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1. Introduction

In quantum field theory the definition of vacuum state relies on the choice of a time-like Killing
vector to which one associates a notion of positive frequency for the modes of the field. In this sense,
whether such state is devoid of particles depends on the way one observer measures time. This
seemingly straightforward yet profoundly significant insight was first being appreciated in the 1970s
(see e.g. the nice essay by P.C.W. Davies [1]) and it is at the basis of the existence of the temperature
which certain classes of observeres associate to a Killing horizon. In ordinary Minkowski space-
time, the well-known example is the Unruh temperature: uniformly accelerating observers perceive
what is the vacuum state for inertial observers as a thermal state at a temperature proportional
to the modulus of their four-acceleration [2, 3]. In this example, the vacuum state for inertial
observers, which define positive frequency modes with respect to globally time-like Killing vector
(the generator of translations in inertial time), appears as a thermal state to accelerated observers
whose notion of positive frequency is determined by the generator of boosts which is time-like only
within the so-called Rindler wedges, the regions of Minkowski space-time determined by the causal
complement of a light-cone. The same ambiguity in the definition of a quantum field’s vacuum
state is ultimately responsible for celebrated effects in semiclassical gravity as cosmological particle
creation [4] and particle creation by black holes [5].

Much less appreciated is the fact that for massless fields, for which the invariance group of the
field equation is enlarged from the Poincaré to the conformal group, time-like conformal Killing
vectors, in addition to usual time-like Killing vectors, can be used to characterize positive frequency
modes of the field and thus to define associated vacuum states. One could for example use the
generator of dilations in Minkowski space-time to define a decomposition of the field in modes
which have positive and negative frequencies with respect to conformal time in a Milne universe (a
flat expanding (contracting) FRLW space-time which can be identified with the future (past) cone
in Minkowski space-time). The usual inertial vacuum state of the field appears as a thermal state
populated of such Milne modes [6, 7]. Similarly, as discussed in detail below, a combination of
special conformal tansformations and time translation generates time evolution which preservers a
causal diamond, the intersection of a past and future cone in Minkowski space-time. Observers
whose worldlines are orbits of such conformal Killing vector, like Milne observers, see the inertial
vacuum as a state populated by positive frequency excitations with respect to the diamond time
determined by the conformal Killing vector [8–10].

In [11], it was observed that radial conformal Killing vectors in Minkowski space-time, which
include the vectors defining Milne and diamond time, once restricted to light cones, are formally
identical to the generators of time evolution in conformal quantum mechanics, a quantum mechani-
cal model with inverse square potential first studied in detail in [12]. Conformal quantum mechanics
can be seen as a conformally invariant 0 + 1-dimensional field theory. Any generator of the group
of conformal transformations of the real line can be used as a generator of time evolution of the
theory. In the same way for a quantum field in Minkowski space-time the vacuum state defined
by a (conformal) Killing vector that is globally time-like appears thermal to observers whose time
evolution is determined by a (conformal) Killing vector which is not globally time-like, one might
expect a similar effect to be present in conformal quantum mechanics. As shown in [11, 13], and
as we will review in this contribution, this is indeed the case.
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The significance of this observation is twofold. On one side it shows how in an extremely
simplified one-dimensional model one can reproduce effects analogous to their semiclassical gravity
counterparts and thus provide further insights on their fundamental aspects. In particular, it
evidences how such effects are ultimately related to the possibility of defining alternative notions
of time evolution which cover only part of the geometric domain of the theory. On the other hand,
as observed in [11], since the two-point function of conformal quantum mechanics seen as a CFT1

[14, 15] can reproduce, for specific choices of the basis states of the theory, the two-point function
of a massless scalar field in Minkowski space-time evaluated along the worldline of Milne and
diamond observers, its thermal nature can be used as an alternative, group-theoretical derivation of
the temperatures that these observers associate to the inertial vacuum state.

The other crucial characteristic of the inertial vacuum state, when seen from the perspective
of excitations with frequency defined by non-globally time-like (conformal) Killing vectors, is
its entangled nature. In fact, the thermal character of this state seen from observers whose time
evolution is restricted to a portion of the whole space-time (e.g. in the case of Minkoski space-time
the Rindler wedge, the Milne universe or a causal diamond) is due to the restriction of this highly
entangled state to a portion of space-time which requires tracing over the modes not having support
on that region [6, 7, 9, 16]. As we review in this contribution, the same pattern occurs in the case of
conformal quantum mechanics where the state which plays the analogue role of the inertial vacuum
exhibits the structure of a thermofield double state. We will calculate the entanglement entropy
associated to such state and show how it exhibits the same logarithmic divergence characterizing
field theories in which the boundary of the entangling region is point-like. Seen as a quantum field
theory, conformal quantum mechanics thus likely provides the simplest field-theoretic model where
an analytic calculation of entanglement entropy associated to a geometric partition is possible.

2. Radial conformal Killing vectors in Minkowski space-time

We start from the metric of Minkowski space-time written in spherical coordinates

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) . (1)

Given a radial vector field

𝜉 = 𝜉𝑡 (𝑡, 𝑟, 𝜃, 𝜙)
𝜕

𝜕𝑡
+ 𝜉𝑟 (𝑡, 𝑟, 𝜃, 𝜙)

𝜕

𝜕𝑟
(2)

we say that it is a conformal Killing vector if

L𝜉𝑔𝜇𝜈 ∝ 𝑔𝜇𝜈 . (3)

From this condition one can obtain [17] the general form of a radial conformal Killing vector given
by

𝜉 =

(
𝑎(𝑡2 + 𝑟2) + 𝑏𝑡 + 𝑐

)
𝜕𝑡 + 𝑟 (2𝑎𝑡 + 𝑏) 𝜕𝑟 (4)

with 𝑎, 𝑏, 𝑐 real constants. The conformal Killing vector above can be written as

𝜉 = 𝑎𝐾0 + 𝑏𝐷0 + 𝑐𝑃0 , (5)
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where 𝑃0, 𝐷0 and 𝐾0 generate, respectively, time translations, dilations and special conformal
transformations

𝑃0 = 𝜕𝑡 , 𝐷0 = 𝑟 𝜕𝑟 + 𝑡 𝜕𝑡 , 𝐾0 = 2𝑡𝑟 𝜕𝑟 + (𝑡2 + 𝑟2) 𝜕𝑡 . (6)

These generators close the sl(2,R) Lie algebra

[𝑃0, 𝐷0] = 𝑃0 , [𝐾0, 𝐷0] = −𝐾0 , [𝑃0, 𝐾0] = 2𝐷0 . (7)

Introducing null coordinates 𝑢 = 𝑡 − 𝑟 and 𝑣 = 𝑡 + 𝑟 , the radial conformal Killing vector (4) divides
into two identical 𝑢- and 𝑣-dependent terms

𝜉 =

(
𝑎𝑢2 + 𝑏𝑢 + 𝑐

)
𝜕𝑢 +

(
𝑎𝑣2 + 𝑏𝑣 + 𝑐

)
𝜕𝑣 . (8)

The causal structure of the conformal Killing vectors changes according to the values of the real
constants 𝑎, 𝑏 and 𝑐 [17]. When 𝑎 = 0 and 𝑏 = 0 the conformal Killing vectors are globally
time-like. When 𝑎 = 0 and 𝑏 ≠ 0 they are null on the light-cone originating from the point
(𝑡 = −𝑐/𝑏, 𝑟 = 0), time-like inside it and space-like outside. When 𝑎 ≠ 0 the domains of causality
of the Killing vector are determined by the sign of the determinant Δ = 𝑏2 − 4𝑎𝑐:

• Δ < 0: 𝜉 is time-like everywhere.

