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1. Introduction

A plausible strategy for bridging the gap between the seemingly disparate domains of gravity
and quantum theory is to modify the short-distance structure of spacetime [1]. One such modifica-
tion is realized by the introduction of coordinate noncommutativity (NC), which has been initially
envisioned to encode both the symmetries of spacetime and the high-energy cutoffs to QFT [2].
However, NC brings about unexpected complications, in particular for the process of renormaliza-
tion, due to what is known as UV/IR mixing [3]. This phenomenon entangles physics on large
and small scales and undermines their clear separation, a separation that is deemed a necessary
ingredient of a successful effective field theory [4].

In the last two decades, the Grosse-Wulkenhaar (GW) model [5, 6] has shown great success in
solving the generic renormalization problems of NC theories by introducing an additional action
term that can be interpreted as coupling with the curvature of the NC background space [7]. We
have recently proposed that the nice behavior of the GW model is related to the phase structure of
the model and can be explained by the suppression of the NC striped phase [8, 9].

This contribution aims to summarize our numerical and analytical results obtained while
working on this topic in recent years and to present some new methods that could help us to explore
it more efficiently.

2. GW model & matrix action

Let us first introduce our model and say a few words about its native NC space. We start with
the two-dimensional GW model [5]

S :/dx2 laf‘qs*a ¢ + m—2¢*¢ + i¢*¢*¢*¢+
o 2 K 2 41

Qz -1 -INuo
+ 5 (07D @) % (67)"7x09) |, (2.1)

which lives on the Moyal plane equipped with a x-product
fhg=felontdn g (2.2)

and NC coordinates
[xH,xY], = i0e"”. (2.3)

The first line in (2.1) is just the nonrenormalizable /lqhi model; thanks to the Q-term in the second
line, the GW-model in two dimensions becomes superrenormalizable [10].

After applying the Weyl transform and promoting the field ¢ into an N X N Hermitian matrix
@, the action (2.1) can be rewritten as a matrix model

S = Ntr(cm«b — g, RD? — g,®% + g4<I)4) 2.4)
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on a background space spanned™ by NC coordinates

.. +V2 . (2.5
V2N +VN-1 ' _VN-1

+VN -1 +VN -1

The price of introducing the finite matrix regularization of the NC coordinates is modification of
their commutation relations and curving of the initial Moyal space, where the curvature R in fact
contains the energy levels of the Q-term harmonic oscillator

15 .16
R=ﬁ—S(X2+Y2)Nzl—ﬁdiag(lﬂ,...,N). (2.6)

However, the infinite matrix size limit recovers the original commutation relations. As usual, the
kinetic operator of the model (2.4) is given by a double commutator w.r.t. NC coordinates

Ko =[X, [X,D]]+[Y,[Y,P]]. 2.7

During the construction of the matrix model, the NC scale 6 is absorbed into definitions of the
matrices and couplings of the model and set to unity in order to ensure dealing with dimensionless
quantities. Finally, we also introduce the unscaled” versions of couplings

G2 =Nga, G4 =Ngy, (2.8)

as they will appear in the analytical results concerning renormalization.

3. Phase transitions & renormalization

The finite matrices not only provide a way to regularize the model, but can also be easily
simulated on a computer, allowing us to perform nonperturbative calculations. Having defined our
matrix action, we can now probe the relevant observables O by well-defined matrix path integrals

/ [dD] O e
(0)=*————, VarO = (0%) - (0)*. 3.9)
/ [d®] e

With their help, we can in principle deduce the positions of the phase transition lines, which, as
advertised in the introduction, appear to signal the (non)renormalizability of the model. We will
now discuss the details of this connection.

* Actually, the background space is 3-dim with coordinates VN X, YNY, but we are here interested in their rescaled
versions and a subspace where the third coordinate is set to 0 in a weak limit of infinite matrix size, which reproduces
the GW-model. We are here also using the rescaled version of the curvature R. More details in [7].

TThe unscaled parameters contain the factor N from the action (2.4).
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Figure 1: Eigenvalue distribution p(A) for the matrix GW model in different phases (N = 24).

