𝐴 tr𝐴2 tr4𝐵 tr𝐵2

+90(𝑁2 − 22) (𝑁4 − 𝑁2 + 120) (𝑁2 + 5) · tr𝐴4 tr2𝐴 tr𝐵4 tr2𝐵

+90(𝑁2 − 22) (𝑁4 − 𝑁2 + 120) (𝑁2 + 5) · tr𝐴4 tr𝐴2 tr𝐵4 tr𝐵2

+45(𝑁8 − 21𝑁6 + 270𝑁4 − 130𝑁2 − 1200) · tr2𝐴2 tr2𝐴 tr2𝐵2 tr2𝐵

+450(2𝑁6 − 25𝑁4 − 25𝑁2 + 120) · (tr4𝐴 tr𝐴2 tr𝐵4 tr2𝐵 + tr4𝐵 tr𝐵2 tr𝐴4 tr2𝐴)
−1350𝑁 (𝑁4 + 15𝑁2 + 8) · (tr4𝐴 tr𝐴2 tr𝐵4 tr𝐵2 + tr4𝐵 tr𝐵2 tr𝐴4 tr𝐴2)

−90𝑁 (𝑁2 − 22) (𝑁2 + 5) (𝑁2 + 119) · (tr𝐴4 tr2𝐴 tr𝐵4 tr𝐵2 + tr𝐵4 tr2𝐵 tr𝐴4 tr𝐴2)
−45𝑁 (2𝑁6 − 29𝑁4 + 97𝑁2 − 430) · (tr4𝐴 tr𝐴2 tr2𝐵2 tr2𝐵 + tr4𝐵 tr𝐵2 tr2𝐴2 tr2𝐴)

−90𝑁 (𝑁2 − 22) (2𝑁4 + 53𝑁2 − 415) · (tr𝐴4 tr2𝐴 tr2𝐵2 tr2𝐵 + tr𝐵4 tr2𝐵 tr2𝐴2 tr2𝐴)
+270(4𝑁6 + 15𝑁4 + 141𝑁2 + 200) · (tr𝐴4 tr𝐴2 tr2𝐵2 tr2𝐵 + tr𝐵4 tr𝐵2 tr2𝐴2 tr2𝐴)
−120𝑁 (𝑁6 − 16𝑁4 − 30𝑁2 + 165) · (tr4𝐴 tr𝐴2 tr3𝐵 tr𝐵3 + tr4𝐵 tr𝐵2 tr3𝐴 tr𝐴3)
−360𝑁 (𝑁2 − 32) (𝑁4 − 𝑁2 + 30) · (tr𝐴4 tr2𝐴 tr3𝐵 tr𝐵3 + tr𝐵4 tr2𝐵 tr3𝐴 tr𝐴3)
+360(𝑁6 + 60𝑁4 − 101𝑁2 − 200) · (tr𝐴4 tr𝐴2 tr3𝐵 tr𝐵3 + tr𝐵4 tr𝐵2 tr3𝐴 tr𝐴3)
+360(3𝑁6 − 37𝑁4 + 54𝑁2 + 100) · (tr2𝐴2 tr2𝐴 tr3𝐵 tr𝐵3 + tr2𝐵2 tr2𝐵 tr3𝐴 tr𝐴3)
+120(5𝑁6 − 𝑁4 − 64𝑁2 − 300) · (tr4𝐴 tr𝐴2 tr𝐵3 tr𝐵2 tr𝐵 + tr4𝐵 tr𝐵2 tr𝐴3 tr𝐴2 tr𝐴)