• Δ = 0: 𝜉 is time-like everywhere but on the light-cones emanating from (𝑡 = −𝑏/(2𝑎), 𝑟 = 0)
where it is null.

• Δ > 0: 𝜉 is null on the light-cones originating from the points (𝑡±, 𝑟 = 0) (where 𝑡± =

(−𝑏±
√
Δ)/2𝑎), it is time-like inside and outside of both light-cones and space-like everywhere

else.

When the conformal Killing vector is time-like, we can define an observer having four-velocity
𝑈𝜇 = exp{−𝜑}𝜉𝜇 where 𝜉𝜇𝜉𝜇 = exp{2𝜑}, we call this a conformal Killing observer [18]1. In
the regions of space-time where the conformal Killing vector is not time-like such an observer
cannot exist and one defines the concept of a conformal stationary limit surface as the boundary
where a conformal Killing vector becomes light-like. Such boundary is a null surface and defines
a conformal Killing horizon when it is also a geodesic hypersurface.

Key to our discussion is the observation that radial conformal Killing vectors (Eq. (4)) restricted
to 𝑟 = 0 and 𝑢 = 𝑐𝑜𝑛𝑠𝑡 or 𝑣 = 𝑐𝑜𝑛𝑠𝑡 assume the form of the generator of a conformal transformation
of the real line

𝜉 =

(
𝑎 𝑡2 + 𝑏 𝑡 + 𝑐

)
𝜕𝑡 . (9)

This provides the bridge for the correspondence between orbits of conformal Killing vectors in
Mikowski space-time and time evolution in conformal quantum mechanics which we discuss in
detail in section 4. In preparation for that, below we discuss how the worldlines of observers in
a Milne universe and in a causal diamond in Minkowski space-time can be described by orbits of
radial conformal Killing vectors.

1The scalar function 𝜑 is defined as L𝜉 𝑔𝜇𝜈 = 2𝜑 𝑔𝜇𝜈 .
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3. Observers worldlines and orbits of (conformal) Killing vectors

Radial conformal Killing vectors divide Minkowski space-time into causal domains separated
by light-like surfaces that are conformal Killing horizons, the latter having the property that the
conformal Killing vector field is orthogonal to them [19]. We now show how orbits of the radial
conformal Killing vectors we discussed in the previous section describe worldlines of observers
restricted to the time-like regions of these causal domains. For simplicity, we restrict to the
1 + 1-dimensional case. The line element of Minkowski space-time in cartesian coordinates is

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2 . (10)

We recall that a set of coordinates is adapted to the worldline of a class of observers determined by
integral lines of a time-like vector if such a vector can be expressed as a derivative with respect to the
time coordinate and the space coordinates stay constant along the worldline. Cartesian coordinates
are adapted to static inertial observers. Such observers are those whose wordlines are integral lines
of the (globally) time-like Killing vector 𝑃0 = 𝜕𝑡 = (1, 0) and whose four-velocity is parallel to it

𝑢
𝜇
𝑠 | |𝑃0 , (11)

(generally inertial observers can have four-velocities which are not parallel to 𝑃0, see below). In
fact, when using cartesian coordinates we have indeed that 𝑃0 = 𝜕𝑡 and, for static observers, such
coordinate coincides with the proper time along the worldline i.e. the length

𝜏 =

∫
𝑑𝑡

√︂
−𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝑡

𝑑𝑥𝜈

𝑑𝑡
. (12)

Moreover the spatial coordinate 𝑥 stays constant along worldlines of static inertial observers.

3.1 Rindler observer

Let us now consider the case of Rindler coordinates. These are coordinates adapted to an
observer moving along a trajectory whose acceleration four-vector has a constant modulus. The
worldline of such an observer is the integral line of the boost Killing vector 𝑁0 = 𝑥𝜕𝑡 + 𝑡𝜕𝑥 = (𝑥, 𝑡).
By definition, integral lines of a Killing vector have the Killing vector itself as tangent vectors and
thus the four-velocity of observers coincides with the Killing vector as well. From the normalization
of the four-velocity we generally have

−(𝑢0)2 + (𝑢1)2 = −1 . (13)

A way to find integral curves is simply to find a curve Γ𝑁0 (𝜆) = (𝑡 (𝜆), 𝑥(𝜆)) such that its
tangent vector coincides with the vector 𝑁0 i.e.

𝑢0 =
𝑑𝑡 (𝜆)
𝑑𝜆

= 𝑥 (14)

𝑢1 =
𝑑𝑥(𝜆)
𝑑𝜆

= 𝑡 (15)
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whose normalized solution is

𝑢0 = cosh(𝜆) (16)
𝑢1 = sinh(𝜆) , (17)

which can be rewritten in terms of an integration constant 𝛼 determining the intersection of the
worldline with the 𝑥-axis and a dimensionful time coordinate 𝜎 = 𝛼𝜆

𝑡 = 𝛼 sinh
(𝜎
𝛼

)
(18)

𝑥 = 𝛼 cosh
(𝜎
𝛼

)
. (19)

Rindler observers move along hyperbolae and thus, to define adapted coordinates to these integral
lines, one needs to choose another spatial coordinate which stays constant along the trajectory
instead of 𝑥. Since in the limit 𝛼 → 0 the trajectory tends to the light-cone 𝑥 = |𝑡 | the worldlines
are restricted to the right Rindler wedge 𝑥 > |𝑡 |. All other worldlines will intersect the 𝑥-axis
everywhere from 𝑥 = 0 to 𝑥 = ∞ and they can be written in terms of the action of a dilation on the
worldline (18) and (19)

𝑡 = 𝛼 𝑒
𝜒

𝛼 sinh
(𝜎
𝛼

)
(20)

𝑥 = 𝛼 𝑒
𝜒

𝛼 cosh
(𝜎
𝛼

)
, (21)

where the dilation parameter 𝜒 ∈ (−∞,∞) is the Rindler spatial coordinate which stays constant
along a given Rindler trajectory. The Minkowski metric written in Rindler coordinates reads

d𝑠2 = 𝑒2 𝜒

𝛼

(
−d𝜎2 + d𝜒2

)
(22)

from which one can read the proper time to be

𝜏 = 𝑒
𝜒

𝛼𝜎 . (23)

Notice that there is only one Rindler worldline whose proper time coincides with the Rindler
coordinate time: the one at the origin of the spatial axis of the Rindler coordinates chosen, 𝜒 = 0.

3.2 Milne observer

We now define Milne observers as the ones whose worldlines are integral curves of the dilation
conformal Killing vector 𝐷0 = 𝑡𝜕𝑡 + 𝑥𝜕𝑥 = (𝑡, 𝑥). As before, one can find integral curves by
searching for a curve Γ𝐷0 (𝜆) = (𝑡 (𝜆), 𝑥(𝜆)) such that its tangent vector coincides with the vector
𝐷0 i.e.