In order to understand the phase structure of the model, we must first classify its vacuum
solutions. Applying the saddle point method to the matrix action (2.4) leads to the following
equation of motion

2KD - g, (R + D) +20 (2407 - 1) =0, (3.10)

whose solutions corresponding to the kinetic (%), curvature (R), and pure-potential® (g», g4) parts
are given, respectively, by

tr®

= =0 o2 =521, 311
~ 1 1 , (3.1D)

o T 2

The first two solutions are the ordered (1) and the disordered (J) vacuums that are also present in
commutative models. The third one—the so-called stripe/matrix vacuum (]} )—is proportional to
nontrivial square roots of the identity matrix 1 and is therefore the pure consequence of NC. The
stripe phase thus contains both positive and negative eigenvalues, which causes it to vary throughout
space and break the translational symmetry [11-13]. The field eigenvalue distribution in each of
these phases is shown in Figure 1. As their shape suggests, they are also called 1-cut symmetric
(), 2-cut (1), and 1-cut asymmetric phase (7).

The general structure of the phase diagram is shown® in Figure 2, which was obtained! by
Hamiltonian Monte Carlo simulations [15, 16] and is quite similar to the phase structure on other
fuzzy spaces, for example the fuzzy sphere [17]. The right-hand plot illustrates a result that is
important for the renormalization of the GW model: When the curvature term is included in the
action, the phases of the model shift towards higher values of the mass parameter g, relative to the
model without curvature. The proxy for this shift is the shift in the position of the triple point of
the model ¢ g;p, which we numerically found [8] to be proportional to the curvature parameter g,.
Since the renormalization shift of the GW model mass parameter is [18]

S = A20

1 , 3.12
T 1+ Q) 20 (3-12)

*We are interested in the g5 > 0 regime with the spontaneous symmetry breaking.
§Figures 2 and 3 are the adapted versions of our figures from [8] and [9].
IFor inspection of the GW model without the kinetic term, we also used the eigenvalue-flipping algorithm [14].
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and the matrix size serves as a cutoff A> o« N [5], by using the qualitative identification between
m < G; and Q < g, [8], we find the renormalization shift of the matrix GW model to be [8]

6Gy" ~ —logN . (3.13)
This means that the bare G has to shift by
|6G 5| ~ log N (3.14)
to compensate for the quantum corrections. Since this shift is smaller than that of the triple point
6GY = Nogy ~ Ng,, (3.15)

which is the lowest-most-g, point the stripe phase (Figure 2), we conclude that the bare mass of
the GW model cannot lie in the stripe phase associated with the UV/IR mixing, but instead in the
disordered phase with the trivial vacuum. The same is true for the renormalized version of the 1¢%
model! that is obtained [5, 10] as a limit of a series of the GW models with vanishing curvature

coupling
1

log N
A detailed review of this matter can be found in [19]. In contrast to these renormalizable models,
the above does not hold for the original A¢} without the curvature term, because its triple point
remains locked to the origin in the large N limit [8] as in the g, = O case in Figure 2.

~

— 0. (3.16)

Let us here also mention that modifications to the kinetic term can also induce shifts in the
position of the triple point of the model [20] and are also capable of resolving the UV/IR mixing
problems [21].

4. Analytical results & RTNI package

Since the conclusions about the connection between the renormalizability of the GW model
and the suppression of the stripe phase critically depend on the numerically obtained phase-diagram
shift, it would be desirable to also confirm the existence of this shift analytically. The first steps in this
direction have been undertaken in [9], where the O (g#) effective action and the disordered-to-stripe
transition line have been found for the GW model without the kinetic term.

Although, as can be seen in Figure 3, the transition lines in the strong coupling regime
show excellent agreement even with crude approximations to the effective action, the position of
the starting point (i.e. the triple point) needs more careful consideration. In fact, we need to
compare the results from several different orders of approximations to demonstrate the convincing
convergence of the transition-line turning points in the perturbative regime. To that end, we will at
least require results from the O (g®) effective action, which will be derived in this section.