−360𝑁 (𝑁6 − 8𝑁4 + 202𝑁2 − 555) · (tr2𝐴2 tr2𝐴 tr𝐵3 tr𝐵2 tr𝐵 + tr2𝐵2 tr2𝐵 tr𝐴3 tr𝐴2 tr𝐴)
+360(11𝑁6 − 40𝑁4 + 149𝑁2 + 600) · (tr𝐴4 tr2𝐴 tr𝐵3 tr𝐵2 tr𝐵 + tr𝐵4 tr2𝐵 tr𝐴3 tr𝐴2 tr𝐴)
−360𝑁 (𝑁6 + 30𝑁4 − 201𝑁2 + 890) · (tr𝐴4 tr𝐴2 tr𝐵3 tr𝐵2 tr𝐵 + tr𝐵4 tr𝐵2 tr𝐴3 tr𝐴2 tr𝐴)
+40𝑁2(𝑁6 − 12𝑁4 + 37𝑁2 − 986) · tr3𝐴 tr𝐴3 tr3𝐵 tr𝐵3

−120𝑁 (𝑁6 + 54𝑁4 − 415𝑁2 + 1320) · (tr3𝐴 tr𝐴3 tr𝐵3 tr𝐵2 tr𝐵 + tr3𝐵 tr𝐵3 tr𝐴3 tr𝐴2 tr𝐴)
+120(𝑁8 − 2𝑁6 + 433𝑁4 − 912𝑁2 − 2400) · tr𝐴3 tr𝐴2 tr𝐴 tr𝐵3 tr𝐵2 tr𝐵

)
(D.52)
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E. 5th order effective action

𝑆5 = −
24𝑁

(
𝑁2 + 5

)
(𝑁2 − 12) (𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42)

· A5 B5

−
480

(
𝑁4 − 5𝑁2 − 1

)
𝑁 (𝑁2 − 12)2(𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42)

· A3 A2 B3 B2

+
120

(
𝑁2 − 2

)
(𝑁2 − 12) (𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42)

· (A5 B3 B2 + B5 A3 A2) (E.53)

F. 6th order effective action

𝑆6 = −
120

(
𝑁4 + 15𝑁2 + 8

)
(𝑁2 − 12) (𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)

· A6 B6

−
1800

(
2𝑁6 − 13𝑁4 − 13𝑁2 − 120

)
𝑁2(𝑁2 − 12)2(𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)

· A4 A2 B4 B2

−
240

(
3𝑁8 − 30𝑁6 − 33𝑁4 + 860𝑁2 + 1600

)
𝑁2(𝑁2 − 12)2(𝑁2 − 22)2(𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)

· A2
3 B3

3

−
1080

(
3𝑁6 − 32𝑁4 − 81𝑁2 + 350

)
𝑁2(𝑁2 − 12)3(𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)

· A3
2 B3

2

+
720

(
𝑁2 + 5

)
(𝑁2 − 12) (𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)

· (A6 B4 B2 + B6 A4 A2)

+
120

(
3𝑁4 − 11𝑁2 + 80

)
𝑁 (𝑁2 − 12) (𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)

·
(
A6 B

2
3 + B6 A

2
3

)
−

840
(
𝑁2 − 7

)
(𝑁2 − 12) (𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)

·
(
A6 B

3
2 + B6 A

3
2

)
−

1800
(
𝑁6 − 10𝑁4 + 25𝑁2 + 80

)
𝑁2(𝑁2 − 12)2(𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)

·
(
A4 A2 B

2
3 + B4 B2 A

2
3

)
+

1800
(
2𝑁4 − 19𝑁2 − 19

)
𝑁 (𝑁2 − 12)2(𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)

·
(
A4 A2 B

3
2 + B4 B2 A

3
2

)
+

480
(
4𝑁4 − 59𝑁2 + 235

)
𝑁 (𝑁2 − 12)2(𝑁2 − 22) (𝑁2 − 32) (𝑁2 − 42) (𝑁2 − 52)

·
(
A2

3 B3
2 + B2

3 A3
2

)
(F.54)

References

[1] S. Hossenfelder, Minimal Length Scale Scenarios for Quantum Gravity, Living Rev. Rel. 16
(2013) 2 [1203.6191].

[2] H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38.

[3] R.J. Szabo, Quantum field theory on noncommutative spaces, Physics Reports 378 (2003)
207.

[4] J. Rosaler, Dogmas of Effective Field Theory: Scheme Dependence, Fundamental
Parameters, and the Many Faces of the Higgs Naturalness Principle, Found. Phys. 52 (2022)
2.