𝑑𝑡 (𝜆)
𝑑𝜆

= 𝑡 (24)

𝑑𝑥(𝜆)
𝑑𝜆

= 𝑥 . (25)

A trivial solution is (𝑡 = 0, 𝑥 = 0). A general solution is given by

𝑡 = 𝑡0 𝑒
𝜆 (26)

𝑥 = 𝑥0 𝑒
𝜆 , (27)

6
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with initial conditions (𝑡 (𝜆 = 0) = 𝑡0, 𝑥(𝜆 = 0) = 𝑥0). We see that integral lines of 𝐷0 are straight
lines through the origin

𝑥 =
𝑥0
𝑡0
𝑡 =

𝑡

𝜔
(28)

and are time-like for |𝜔| > 1, space-like for |𝜔 | < 1 and null when |𝜔 | = 1. We can now introduce
a length scale 𝛼 and write, for time-like, future-oriented integral lines

𝑡 = 𝛼 cosh 𝜁 𝑒𝜆 (29)
𝑥 = 𝛼 sinh 𝜁 𝑒𝜆 , (30)

with the boost-like parameter 𝜁 ∈ (−∞,∞). We introduce a time coordinate 𝜎 = 𝛼𝜆 and a space
coordinate 𝜒 = 𝛼𝜁 2 and define Milne coordinates in the future cone of Minkowski space-time as
the set (𝜎, 𝜒)

𝑡′ = 𝛼 𝑒
𝜎
𝛼 cosh

( 𝜒
𝛼

)
(31)

𝑥′ = 𝛼 𝑒
𝜎
𝛼 sinh

( 𝜒
𝛼

)
. (32)

Such coordinates are adapted to the integral lines of the dilation conformal Killing vector 𝐷0

and indeed one can verify that 𝐷0 = 𝛼𝜕𝜎 and the coordinate 𝜒 stays constant along such integral
lines. We can also verify that, in these coordinates, the boost generator 𝑁0 = 𝑥𝜕𝑡 + 𝑡𝜕𝑥 reads
𝑁0 = 𝛼𝜕𝜒 connecting therefore worldlines of different Milne observers.

We can write the Minkowski metric in Milne coordinates as

d𝑠2 = 𝑒2 𝜎
𝛼

(
−d𝜎2 + d𝜒2

)
, (33)

from which we see that along such integral lines the Milne time 𝜎 is related to proper time 𝜏 by

𝜏 = 𝛼𝑒
𝜎
𝛼 , (34)

where 𝜏 > 0. Notice that the proper time 𝜏 and the adapted time 𝜎 can never coincide along Milne
observers worldlines.3

3.3 Diamond observer

Observers whose worldlines are integral curves of the conformal Killing vector 𝑆0

𝑆0 =
1

2𝛼

(
(𝛼2 − 𝑡2 − 𝑥2)𝜕𝑡 − 2𝑡𝑥𝜕𝑥

)
=

(
1

2𝛼
(𝛼2 − 𝑡2 − 𝑥2), 1

𝛼
(−𝑡𝑥)

)
(36)

2Notice that if we had introduced different length scales 𝛽𝜎 , 𝛽𝜒 ≠ 𝛼 to convert the dimensionless parameters 𝜆 and 𝜁
into a time and space coordinates we would have unpleasant factors ( 𝛼

𝛽𝜎
)2 and ( 𝛼

𝛽𝜒
)2 appearing on the right-hand side

of (33).
3Observe that in literature (see for instance [20]) the metric of Milne space-time can be found written in terms of a

time coordinate 𝑡 as
d𝑠2 = −d𝑡2 + 𝑡2 d𝜒2 , (35)

which has the form of a FLRW metric with linear expansion factor 𝑎(𝑡) = 𝑡. These are comoving coordinates for the
Milne universe with 𝑡 being the cosmological time that coincides with the proper time 𝜏 when 𝜒 is constant.

7
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are called diamond observers. These observers are confined in the portion of Minkowski space-time
defined by the inequality |𝑡 | + |𝑥 | < 𝛼. This region is called causal diamond and it is defined by the
intersection of past and future light cones of two events. It corresponds to the causal domain of an
observer with a finite lifetime 2𝛼. To find the integral curves, let us recall that on the real line the
conformal transformation

𝑡′ =
𝛼(𝑡 + 𝛼)
𝛼 − 𝑡 , (37)

maps the operator 𝑆0 = 𝜕𝑡 into 𝐷0 = 𝜕𝑡 ′ (see [13] for details).
In light-cone coordinates 𝑢 = 𝑡 − 𝑥, 𝑣 = 𝑡 + 𝑥 we have

𝐷0 = 𝑢𝜕𝑢 + 𝑣𝜕𝑣 (38)

𝑆0 =

(
𝛼

2
− 𝑢2

2𝛼

)
𝜕𝑢 +

(
𝛼

2
− 𝑣2

2𝛼

)
𝜕𝑣 . (39)

As it can be easily checked, (38) admits an expression similar to (39) when applying the map (37)
separately to 𝑢 and 𝑣

𝑢′ =
𝛼(𝑢 + 𝛼)
𝛼 − 𝑢 (40)

𝑣′ =
𝛼(𝑣 + 𝛼)
𝛼 − 𝑣 (41)

namely:

𝐷0 = 𝑢′𝜕𝑢′ + 𝑣′𝜕𝑣′ =
(
𝛼

2
− 𝑢2

2𝛼

)
𝜕𝑢 +

(
𝛼

2
− 𝑣2

2𝛼

)
𝜕𝑣 . (42)

From these relations, we can also obtain the maps connecting Milne and diamond observers in
cartesian coordinates which read:

𝑡′ =
𝛼(−𝑡2 + 𝑥2 + 𝛼2)
𝑡2 − 𝑥2 + 𝛼2 − 2𝛼𝑡

(43)

𝑥′ =
2𝛼2𝑥

𝑡2 − 𝑥2 + 𝛼2 − 2𝛼𝑡
(44)

Therefore, in light-cone coordinates, the integral curves of 𝑆0 can be obtained by from the integral
curves of 𝐷0 using the maps (40) and (41). Specifically, we rewrite the integral curves of 𝐷0 in
(28) in light-cone coordinates

𝜔(𝑣′ − 𝑢′) = 𝑢′ + 𝑣′ (45)

and apply (40) and (41) obtaining

𝛼𝜔(𝑣 − 𝑢) = 𝛼2 − 𝑢𝑣 (46)

which, written in cartesian coordinates, reads as

𝑡2 − (𝑥 − 𝛼𝜔)2 = 𝛼2(1 − 𝜔2) . (47)

These integral curves are time-like when |𝜔 | > 1 (inside the causal diamond), space-like when
|𝜔| < 1 (outside the causal diamond) and null when |𝜔 | = 1 (boundary of the causal diamond).
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Following the same procedure, rewriting (31) and (32) in light-cone coordinates and applying (40)
and (41) to them, we define the diamond coordinates as the set (𝜎, 𝜒)