Let us now outline the general analytical procedure and present some new results. We saw
in Figure 1 that the phases depend only on the distribution of the field eigenvalues, which means

. . 4
I'We will denote this model by ¢y,
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g, = 0.0

Figure 2: Phase diagrams of the N = 24 matrix GW model with (right) and without (left) the curvature
term. The darker areas in the plots have lower values and the lighter areas have higher values of the specific
heat. The bright stripes therefore represent the transition lines between the phases, which are indicated by
arrows in the corners of the plots. Note that the relative shift of the triple point and the transition lines in the
right-hand plot is 6g¥ ~ 16g, = 16-0.2 = 3.2.

that we must first obtain the effective action by integrating out non-eigenvalue degrees of freedom.
Unfortunately, when we decompose our field @ into the eigenvalues A and the unitary part U

S = Ntr((UAUT)v((UAUT) — o, RUNUT — g2A% + g4A4) , 4.17)

we are faced with rather complicated integrals over the unitary group. Nevertheless, the shift of
the triple point is the sole result of the curvature term so, as a first step, we can try to simplify
our analysis and disregard the kinetic term for the time being. We expect this to reproduce the
magnitude of the triple point shift if not the exact position of the triple point. This expectation is
also backed up by numerical simulations, during which the eigenvalue distribution in the vicinity
of the triple point revealed a field configuration

(4.18)

This configuration is the solution of the equations of motion (3.10) without the kinetic term and its
domain of existence sets a lower bound on the position of the triple point:

gy > 16g, . (4.19)

On the other hand, replacement of the curvature entries by its minimal/maximal eigenvalue, gives
the upper bound on the triple point position [22]

gy < 16g; . (4.20)
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Figure 3: Comparison between the analytical phase transition lines for the matrix GW model without the
kinetic term and the results of N = 24 numerical simulation. The dotted line is an exact solution for the
O(g,) effective action, the dashed line is an exact solution for the O(g?) effective action and the solid line is
the O(g?) approximation for the O(g?) effective action. We see from the zoomed in portion of the plot that

as we add higher order terms to the effective action, the turning point of the transition line moves towards
(g4, &2) = (0,16g,). We also see that already the O(g,) line is a good approximation for the large g4 regime.

Together, these two yield
gy =16g,, 4.21)

and simulations imply that these bounds are indeed saturated.
We can now drop the kinetic term and turn to finding the effective action by performing
integration in the partition function Z:

Z= / [dD] ¢S = / [dA] A(A) =N tr(-g2A+giA") / [dU] e 8N w(URUTA?) (4.22)
Here A(A) represents the Vandermonde determinant of the eigenvalue matrix A:

A(A) = ]—[ (A -4),  A=diaga;. (4.23)

1<i<j<N
To find the rightmost integral in Z, we will consider a general integral (with normalized measure)
I= / [dU) o' +(AUBUY) 4.24)
U(N)

for arbitrary Hermitian matrices A and B.
On the one hand, I defines the correction 6.5 to the effective action

Sefr = —g2N trA® + gaN trA* —log A*(A) + 68, (4.25)
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11 12 13 14 15 16
number of terms = (n!)? 1 4 36 576 14,400 518,400
execution time 0.2s 03s ls 19s 10 min 21h

Table 1: RTNI package performance for Ryzen 7, 16 GB RAM + 20 GB swap, Ubuntu 20, Python. A
large number of repeated terms were identified and summed with our additional code in Python, reducing
the number of terms in 1, from (n!)? to p2. The cause of the repetitions seems to be that RTNI sees each
instance of the matrices A and B as a different matrix. It is unclear to us whether this is a general feature of
the package or simply due to our unfamiliarity with the appropriate program settings. We would like to point
out that it was very helpful that the package calculates integrals for unspecified matrix sizes.

as
[se] l‘n
I = exp (=65) = exp ( Z —Sn) (4.26)
n'
n=1
On the other, we can expand it as:
o 1" .
I=14Y “ly. = / [dU] tr"(UAU’B) . 4.27)
- n!

When we compare the terms of these two series, we can extract recursive expressions for effective
action terms, which are given here up to O (%):

S, (4.28)
S, 52 (4.29)
S, i 35 S, (4.30)
54 = S4 6S3S, + 352 +45,8; - 1I,, (4.31)
S5 = =S; +10S35, - 10575, 155 S5 +58,8, +10S,S, (4.32)

and
Se = S8 — 15515, + 458753 — 1553 + 20535, — 60S,5,S; +
+ 1083 — 15878, +155,5, + 65,85 — I, (4.33)
In order to find S,,, we must first calculate 7,,. We have done this with the help of the RTNI**
computing package [24] (for its performance see Table 1). The first two integrals are

trA trB I = tr?A tr’B + trA% trB%  tr?A trB? + tr’B trA?
N 27 N2 - 12 N(N2 - 12)

1= (4.34)
In general, I, consists of p2 terms, where p, represents the number of possible partitions of the
integer n. Interestingly, the first six p, coincide with prime numbers. Due to their length, the
expressions for I3 to I¢ are left for the Appendices.