16

https://doi.org/10.12942/lrr-2013-2
https://doi.org/10.12942/lrr-2013-2
https://arxiv.org/abs/1203.6191
https://doi.org/10.1103/PhysRev.71.38
https://doi.org/https://doi.org/10.1016/S0370-1573(03)00059-0
https://doi.org/https://doi.org/10.1016/S0370-1573(03)00059-0
https://doi.org/10.1007/s10701-021-00510-4
https://doi.org/10.1007/s10701-021-00510-4


P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
6
9

(Non)renormalizable NC in (non)uniform phase D. Prekrat

[5] H. Grosse and R. Wulkenhaar, Renormalization of 𝜙4 theory on noncommutative R2 in the
matrix base, JHEP 12 (2003) 019 [hep-th/0307017].

[6] H. Grosse and R. Wulkenhaar, Renormalization of 𝜙4 theory on noncommutative R**4 in the
matrix base, Commun. Math. Phys. 256 (2005) 305 [hep-th/0401128].

[7] M. Burić and M. Wohlgenannt, Geometry of the Grosse-Wulkenhaar Model, JHEP 03 (2010)
053 [0902.3408].

[8] D. Prekrat, Renormalization footprints in the phase diagram of the Grosse-Wulkenhaar
model, Phys. Rev. D 104 (2021) 114505 [2104.00657].

[9] D. Prekrat, D. Ranković, N.K. Todorović-Vasović, S. Kováčik and J. Tekel, Approximate
treatment of noncommutative curvature in quartic matrix model, JHEP 01 (2023) 109
[2209.00592].

[10] R. Wulkenhaar, Renormalisation of noncommutative 𝜙4
4-theory to all orders, Habilitation

thesis, TU Wien, Faculty of Physics, 2004.

[11] P. Castorina and D. Zappala, Spontaneous breaking of translational invariance in
non-commutative lambda 𝜙4 theory in two dimensions, Phys. Rev. D 77 (2008) 027703
[0711.2659].

[12] H. Mejía-Díaz, W. Bietenholz and M. Panero, The continuum phase diagram of the 2d
non-commutative 𝜆𝜙4 model, JHEP 10 (2014) 056 [1403.3318].

[13] J. Ambjorn and S. Catterall, Stripes from (noncommutative) stars, Phys. Lett. B 549 (2002)
253 [hep-lat/0209106].

[14] S. Kováčik and J. Tekel, Eigenvalue-flipping algorithm for matrix Monte Carlo, JHEP 04
(2022) 149 [2203.05422].

[15] B. Ydri, Computational Physics: An Introduction to Monte Carlo Simulations of Matrix
Field Theory, World Scientific, Singapore (2017), 10.1142/10283, [1506.02567].

[16] M. Betancourt, A conceptual introduction to hamiltonian monte carlo, 2018.

[17] S. Kováčik and D. O’Connor, Triple Point of a Scalar Field Theory on a Fuzzy Sphere, JHEP
10 (2018) 010 [1805.08111].

[18] S.F. Viñas and P. Pisani, Worldline approach to the Grosse-Wulkenhaar model, JHEP 11
(2014) 087 [1406.7336].

[19] D. Prekrat, D. Ranković, N.K. Todorović-Vasović, S. Kováčik and J. Tekel, Phase transitions
in a Φ4 matrix model on a curved noncommutative space, Int. J. Mod. Phys. A 38 (2023)
2343002 [2310.10794].

[20] M. Šubjaková and J. Tekel, Second moment fuzzy-field-theory-like matrix models, JHEP 06
(2020) 088 [2002.02317].