𝑡 = 𝛼
sinh

(
𝜎
𝛼

)
cosh

( 𝜒
𝛼

)
+ cosh

(
𝜎
𝛼

) (48)

𝑥 = 𝛼
sinh

( 𝜒
𝛼

)
cosh

( 𝜒
𝛼

)
+ cosh

(
𝜎
𝛼

) . (49)

Notice that the parameter 𝜔 using (48) and(49) can be written as

𝜔 =
1

tanh
( 𝜒
𝛼

) (50)

and it is related to the acceleration of a diamond observer by

𝑎(𝜔) = 1
𝛼
√
𝜔2 − 1

. (51)

We can also apply the map (37) to the boost generator

𝑁0 = 𝑥𝜕𝑡 + 𝑡𝜕𝑥 , (52)

to obtain the generator 𝑀0 that connects worldlines of different diamond observers

𝑀0 = −𝑥𝑡
𝛼
𝜕𝑡 +

1
2𝛼

(
𝛼2 − 𝑥2 − 𝑡2

)
𝜕𝑥 = 𝜕𝜒 . (53)

Notice that the generator 𝑀0 in adapted coordinates acts as a translation in the spatial coordinate
𝜒. In terms of diamond coordinates, the line-element in Minkowski space-time reads

d𝑠2 =
1(

cosh
( 𝜒
𝛼

)
+ cosh

(
𝜎
𝛼

) )2

(
d𝜎2 − d𝜒2

)
, (54)

showing the conformal relation between the diamond space-time and Minkowski space-time. From
(54) we see that along such integral lines the diamond time 𝜎 is related to proper time 𝜏 by

𝜏 = 𝛼 csch
( 𝜒
𝛼

) [
log

(
cosh

( 𝜒 + 𝜎
2𝛼

))
− log

(
cosh

( 𝜒 − 𝜎
2𝛼

))]
, (55)

that, as in Milne space-time, never coincides with the adapted time 𝜎.
Let us observe that (48) and (49) can also be obtained by applying the following conformal mapping
[21, 22]

𝑡′ =
2𝑡𝛼2

(𝑥 + 𝛼)2 − 𝑡2
(56)

𝑥′ =
𝛼(𝑡2 − 𝑥2 + 𝛼2)
(𝑥 + 𝛼)2 − 𝑡2

(57)

on Rindler cartesian coordinates (20) and (21). Finally, let us also observe that combining the maps
(56) and (57) that connect a diamond observer with a Rindler one, with (43) and (44) which connect

9
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Milne and diamond observers, we obtain the following maps

𝑡′ =
1
2

(
𝛼2

𝑥 − 𝑡 + 𝑡 + 𝑥
)

(58)

𝑥′ =
1
2

(
− 𝛼2

𝑥 − 𝑡 + 𝑡 + 𝑥
)
, (59)

connecting Milne and Rindler observers.

4. Conformal quantum mechanics

In this section we review the standard construction [12, 14] of conformal quantum mechanics
seen as a one-dimensional conformal field theory. Let us introduce the generators 𝐻, 𝐷 and 𝐾 as
the quantum mechanical counterparts of the generators 𝑃0, 𝐷0 and 𝐾0 as 𝐻 = 𝑖𝑃0, 𝐷 = 𝑖𝐷0 and
𝐾 = 𝑖𝐾0 closing the sl(2,R) Lie algebra

[𝐻, 𝐷] = 𝑖𝐻, [𝐾, 𝐷] = −𝑖𝐾, [𝐻, 𝐾] = 2𝑖𝐷 . (60)

The linear combination
𝐺 = 𝑖𝜉 = 𝑎𝐾 + 𝑏𝐷 + 𝑐𝐻 , (61)

turns out to be the most general expression for the generator of time evolution in conformal quantum
mechanics, an SL(2,R)-invariant quantum mechanical model introduced and studied extensively
in [12]. The Lagrangian defining the model is given by

L =
1
2

(
¤𝑞(𝑡)2 + 𝑔

𝑞(𝑡)2

)
, (62)

where 𝑔 is a dimensionless coupling constant. The sl(2,R) Lie algebra can be realized in terms of
the canonically conjugate position and momentum operators 𝑞 and 𝑝 as

𝐻 = 𝑖𝑃0 =
1
2

(
𝑝2 + 𝑔

𝑞2

)
(63)

𝐷 = 𝑖𝐷0 = 𝑡 𝐻 − 1
4
(𝑝𝑞 + 𝑞𝑝) (64)

𝐾 = 𝑖𝐾0 = −𝑡2 𝐻 + 2𝑡 𝐷 + 1
2
𝑞2 . (65)

Such model can be understood as a one-dimensional conformal field theory [14, 15]. Two-point
functions are built from the kets |𝑡⟩ satisfying a Schrodinger-like equation

𝐻 |𝑡⟩ = −𝑖 d
d𝑡
|𝑡⟩ . (66)

In section 2 we recalled how the causal character of a radial conformal Killing vector is determined
by the sign of the determinant Δ = 𝑏2 − 4𝑎𝑐. The sign of this quantity also characterizes the
conjugacy class to which these generators belong (which determines whether two generators can
be mapped into another via an SL(2,R) transformation) [23]:

10
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• Δ < 0: elliptic generators exhibit a discrete spectrum and they generate a compact subgroup
of SL(2,R). A representative of this class is the generator

𝑅 =
1
2

(
𝛼𝐻 + 𝐾

𝛼

)
(67)

that, interpreted as a generator of the 3-dimensional Lorentz group of which SL(2,R) is a
double cover, generates rotations in 2+1-dimensional Minkowski space-time.

• Δ = 0: parabolic generators, representatives of this class are 𝑃 and𝐾 and on 2+1-dimensional
Minkowski space-time generate null rotations.

• Δ > 0: generators of hyperbolic transformations; for example

𝑆 =
1
2

(
𝛼𝐻 − 𝐾

𝛼

)
and 𝐷 (68)

fall into this class and generate transformations akin to Lorentz boosts seen as generators of
the three-dimensional Lorentz group.

Let us now go back to the |𝑡⟩ states defined in (66). The action of the remaining generators of
SL(2,R) on such states is given by [12]

𝐷 |𝑡⟩ = −𝑖
(
𝑡

d
d𝑡

+ 𝑟0

)
|𝑡⟩ (69)

𝐾 |𝑡⟩ = −𝑖
(
𝑡2

d
d𝑡

+ 2𝑟0𝑡

)
|𝑡⟩ . (70)

To study the properties of such states it is convenient to express them in terms of their overlap
with states which realize an irreducible representation of the Lie algebra sl(2,R) in a discrete basis
[12, 14] . In order to describe such representation we define ladder operators

𝐿0 = 𝑅 =
1
2

(
𝐾

𝛼
+ 𝛼𝐻

)
𝐿± = 𝑆 ± 𝑖𝐷 =

1
2

(
𝐾

𝛼
− 𝛼𝐻

)
± 𝑖𝐷 , (71)

with
[𝐿0, 𝐿±] = ±𝐿±, [𝐿−, 𝐿+] = 2𝐿0 . (72)

We define the states |𝑛⟩, labelled by positive integers 𝑛 = 0, 1, ... via the action of ladder operators