**In the meantime, an updated version of RTNI has been released [23].
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It turns out that S, can be compactly written with the help of the normalized symmetrized

moments: A AN 1 B BIN) 1
tr(A — (t " tr(B — (t "
g L TAZWAND" (B (mB/N)D)" @3s)
N N
The first three of them read:
trA trB N2 Ay By 2N3 Az B3
S == s Sy =———=, S3=— . 4.36
! N PTUNIC2 TN 1)(NE -2 (4-36)

To find higher order terms in the effective action, we will assume that they can similarly be written
as sums of products of As and Bs, such that in each term the powers of both A and B separately
add up to the order of the effective action term. Since in As, trA” is always coupled with tr'’A,
and likewise for B, it follows that the term trA” trA” trB™ trB" comes solely from A, A, B, B,
therefore their coefficients are the same, and can be easily extracted from the expression for S,;.,,.
The 4th order term is, for example,

3 6N2(N?+1)
S4= T (NZ=12)(N2 = 22)(N2 - 32) Ay By
18N?(N? + 1)(N? - 3) )y
(N2 = 12)2(N2 — 22)(N2? — 32) A By
6N(2N? - 3) 5 )
Wome w8, (437)

while the higher order terms are again given in the Appendices. These formulas correctly reproduce
our earlier results for S| to S4 [9] which were derived by expanding the HCIZ formula [25, 26]. In
our special case where A = R and B = A2, we find that

S3 =0, S5 =0. (4.38)

We will now prove that, in fact, all odd-order terms in the effective action vanish, except the first
one.
First note that, due to its diagonality and equidistant eigenvalues, the curvature R obeys the

trR r trR
(R_Wl) =—(R——1), 4.39)

following relation

N

where 7’ denotes the transpose w.r.t. the antidiagonal. For a diagonal matrix D, this antitranspose
can be written as
p" =ypJ, D=JD"J, (4.40)

where J = J~! is the unitary exchange matrix

J= : (4.41)
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We can use this fact about R to absorb g, (trR/N)A*> = 8g,NA? into the mass term before the
expansion’ ", so that we are left with

A=R-—1, B = A2, (4.42)
N

such that trA = 0 and AT = —A. If we consider the general Hermitian matrix A with these
properties, we can then write*

/ [dU] tr"(UAUTB) - / [d(UJ)] " [(U)A(UJ)B]
= / [d(UN)] " [U(JAT)UB]
- / [dU] tr"(UAT’UTB) = (-1)" / [dU] tr"(UAU*B). (4.43)

In the last line we have taken advantage the fact that in the product UJ the exchange matrix merely
permutes the entries of the matrix U, so that the Jacobian of this transformation is equal to 1.
Applying the derived formula for odd n = 2m — 1 results in

/ [dU] tr2m—1(UAUTB) = 0. (4.44)

Since S, in this case contains either powers of odd terms or products of odd and even terms, this

means it must hold
Som-1=0. (4.45)

Using the expression from the Appendices and keeping only the leading terms in N, we finally
arrive at the O (g%) effective action

32 32
Sefr = — (g2 — 8, )N trA” + (g4 - ?gf)Ntlr/\4 3 g2 tr'A?

1024 4 s 1024 4 aie 4096 4
AN wAS + A% — 2224 e AS (A 4.46
a5 8 15 &t 15 Sl (4.46)
262144 i SR8 6o i 26214 6 g SHOSE oo
trA trA2 trA A trAS + 250200 06 (20
2835 ¢ 045 189 S 567 o
—log A2(A),

or more transparently

1 1
Sefr = — (82— 8g,)N trA” + (g4 - _(Sgr)z)NtrA4 + 8(88,,)2 tr’A?

+ @(Sgr)w trA® + —(Sgr)4 trPA* — (Sgr)4 trA® trA? (4.47)
- _2835 (8g,)°N trA'? + E(&gr)6 trA? trA10 (8gr)6 trAY rAS + ﬁ(8gr)6 12\
—log A%(A).