17

https://doi.org/10.1088/1126-6708/2003/12/019
https://arxiv.org/abs/hep-th/0307017
https://doi.org/10.1007/s00220-004-1285-2
https://arxiv.org/abs/hep-th/0401128
https://doi.org/10.1007/JHEP03(2010)053
https://doi.org/10.1007/JHEP03(2010)053
https://arxiv.org/abs/0902.3408
https://doi.org/10.1103/PhysRevD.104.114505
https://arxiv.org/abs/2104.00657
https://doi.org/10.1007/JHEP01(2023)109
https://arxiv.org/abs/2209.00592
https://doi.org/10.1103/PhysRevD.77.027703
https://arxiv.org/abs/0711.2659
https://doi.org/10.1007/JHEP10(2014)056
https://arxiv.org/abs/1403.3318
https://doi.org/10.1016/S0370-2693(02)02906-4
https://doi.org/10.1016/S0370-2693(02)02906-4
https://arxiv.org/abs/hep-lat/0209106
https://doi.org/10.1007/JHEP04(2022)149
https://doi.org/10.1007/JHEP04(2022)149
https://arxiv.org/abs/2203.05422
https://doi.org/10.1142/10283
https://arxiv.org/abs/1506.02567
https://doi.org/10.1007/JHEP10(2018)010
https://doi.org/10.1007/JHEP10(2018)010
https://arxiv.org/abs/1805.08111
https://doi.org/10.1007/JHEP11(2014)087
https://doi.org/10.1007/JHEP11(2014)087
https://arxiv.org/abs/1406.7336
https://doi.org/10.1142/S0217751X23430029
https://doi.org/10.1142/S0217751X23430029
https://arxiv.org/abs/2310.10794
https://doi.org/10.1007/JHEP06(2020)088
https://doi.org/10.1007/JHEP06(2020)088
https://arxiv.org/abs/2002.02317


P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
6
9

(Non)renormalizable NC in (non)uniform phase D. Prekrat

[21] B.P. Dolan, D. O’Connor and P. Presnajder, Matrix 𝜙4 models on the fuzzy sphere and their
continuum limits, JHEP 03 (2002) 013 [hep-th/0109084].

[22] D. Prekrat, K.N. Todorović-Vasović and D. Ranković, Detecting scaling in phase transitions
on the truncated Heisenberg algebra, JHEP 03 (2021) 197 [2002.05704].

[23] M. Fukuda, Symbolically integrating tensor networks over various random tensors by the
second version of Python RTNI, 2309.01167.

[24] M. Fukuda, R. König and I. Nechita, RTNI—A symbolic integrator for Haar-random tensor
networks, J. Phys. A 52 (2019) 425303 [1902.08539].

[25] J.-B. Zuber, Introduction to random matrices, 2012.

[26] B. Eynard, T. Kimura and S. Ribault, Random matrices, 10, 2015.

[27] M. Šubjaková and J. Tekel, Fuzzy field theories and related matrix models, PoS CORFU2019
(2020) 189 [2006.12605].

[28] B. Bukor and J. Tekel, Second order kinetic term effective actions for matrix model
description of fuzzy field theories, in Proceedings of the Student Science Conference 2023,
FMFI UK, Bratislava,
https://zona.fmph.uniba.sk/fileadmin/fmfi/studentska_vedecka_konferencia/zbierka2023/
svk2023_zbornik.pdf.

[29] M. Burić, L. Nenadović and D. Prekrat, One-loop structure of the 𝑈 (1) gauge model on the
truncated Heisenberg space, Eur. Phys. J. C 76 (2016) 672 [1610.01429].

18

https://doi.org/10.1088/1126-6708/2002/03/013
https://arxiv.org/abs/hep-th/0109084
https://doi.org/https://doi.org/10.1007/JHEP03(2021)197
https://arxiv.org/abs/2002.05704
https://arxiv.org/abs/2309.01167
https://doi.org/10.1088/1751-8121/ab434b
https://arxiv.org/abs/1902.08539
https://doi.org/10.22323/1.376.0189
https://doi.org/10.22323/1.376.0189
https://arxiv.org/abs/2006.12605
https://doi.org/10.1140/epjc/s10052-016-4522-x
https://arxiv.org/abs/1610.01429

	Introduction
	GW model & matrix action
	Phase transitions & renormalization
	Analytical results & RTNI package
	Conclusions & outlook
	3rd order integral
	4th order integral
	5th order integral
	6th order integral
	5th order effective action
	6th order effective action