𝐿0 |𝑛⟩ = (𝑛 + 𝑟0) |𝑛⟩ (73)

𝐿± |𝑛⟩ =
√︁
((𝑛 + 𝑟0) (𝑛 + 𝑟0 ± 1)) − 𝑟0(𝑟0 − 1)) |𝑛 ± 1⟩ , (74)

with the normalization
⟨𝑛|𝑛′⟩ = 𝛿𝑛𝑛′ . (75)

The eigenvalue 𝑟0 of the ground state |𝑛 = 0⟩ is a positive real number and it is related to the
eigenvalue of the Casimir operator

C = 𝑅2 − 𝑆2 − 𝐷2 =
1
2
(𝐻𝐾 + 𝐾𝐻) − 𝐷2 , (76)

11
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on the |𝑛⟩ states
C |𝑛⟩ = 𝑟0(𝑟0 − 1) |𝑛⟩ . (77)

For our purposes, we work in the irreducible representation of the Lie algebra sl(2,R) belonging
to the so-called discrete series for which 𝑟0 ≥ 1 is integer and half integer. For further details we
refer to [24].

From now on we restrict our attention to the case 𝑟0 = 1. In this case, the two-point function of
conformal quantum mechanics turns out to have the same functional form of the two-point function
of a massless scalar field in Minkowski space-time along the worldline of a static observers sitting
at the origin of a spherical coordinate system [11, 13].

We can obtain the overlap between the |𝑡⟩ and |𝑛⟩ states solving the differential equation

⟨𝑡 |𝑅 |𝑛⟩ = 𝑖

2

[(
𝛼 + 𝑡

2

𝛼

)
d
d𝑡

+ 2
𝑡

𝛼

]
⟨𝑡 |𝑛⟩ = (𝑛 + 1) ⟨𝑡 |𝑛⟩ (78)

whose solution is given by

⟨𝑡 |𝑛⟩ = −𝛼
2𝑐𝑛𝑒

2𝑖 (𝑛+1) tan−1( 𝛼
𝑡 )

𝛼2 + 𝑡2
. (79)

An analogous differential equation can be written in terms of the ladder operators whose action
furnishes the coefficients 𝑐𝑛 appearing in the wavefunctions. In fact, the action of 𝐿+ leads to√︁

(𝑛 + 1) (𝑛 + 2) ⟨𝑡 |𝑛 + 1⟩ = ⟨𝑡 |𝐿+ |𝑛⟩ =
[(
𝑖
𝑡

𝛼
− 1

)
+

(
𝑖
𝑡2

2𝛼
− 𝑖 𝛼

2
− 𝑡

)
d
d𝑡

]
⟨𝑡 |𝑛⟩ (80)

giving
𝑐𝑛

𝑐𝑛+1
=

(𝑛 + 1)√︁
(𝑛 + 1) (𝑛 + 2)

(81)

while the equation for 𝐿− reads√︁
𝑛(𝑛 + 1) ⟨𝑡 |𝑛 − 1⟩ = ⟨𝑡 |𝐿− |𝑛⟩ =

[(
𝑖
𝑡

𝛼
+ 1

)
+

(
𝑖
𝑡2

2𝛼
− 𝑖 𝛼

2
+ 𝑡

)
d
d𝑡

]
⟨𝑡 |𝑛⟩ (82)

and one arrives at
𝑐𝑛−1
𝑐𝑛

=
𝑛√︁

𝑛(𝑛 + 1)
. (83)

The general form of the coefficients 𝑐𝑛 can thus be obtained from relations (81) and (83) and is

𝑐𝑛 =

√︄
Γ(2 + 𝑛)
Γ(𝑛 + 1) =

√
𝑛 + 1 . (84)

We can now write the |𝑡⟩ states in terms of the |𝑛⟩ states. Using the relation 2𝑖 tan−1 𝑥 = log 1+𝑖𝑥
1−𝑖𝑥

in (79) and plugging the expression for the coefficients 𝑐𝑛 in (79) we obtain

|𝑡⟩ =
(
𝛼+𝑖𝑡
𝛼−𝑖𝑡 + 1

2

)2 ∑︁
𝑛

(−1)𝑛
(
𝛼 + 𝑖𝑡
𝛼 − 𝑖𝑡

)𝑛 √
𝑛 + 1 |𝑛⟩ . (85)

12



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
7
6

Entanglement entropy and horizon temperature in conformal quantum mechanics Michele Arzano

Such expression can be rewritten in terms of the action of the genertor 𝐿+ on the ground state
|𝑛 = 0⟩

|𝑡⟩ =
(
𝛼+𝑖𝑡
𝛼−𝑖𝑡 + 1

2

)2

exp
{
−

(
𝛼 + 𝑖𝑡
𝛼 − 𝑖𝑡

)
𝐿+

}
|𝑛 = 0⟩ , (86)

and in particular, for 𝑡 = 0 we obtain the very simple relation

|𝑡 = 0⟩ = exp (−𝐿+) |𝑛 = 0⟩ . (87)

As discussed in [14, 15] the inner product between the |𝑡⟩ states can be interpreted as the
two-point function of conformal quantum mechanics seen as a one-dimensional CFT. Using the
inner product (75) from (85) on can obtain

𝐺 (𝑡1, 𝑡2) ≡ ⟨𝑡1 |𝑡2⟩ = − 𝛼2

4 (𝑡1 − 𝑡2)2 . (88)

We notice how this two-point function matches the two-point function of a free massless scalar field
in Minkowski space-time along the trajectory of a static inertial observer sitting at 𝑟 = 0 apart from
a constant factor [11].

Moreover it can be observed that the 𝑡-state can be obtained by a complex time translation from
the 𝑛 = 0 state [15]

|𝑡⟩ = 𝑒𝑖𝐻𝑡 |𝑡 = 0⟩ = 1
4
𝑒 (𝛼+𝑖𝑡 )𝐻 |𝑛 = 0⟩ . (89)

The two-point function (88) can be also written as

𝐺 (𝑡1, 𝑡2) = ⟨𝑡1 |𝑡2⟩ = ⟨𝑡 = 0| 𝑒−𝑖𝐻𝑡1 𝑒𝑖𝐻𝑡2 |𝑡 = 0⟩ . (90)

Let us look at the two-point function (90) in terms of eigenstates |𝐸⟩ of the generator 𝐻. Such |𝐸⟩
states are the conformal quantum mechanical counterpart of the momentum eigenstates |p⟩ that one
introduces in quantum field theory. In fact, one expresses the action of a field operator 𝜙(x) on the
vacuum state in terms of |p⟩ states

𝜙(x) |0⟩ =
∫

d3𝑝

(2𝜋)3
1

2𝐸𝑝
𝑒−𝑖p·x |p⟩ , (91)

where
⟨p|p′⟩ = 2𝐸p(2𝜋)3 𝛿 (3) (p − p′) (92)

holds. Eigenstates |𝐸⟩ of 𝐻 are defined by

𝐻 |𝐸⟩ = 𝐸 |𝐸⟩ (93)

and satisfy the conditions [12]

⟨𝐸 |𝐸 ′⟩ = 𝛿(𝐸 − 𝐸 ′) and
∫ +∞

0
d𝐸 |𝐸⟩ ⟨𝐸 | = 1 . (94)

The |𝑡⟩ state can be written as the Fourier transform of these states as

|𝑡⟩ = 𝑒𝑖𝐻𝑡 |𝑡 = 0⟩ =
∫ ∞

0
d𝐸

𝛼
√
𝐸

2
𝑒𝑖𝐸𝑡 |𝐸⟩ . (95)
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Comparing (95) and (91) we can conclude that the state |𝑡 = 0⟩ in conformal quantum mechan-
ics plays a role analogous to the inertial vacuum for quantum fields in Minkowski space-time as the
averaging state on which one builds the two-point function.