T This will only shift $; to 0, while the higher order S,,s will remain unaffected.
+using the normalized Haar measure

10
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Here, the expansion/shift parameter 8¢, comes from a large N limit of g,.trR/N. The effective action
is now ready to be varied and used in the eigenvalue distribution equation®® for the calculation of
the correction to the phase transition lines and better analytical estimation of the shift of the triple
point. This is part of an ongoing research.

Using the same expansion method, work has also begun on separate effects of the here dis-
regarded kinetic term of the GW model [28], the first non-trivial terms of its effective action
being:

: 97 565
Kin _ 2 2 4 4
Sef = NtrA” —tr'A + —120NtrA ~ T20N? tr'A +

113 , 5, 137 5, 97 \
S0 A A? — L 2N - 2 A A (4.48
oy WAUAT =y AT = S wATAT - (448)

5. Conclusions & outlook

In this contribution, we have compiled the results of our recent studies on the phase structure of
the GW model and its impact on the renormalizability of the model. First, the numerical simulations
yielded the phase diagram consisting of the ordered, disordered and NC stripe phases. The obtained
diagram revealed that the curvature term, which is responsible for the renormalizability of the model,
causes the overall shift of the transition lines towards the larger values of the mass parameter. This
was partially confirmed analytically by the 4th order perturbative derivation of the J — 1| transition
line in the strong interaction regime for the model without the kinetic term. Here we went one step
further and also derived the 6th order effective action with the help of the RTNI computing package.
The next step would be to calculate the 6th order correction of the J — 17| transition line as well as
the 1| — 17 transition line and then try to extrapolate the positions of their turning points in different
orders of approximation in the hope of confirming the numerically obtained position of the triple
point. It is also important to continue working on the kinetic term of the model and to compare and
combine its effects with the effects of the curvature term.

When viewed in terms of the unscaled model parameters, the shift of the triple point leads to the
removal of the stripe phase in the renormalizable GW model and also in the renormalizable 1¢%,,
model obtained by switching off the curvature coupling with increasing matrix size, but not in the
original nonrenormalizable 1¢} model without the curvature. We believe that this correspondence
between the (non)renormalizability and the presence of the stripe phase has a broader validity and
also applies to other NC models. To check this, a natural step would be to simulate the related
nonrenormalizable U(1) gauge model [29]. This model has two possible classical vacua—the zero-
vacuum and the stripe vacuum proportional to the NC coordinates—and numerical simulations
would show which one is actually energetically preferred. We expect that its nonrenormalizability
is also caused by the stripe phase. This would hopefully bring us a bit closer to the successful
formulation of a renormalizable NC gauge model.

$3A nice overview of the derivation of the eigenvalue distribution and possible classes of solutions can be found in
[27].

11
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A. 3rd order integral

1
T N(NI-1)(N2-22)

x ((N2 ~2) - A B
+2N? - trA® rB?
+4 - (tr’A trB? + tr’B trA®)
3N - (t*AtrB? trB + tr'B trA? trA)
—6N - (trA® trB? trB + trB> trA? trA)
+3(N? +2) - rA® rA B? trB)

I

(A.49)

B. 4th order integral

!
T N N2 1) (N2 (N2 -32)

Iy

x((N4 —8N2+6) - t*At’B

+6N?(N* +1) -
+3(N* = 6N? +18) -
+8(N*+3N?+12) -
+6N*(N* +1) -
—30N -

+3(N?+6) -
—6N(2N? - 3) -
+8(2N? - 3) -
—24N(N%?+1) -
—6N(N?-22) -
+60N? -
—6N(N?+6) -
+24(2N? - 3) -
—24N(N%?+1) -

trA* trB*

tr’A? tr’B?

trA® trA trB® trB

tr’A trA” tr?B tr B

(tr*A trB* + tr'B trA*)

(tr*A t’B? + tr*B tr’A?)

(trA* t?B? + trB* tr’A?)