We now get to a crucial observation. Let us recall that the sl(2,R) Lie algebra (72) can be
realized in terms of two sets of creation and annihilation operators 𝑎†

𝐿
, 𝑎

†
𝑅
, 𝑎𝐿 , 𝑎𝑅

𝐿0 =
1
2

(
𝑎
†
𝐿
𝑎𝐿 + 𝑎†𝑅𝑎𝑅 + 1

)
, 𝐿+ = 𝑎

†
𝐿
𝑎
†
𝑅

and 𝐿− = 𝑎𝐿𝑎𝑅 . (96)

This shows that the ground state of the 𝐿0-operator has a bipartite structure

|𝑛 = 0⟩ = |0⟩𝐿 ⊗ |0⟩𝑅 , (97)

and that the |𝑡 = 0⟩ state in (87) can be written as

|𝑡 = 0⟩ = 𝑒−𝑎
†
𝐿
𝑎
†
𝑅 |0⟩𝐿 |0⟩𝑅 =

∑︁
𝑛

(−1)𝑛 |𝑛⟩𝐿 |𝑛⟩𝑅 = −𝑖
∑︁
𝑛

𝑒𝑖 𝜋𝐿0 |𝑛⟩𝐿 |𝑛⟩𝑅 . (98)

From the last equality it is clear that the |𝑡 = 0⟩ state exhibits a structure similar to that of a
thermofield double state4 for the Hamiltonian −𝑖𝐿0. As we will discuss in detail in the coming
sections, there are alternative realizations of the algebra of ladder operators (96) for which−𝑖𝐿0 = 𝐷

or −𝑖𝐿0 = 𝑆. We thus have, in analogy with quantum field theory in Minowski space-time that,
as outlined above, the state |𝑡 = 0⟩ is the analogue of the inertial or Hartle-Hawking state while
the state |𝑛 = 0⟩ plays a role similar to the Boulware vacuum exhibiting a bi-partite structure. As
for their higher-dimensional analogues, the Hartle-Hawking state |𝑡 = 0⟩ exhibits the structure of a
thermofield double state built on the bi-partite Boulware vacuum |𝑛 = 0⟩ populated by excitations of
the modular Hamiltonians −𝑖𝐿0 = 𝐷 or −𝑖𝐿0 = 𝑆 which generate time evolution only on a portion
of the geometric domains of the theory. In the following sections we will develop the details of the
identification of 𝑖𝐿0 with the Hamiltonians 𝐷 and 𝑆.

5. Hyperbolic generators as modular Hamiltonians

Following the observations above, in this section we discuss the realization of the so(2, 1) Lie
algebra with −𝑖𝐿0 identified with the hyperbolic generators 𝑆 and 𝐷 and study their eigenfunctions.

4Such state can be built by “doubling" the oscillator’s degrees of freedom (see [25] for a review) and is defined by the
superposition

|𝑇𝐹𝐷⟩ = 1
𝑍 (𝛽)

∞∑︁
𝑛=0

𝑒−𝛽𝐸𝑛/2 |𝑛⟩𝐿 ⊗ |𝑛⟩𝑅 , (99)

where 𝑍 (𝛽) = ∑∞
𝑛=0 𝑒

−𝛽𝐸𝑛 is the partition function at inverse temperature 𝛽. The state (99) is highly entangled and,
tracing over the degrees of freedom of one copy of the system, we obtain a thermal density matrix

𝑇𝑟𝐿{|𝑇𝐹𝐷⟩⟨𝑇𝐹𝐷 |} = 𝑒−𝛽H

𝑍 (𝛽) (100)

at a temperature 𝑇 = 1/𝛽. The Hamiltonian H is known as modular Hamiltonian.
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5.1 Eigenstates of the 𝑖𝑆-generator

We start by focusing the attention on the hyperbolic generator 𝑆. We note that from the definition
of the generator of rotations 𝑅 = 1

2
(
𝐾
𝛼
+ 𝛼𝐻

)
we obtain 𝑖𝑆 by mapping 𝛼 ↦→ 𝑖𝛼. Applying the map

𝛼 ↦→ 𝑖𝛼 to (71) we obtain another so(2, 1) algebra with the following set of generators

𝐿0 = 𝑖𝑆 , 𝐿+ = 𝑖(𝐷 − 𝑅) , 𝐿− = −𝑖(𝐷 + 𝑅) . (101)

Seemingly, we expect that the states constructed starting from the algebra of (101) are mapped to
the 𝑡-states constructed from the algebra in which 𝐿0 = 𝑅. We can verify this by repeating the same
analysis carried in section 4. In this case, the differential equation to write becomes [26]

(𝑛 + 1) 𝑆 ⟨𝑡 |𝑛⟩ = 𝑆 ⟨𝑡 |𝑖𝑆 |𝑛⟩ = −1
2

[(
𝛼 − 𝑡2

𝛼

)
d
d𝑡

− 2
𝑡

𝛼

]
𝑆 ⟨𝑡 |𝑛⟩ (102)

which is solved for

𝑆 ⟨𝑡 |𝑛⟩ = 𝑐𝑛
(𝑡 − 𝛼)𝑛𝑎2

(𝑡 + 𝛼)𝑛+2 . (103)

Again, we act with the ladder operator 𝐿+√︁
(𝑛 + 1) (𝑛 + 2) 𝑆 ⟨𝑡 |𝑛 + 1⟩ = 𝑆 ⟨𝑡 |𝐿+ |𝑛⟩ =

[(
−𝑡 + 1

2

(
𝑡2

𝛼
+ 𝛼

))
d
d𝑡

+
(
−1 + 2

𝑡

𝛼

)]
𝑆 ⟨𝑡 |𝑛⟩ (104)

and obtain

𝑐𝑛 = 𝑐𝑛+1

√︂
𝑛 + 1
𝑛 + 2

, (105)

while the action of 𝐿− gives√︁
𝑛(𝑛 + 1) 𝑆 ⟨𝑡 |𝑛 − 1⟩ = 𝑆 ⟨𝑡 |𝐿− |𝑛⟩ =

[(
𝑡 − 1

2

(
𝑡2

𝛼
+ 𝛼

))
d
d𝑡

+
(
1 + 2

𝑡

𝛼

)]
𝑆 ⟨𝑡 |𝑛⟩ (106)

whose solution reads

𝑐𝑛 = 𝑐𝑛−1

√︂
(𝑛 + 1)
𝑛

. (107)

By combining together the results of the action of the ladder operators we conclude that

𝑐𝑛 =

√︂
Γ(2 + 𝑛)
𝑛!

, (108)

in terms of which the 𝑡- state is

|𝑡⟩𝑆 =
𝛼2

(𝛼 + 𝑡)2

∑︁
𝑛

√︂
Γ(2 + 𝑛)
𝑛!

( 𝑡 − 𝛼
𝜏 + 𝛼

)𝑛
|𝑛⟩ = 𝛼2

(𝛼 + 𝑡)2

∑︁
𝑛

( 𝑡 − 𝛼
𝑡 + 𝛼

)𝑛 𝐿𝑛+
𝑛!

|𝑛 = 0⟩

=
𝛼2

(𝛼 + 𝑡)2 𝑒
𝑡−𝛼
𝑡+𝛼 𝐿+ |𝑛 = 0⟩ .

(109)

As expected, the result (109) coincides with the 𝑡-state (85) by mapping 𝛼 ↦→ 𝑖𝛼. Additionally,
with simple manipulations, we observe that the inertial vacuum

|𝑡 = 0⟩𝑆 = −𝑖
∑︁
𝑛

𝑒−𝜋𝑆 |𝑛⟩𝐿 |𝑛⟩𝑅 (110)

15



P
o
S
(
C
O
R
F
U
2
0
2
3
)
2
7
6

Entanglement entropy and horizon temperature in conformal quantum mechanics Michele Arzano

has the structure of a thermofield double state with temperature

𝑇𝑆 =
1

2𝜋𝛼
(111)

for the modular Hamiltonian 𝑆/𝛼 generating diamond time evolution. Notice that (111) is just the
diamond temperature for diamond observers sitting at the origin [8, 27–30].

5.2 Eigenstates of the 𝑖𝐷-generator

As already discussed in section 3.3, we can map the 𝑖𝑆 generator into the generator 𝑖𝐷 via the
coordinate transformation

𝑡′ =
𝛼(𝑡 − 𝛼)
𝛼 + 𝑡 . (112)

Applying this map to the algebra (101) we obtain another set of operators closing the so(2, 1)

𝐿0 = 𝑖𝐷 , 𝐿+ = −𝑖𝛼𝐻 , 𝐿− = −𝑖 𝐾
𝛼
. (113)

For the eigenfunctions of the operator 𝑖𝐷 we look for solutions of the differential equation [26]

(𝑛 + 1) 𝐷 ⟨𝑡 |𝑛⟩ = 𝐷 ⟨𝑡 |𝑖𝐷 |𝑛⟩ = −
[
𝑡

d
d𝑡

+ 1
]
𝐷 ⟨𝑡 |𝑛⟩ (114)

which are given by
𝐷 ⟨𝑡 |𝑛⟩ = 𝑐𝑛 𝑡−𝑛−2 . (115)

The coefficients 𝑐𝑛 are again obtained by recursion via the action of the ladder operators. Starting
with 𝐿+ √︁

(𝑛 + 1) (𝑛 + 2) 𝐷 ⟨𝑡 |𝑛 + 1⟩ = 𝐷 ⟨𝑡 |𝐿+ |𝑛⟩ = 𝛼
d
d𝑡 𝐷

⟨𝑡 |𝑛⟩ (116)

we obtain √︁
(𝑛 + 1) (𝑛 + 2) 𝑐𝑛+1 = −𝛼 𝑐𝑛 (2 + 𝑛) , (117)

while the action with 𝐿− gives√︁
𝑛(𝑛 + 1) 𝐷 ⟨𝑡 |𝑛 − 1⟩ = 𝐷 ⟨𝜏 |𝐿− |𝑛⟩ =

1
𝛼

[
𝑡2

d
d𝑡

+ 2𝑡
]
𝐷 ⟨𝑡 |𝑛⟩ (118)

whose solution is
−𝛼

√︁
𝑛(𝑛 + 1)𝑐𝑛−1 = 𝑛 𝑐𝑛 . (119)

By combining the two results we arrive at the following expression for the 𝑐𝑛

𝑐𝑛 =
(−1)𝑛

2
𝛼𝑛+2

√︂
Γ(2 + 𝑛)
𝑛!

(120)

in terms of which the 𝑡-state becomes

|𝑡⟩𝐷 =
1
2

(𝛼
𝑡

)2 ∑︁
𝑛

(−1)𝑛
(𝛼
𝑡

)𝑛√︂
Γ(2 + 𝑛)
𝑛!

|𝑛⟩ = 1
2

(𝛼
𝑡

)2 ∑︁
𝑛

(−1)𝑛
(𝛼
𝑡

)𝑛 𝐿𝑛+
𝑛!

|𝑛 = 0⟩

=
1
2

(𝛼
𝑡

)2
𝑒−

𝛼
𝑡
𝐿+ |𝑛 = 0⟩ .

(121)
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According to our expectation, this state can be obtained from (109) using the map (112). Notice
that this state is ill defined at 𝑡 = 0 coherently to the fact that the 𝐷 generator is ill defined at that
point. We see that now the state 𝑡 = 𝛼 exhibits the structure of a thermofield double state for the
modular Hamiltonian 𝐷/𝛼 at the temperature 𝑇𝐷 = 1/(2𝜋𝛼). The point 𝑡 = 𝛼 is the image of the
origin under the conformal mapping (112) and it corresponds to the origin of the conformal time 𝜏
variable defined by 𝑡 = 𝛼 𝑒 𝜏

𝛼 .

In the cases explored throughout this section we have noticed that the identification (101) can
be obtained by “Wick rotating" the length parameter 𝛼 → 𝑖𝛼. Under this map the generator 𝑅
turns into 𝑖𝑆 and the wavefunctions (79) into eigenfunctions of the operator 𝐿0 = 𝑖𝑆. Follow-
ing steps analogous to the ones leading to (86) we found the state |𝑡⟩ as a function of a tower
of eigenstates of the operator 𝑖𝑆. Additionally, one can further obtain the wavefunctions of the
operator 𝑖𝐷 applying to the latter states the map (112) which indeed allows to write 𝑖𝑆 as 𝑖𝐷. Our
arguments are supported by the observation that 𝐿0 can be identified with the elliptic generator
𝑅 of the 𝑆𝑂 (2) compact subgroup of 𝑆𝐿 (2,R) [12, 14, 15] while its “Wick-rotated" counterpart
𝑖𝐿0 will generate non-compact transformations thus we are led to identify it with an hyperbolic
generator. In fact, one finds [13] that the generators of the Lie algebra (72), besides the identification
(71), have two alternative realizations in terms of the generators𝐻, 𝐷 and𝐾 given in (101) and (113).

As illustrated by eq. (98), the state |𝑡 = 0⟩ is an entangled state in relation to the bi-partition of
the Hilbert space based on L and R degrees of freedom [26]. Drawing a parallel with the inertial
vacuum depicted as a thermofeld double state over the left and right Rindler modes excitations (the
two corresponding domains of the boost modular Hamiltonian’s evolution) [31], we can interpret the
two sets of degrees of freedom in (98) as part of the diamond and Milne time evolution domains and
their complements (our result corresponds to the restriction to 𝑟 = 0 worldlines of the entanglement
examined in [6] and [16]). We can measure this entanglement by computing the Von Neumann
entropy of the reduced density matrix obtained by tracing over one set of degrees of freedom in
the density matrix representing the inertial vacuum state |𝑡 = 0⟩. This entanglement entropy can be
viewed as the 0 + 1-dimensional equivalent of the entanglement entropy of a quantum field across
space-time regions. Contrary to its higher dimensional equivalents, the simplicity of the model
renders the computation of the entanglement entropy rather straightforward as we discuss in detail
in the next section.