(tr*A trB> trB + tr*B trA> trA)
(trA* B B + trB* trA® trA)
(tr*A t?B trB? + tr'B tr’A trA?)
(trA* t’B trB* + trB* tr’A trA?)
(tr’A” t’B trB? + tr’B? tr’A trA?)
(trA3 trA t’B? + B> rB tr’A?)
(trA® trA tr’B trB? + trB> trB tr’A trAz))

12

(B.50)
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C. S5th order integral

1
Is

><(N(N4 — 20N? +78)
+24N%*(N? +5)N
+336N

+30N(N* + 5N + 84)
+10N(N? = 3%)(N? + 4)

+15N(N* - 10N? + 114)

= N2(N2 — 12)(N2 — 22)(N? — 32)(N2 _42)><

troA tr'B

- trA° trB’
(A B’ + tr'B trAd)
- trA* trA trB* B
A trA? B trB?
+20N(N* +24) -
- tr?A? trA t’B* trB
—30(5N? —24) -
—120N%(N? +5) -
—10(N? = 12)(N? =2) -
—840N? -
+40N(N? - 3%).
—40(N? +12) -
+120N(3N? +8) -
—120N%*(N? =2) -
+15N(N? =2) -
+360N(N? - 2) -
+300N (N? - 2) -
—120(N* +24) -
+600N (N? - 2) -
—30(2N* +25N? - 72) -
—20(N?> = 6)(3N? +38) -
+100N(N? +12) -
—30(N* +24) -
—20(N* + 60N? — 96) -
+300N(N? - 2) -
—60(N* +24) -

(trA> tr’A trB> t°B + trA> trA”? wB® 1 B?)

(tr'A trB* trB + tr'B trA* trA)

(trA> trB* trB + trB’ trA* trA)

(trPA tr’B trB? + tr'B tr’A trA?)

(trA> tr’B trB? + trB° tr’A trA?)

(tr°A trB? t?B + tr'B trA> tr’A)

(tr'A trB? trB? + t'B trA® trA?)

(trA> trB® t?B + B trA° tr?A)

(trA> trB> trB? + trB’ trA> trA?)

(tr°A tr’B? trB + tr'B tr’A” trA)

(trA> t?B? trB + trB> tr’A% trA)

(trA* trA tr’B trB* + trB* trB tr’A trA?)
(rA* trA wB® t?B + trB* rB trA> tr’A)
(trA* trA trB® trB? + rB* rB trA® trA?)
(trA* trA tr’B? trB + trB* trB tr?’A% trA)
(tr’A trA? B3 t?B + tr'B trB? trA tr?A)
(tr’A trA? B> rB? + tr'B trB? trA® trA?)
(tr’A trA? tr?B? trB + tr'B trB> tr’A” trA)
(trA® tr’A trB> rB? + rB> t?B trA> trA?)
(trA> tr’A tr?B? trB + trB> tr’B tr’A” trA)
(trA> trA% tr’B? rB + tr B> trB* tr’A° trA))
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D. 6th order integral

1
Is

><((N8 _ 41NC + 458N* — 1258N + 240) -
- trA® trB®
—5040N(N? - 1) -

+40(N® — 28N® + 477N* — 1890N? — 2400) -
+15(N® = 35N + 376 N* + 18N? — 3600) -
+160(N* + 29N?% - 90) -

(PA °B? + 9B tA?)
—120N(N? - 1)(3N* = 11N? + 80) -
+840N%(N? - 1)(N? -7) -

—480N (4N* — 59N? + 235) -
+2016(N? — 12)(N? - 10) -
—~720N(N? = 1)(N* + 15N* +8) -
—15N(N? = 3%)(N* = 24N? + 38) -
—90N(N? — 4%)(5N? - 13) -
+450(N* + 15N% + 8) -
+15120N*(N? - 1) -

+2520N%(N? = 1)(N? +11) -
—~720N (N? - 12)(N? - 2%)(N? +5) -
+45(N? = 2%)(N* = 3N? +10) -
—~5040N (N? = 1)(2N? - 5) -
+40(2N°® — 51N* + 229N? - 60) -
—6720N(N? = 1)(N? +5) -
—120N(N? = 3%)(2N? + 13) -
+5040N?(N? = 12)2 .