6. Entanglement entropy

To obtain the entanglement entropy associated to the partition of the |𝑡 = 0⟩ state, we should
first observe that this state cannot be normalized. This is expected in light of the identification of
the inner product ⟨𝑡1 |𝑡2⟩ with the restriction of the two-point function of a massless field to the 𝑟 = 0
worldline and its divergence at coincident points.

We regularize such UV divergence via an infinitesimal translation in imaginary time. We thus
consider the state

|𝑡 = 𝑖𝜖⟩ =
( 𝛼−𝜖
𝛼+𝜖 + 1

2

)2

𝑒−
𝛼−𝜖
𝛼+𝜖 𝐿+ |𝑛 = 0⟩ . (122)
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This regularization consists in introducing a short-distance cut-off scale, 𝜖 . We can rewrite (122) as

|𝑡 = 𝑖𝜖⟩ =
( 𝛼

𝛼 + 𝜖

)2 ∞∑︁
𝑛=0

(−1)𝑛
(𝛼 − 𝜖
𝛼 + 𝜖

)𝑛
|𝑛⟩𝐿 |𝑛⟩𝑅 . (123)

From
⟨𝑡 = 𝑖𝜖 |𝑡 = 𝑖𝜖⟩ = 𝛼

4𝜖

( 𝛼

𝛼 + 𝜖

)2
≡ 1

N2 (124)

we normalize the |𝑡 = 𝑖𝜖⟩ state and introduce a state |𝛿⟩ with unitary norm

|𝛿⟩ ≡ N |𝑖𝜖⟩ . (125)

We now consider the density matrix
𝜌𝑅𝐿 = |𝛿⟩ ⟨𝛿 | (126)

and obtain the reduced density matrix 𝜌𝐿 by tracing over the R degrees of freedom

𝜌𝐿 = Tr𝑅 𝜌𝐿𝑅 = N2
( 𝛼

𝛼 + 𝜖

)4 ∞∑︁
𝑛=0

(𝛼 − 𝜖
𝛼 + 𝜖

)2𝑛
|𝑛⟩𝐿 ⟨𝑛|𝐿 . (127)

The Von Neumann entropy of such reduced density matrix is then given by

𝑆 = −Tr{𝜌𝐿 log 𝜌𝐿} = −
(𝛼 − 𝜖)2 log

(
(𝛼−𝜖 )2

(𝛼+𝜖 )2

)
4𝛼𝜖

− log
(

4𝛼𝜖
(𝛼 + 𝜖)2

)
, (128)

from which, performing the limit 𝜖 → 0, we arrive at

𝑆 = log
(𝛼
𝜖

)
+ const + O

(
𝜖2

)
. (129)

We observe that the result obtained is logarithmic divergent when the UV cut-off scale 𝜖 is sent
to zero. This is a known feature in quantum field theory where in 𝑑-dimensional space-time the
entanglement entropy associated to a spatial region A is proportional to

Area(𝜕A)
𝜖𝑑−2 , (130)

with Area(𝜕A) being the area of the boundary of the region (entangling surface) while 𝜖 is a UV
cut-off. Precisely, 𝑆A has the general expressions [32]

𝑆A = 𝑔𝑑−2

(𝛼
𝜖

)𝑑−2
+ 𝑔𝑑−4

(𝛼
𝜖

)𝑑−4
+ · · · + 𝑔1

(𝛼
𝜖

)
+ (−1) 𝑑−1

2 𝑔0 + O(𝜖) d odd (131)

𝑆A = 𝑔𝑑−2

(𝛼
𝜖

)𝑑−2
+ 𝑔𝑑−4

(𝛼
𝜖

)𝑑−4
+ · · · + (−1) 𝑑−2

2 𝑔0 log
(𝛼
𝜖

)
+ O(𝜖0) d even (132)

where 𝑔𝑖 with 𝑖 > 0 depend on the regularization scheme, 𝛼 is linked to the size of the region A and
𝜖 is again a UV regulator. The coefficient 𝑔0 is particularly important since it carries non-trivial and
universal information. Two-dimensional conformal field theories exhibit a logarithmic divergence
in the entanglement entropy. For example if we consider the entanglement between a shorter line-
segment with length 𝛼 and a longer one with length 𝐿 containing it in the limit 𝛼

𝐿
≪ 1, we have

[32–35]
𝑆 =

𝑐

3
log

𝛼

𝜖
+ const , (133)
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where 𝑐 is the central charge of the CFT and it is equal to 1 in a quantum field theory of a massless
bosonic field. Heuristically, such logarithmic divergence can be seen as a limiting case of the
power law divergence and it is in agreement with the scenario where the entangling surface is
built up by a set of disconnected points. It is noteworthy that the behaviour of our result (129)
for the entanglement entropy in conformal quantum mechanics coincides with the one in found in
two-dimensional conformal field theory. In particular, it exhibits the same logarithmic divergence,
in agreement with the point-like nature of the entangling surface.

7. Conclusions

In our contribution, we evidenced the capacity of conformal quantum mechanics, a simple one-
dimensional quantum mechanical model, to replicate thermal phenomena associated to the freedom
in the choice of time evolution which one encounters in quantum field theory in the presence of
causal horizons. The existence of a correspondence between radial conformal Killing vectors in
3+1-dimensional Minkowski space-time and the generators of time evolution in conformal quantum
mechanics, which we reviewed in section 2, is suggestive of this fact. Conformal Killing horizons
in Minkowski space-time correspond to boundaries in the domain of time evolution in conformal
quantum mechanics. As in quantum field theory in Minkowski space-time, we were able to identify
states labelled by a globally defined time-variable in conformal quantum mechanics which exhibit a
natural bipartite structure in terms of excitations of a hyperbolic Hamiltonian. When restricted to one
set of such excitations, the state we identified as inertial vacuum is described by a thermal density
matrix with temperatures analogous to the diamond and Milne ones in Minkowski space-time.
These findings offer group-theoretic support for the existence of Milne and diamond temperatures.
Furthermore, our model allows a relatively straightforward computation of the entanglement entropy
for such an inertial vacuum, a notoriously challenging task in higher-dimensional quantum field
theories. Since the boundaries of the time domains encompassed by the hyperbolic Hamiltonians
are evidently point-like, the entanglement entropy we derive exhibits a logarithmic divergence akin
to that observed in two-dimensional conformal field theories, where the boundaries of the spatial
region under consideration are also point-like.

Our findings also suggest a profound connection between the thermodynamic properties of
causal diamonds and of the Milne patch of Minkowski space-time. The correspondence with states
in conformal quantum mechanics may furnish novel, robust group-theoretic tools for exploring the
properties of entanglement across the boundaries of domains in Minkowski space-time. We defer
the exploration of this intriguing avenue to future investigations.
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