+720(N? = 12)(3N* = 11N? + 80) -
—480N(N* +29N? - 90) -

—7200N (N* — 6N? +29) -
+1800(N® — 10N* + 25N? + 80) -
+360(N® + 18N* = 59N? — 200) -
+160(N® + 62N* — 183N + 600) -
—240N(N® + 2N* + 177N? - 1140) -
—~5040N(N? = 1)(N* = 7) -

+120N%(N? = 1)(N* + 15N? + 8)

—~15N(N* + N? +358)

T N2(NZ - 12)2(N? — 22)(N2 - 32)(N? -

X
PN =57)
tr®A u%B

(tr°A trB® + tr%B trA®)
tr’A> B3

tr’A? tr’B?

(tr°A tr’B? + B tr’A?)

(trA® t?B? + trB® tr’A%)

(trA® tr’B? + trB® tr’A?)

(tr?A° 1B + t’B> tr°A?)

(tr°A trB’ trB + tr°B trA° trA)

(trA® trB> trB + trB® trAd trA)

(tr°A tr*B trB? + tr%B tr*A trA?)

(tr°A trB* tr?B + tr°B trA* tr?A)

(tr°A trB* trB? + B trA* trA?)

(trA® t*B trB? + trB® tr*A trA?)

(trA® trB* tr’B + trBS trA* tr’A)

(trA® trB* trB? + trB® trA* trA?)

(tr°A t2B? tr7B + tr°B tr’A” tr?A)

(trAS t’B? tr’B + trBS tr’A% tr?A)

(A tr’B trB® + tr°B tr’A trA?)

(trAS t’B trB? + trBS tr’A trA®)

(tr°A trB? trB? trB + tr’B trA3 trA? trA)
(trAS B> trB? trB + trB® trA> trA? trA)
(tr’A° trB> trB + trB> trA trA)

(tr’A° tr'B trB? + B> tr*A trA?)
(tr?’A° wB* t’B + t’B? trA* tr?A)
(tr?’A° trB* trB? + tr°B> trA* trA?)
(tr?A° t°B? tr?B + tr’B> tr’A” tr°A)
(tr?’A® B trB® + B3 tA trA?)
(tr’A° trB? trB* trB + tr’B> trA® trA” trA)
(tr’A2 trB’ trB + tr°B? trA’ trA)
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+45N%(N* + N? + 358) -

+90(2N°® + 95N* - 577N? — 600) -
—90N (N? = 22)(2N* = 37N? + 395) -
—45N(N® = 11N* + 220N? + 870) -
—360N (2N* + 23N? - 145) -
+360(2N% — 13N* + 71N? +300) -

- trA° trA trB> trB
—5040N (N? = 1)(N?> =17) -

—~720N(N? — 1)(N* + N? + 106) -
+4320(N? - 12)(N? = 2%)(N? +5) -
+2160(N? — 12)(N? = 2%)(N? +5) -
+720(N? = 1?)(3N* = 11N? + 80) -
~T20N(N? = 1)(N* + 15N? +8) -

+15(N® - 19N — 64N* + 922N% — 1200) -
+90(N? = 22)(N* = N? + 120)(N? +5) -

- trA* trA? trB* tr B>
+45(N® = 21N® + 270N* = 130N? - 1200) -
+450(2N% — 25N* — 25N? + 120) -
—1350N(N* + 15N? +8) -

—90N(N? = 22)(N? +5)(N? + 119) -
—45N(2N% = 29N* + 97N? — 430) -
—90N(N? = 2%)(2N* + 53N? — 415) -
+270(4N® + 15N* + 141N? + 200) -
—120N(N® - 16N* — 30N? + 165) -

360N (N? — 3%)(N* = N? +30) -

+360(N°® + 60N* = 101N? — 200) -
+360(3N% — 37N* + 54N? + 100) -

N* = 64N? - 300) -

+144(N? — 12)(N® + 10N* + 325N? + 240)

+90(N? — 22)(N* — N> + 120)(N? +5)

+120(5NS -

(tr’A% B trB? + tr'B? tr*A trA?)

(tr’A” trB* tr’B + tr'B? trA* tr?A)

(tr’A” trB* rB? + tr’B? trA* trA?)

(tr’A” t’B? tr?B + tr’B* tr’A” tr°A)

(tr’A? t’B uB? + t'B? tr’A trA?)

(tr’A trB? trB* trB + tr'B? trA® trA® trA)

(trA> trA B trB* + trB’ trB tr*A trA?)

(trA> trA trB* tr?B + trB> trB trA* tr?A)

(trA> trA trB* trB? + trB’ trB trA* trA?)

(trA> trA tr?B? tr’B + trB° trB tr*A? tr?A)

(trA> trA tr°B trB> + trB> trB tr'A trA®)

(trA> trA trB> trB? trB + trB’ trB trA> trA? trA)
tr*A trA? u*B rB?

trA* tr?A rB* t?B

tr?A” trA tr’B* tr’B

(tr*A trA? rB* t’B + B rB? trA* tr°A)
(tr*A trA? trB* trB® + tr*B trB? trA* trA?)
(trA* t?A trB* tr B + trB* tr’B trA* trA?)
(tr*A trA? t?B? t’B + tr*B trB? tr’A” tr?A)
(trA* t?A t2B? tr’B + trB* t’B tr’A% tr’A)
(trA* trA? ’B? t?B + trB* trB* tr’A” tr’A)
(tr*A rA? t’B B® + tr*B trB? tr’A trA®)
(trA* tr’A tr’B B> + trB* tr’B tr’A trA®)
(trA* rA? tr’B rB? + trB* trB? tr’A trA®)
(tr’A? A t’B uB® + tr’B> B tr’A trA)
(tr*A trA? trB> trB? trB + tr'B trB? trA> trA” trA)

(tr’A” tr’A trB> trB* trB + tr’B? t’B trA> trA? trA)
(trA* t?A B3 trB? trB + trB* tr?B trA> trA® trA)
(trA* trA% trB? rB? trB + trB* trB> trA® trA” trA)
tr’A trA3 t’B tr B

(tr’A trA® B3 trB? trB + tr’B trB> trA® trA” trA)
(D.52)

—360N(N® — 8N* + 202N? — 555) -
+360(11N® — 40N* + 149N? + 600) -
360N (N® + 30N* — 201N? + 890) -

+40N?(N® - 12N* + 37N? — 986) -

—120N (NS + 54N* — 415N? + 1320) -
+120(N® — 2N® + 433N* — 912N? - 2400) - trA> trA? trA B> trB? trB)
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E. 5th order effective action

o 24N(N? +5) A8
DWWV -F) (NP4 T
480(N* — 5N - 1)
T N(N2 = 12)2(N2 = 22)(N2 — 32)(N2 - 42)
120(N? - 2)
TSN -2 (N - (N - )

Ay Ay B3 By

(A5 Bz By + Bs A3 A)

F. 6th order effective action

120(N* + 15N? + 8)
(N? = 12)(N? = 22)(N? = 3%)(N? - 4%)(N? - 5°)
1800(2N® — 13N* — 13N? - 120)
T NZ(NZ = 12)2(N2 — 22)(N2 — 32)(N2 — 42)(N2? - 52)
240(3N8 - 30NS - 33N* + 860N? + 1600)
_NZ(NZ _ 12)2(N2 _ 22)2(N2 _ 32)(N2 _ 42)(1\72 _ 52)
1080(3N® — 32N* — 81N? + 350)
T N2(N2 - 12)3(N2 — 22)(N2 — 32)(N2 — 42)(N2 - 52)
720(N? +5)
TN SV - P (N - ) (N -5
120(3N* - 11N? +80)

Se =— - As Be

Ay Ay By By

A B3

A By

(E.53)

(A By B + Bs Ay A)

(Ag B + By A3
+N(N2—12)(N2—22)(N2—32)(N2—42)(N2—52) ( 6 3t 6 3)
840(N? -7)

- (Ag B3 + B, A3

(N2 — 12)(N2 = 22)(N? — 32) (N2 — &) (N2 — 52) ( 6 221 J6 2)
1800(N® — 10N* + 25N + 80) (ﬂ A BB B 31)
NZ(NZ—12)2(N2—22)(N2—32)(N2—42)(N2—52) 4723 4 =203
.\ 1800(2N* — 19N% - 19) .(ﬂ A BB B ﬂ3)
N(Nz—12)2(N2—22)(N2—32)(N2—42)(N2—52) 4972 =2 4 2

480(4N* — 59N? +235) 5
(A3 B3 + B8] A
+N(N2—12)2(N2—22)(N2—32)(N2—42)(N2—52) ( 3953 2)
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