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1. Introduction

T-duality provides the relationship between the different space-times. Double Field Theory
(DFT) is the field theory with manifest T-duality in string theory [1]. The most fundamental DFT
is defined in the 2�-dimentional doubled space M2� . The coordinate of that space-time -" (" =

1, · · · , 2�) is decomposed for (G`, G̃`) (` = 1, · · · , �). Here, G` is the Fourier dual of KK-mode,
and G̃` is the Fourier dual of winding mode. T-duality transformation corresponds to the exchange
of G` and G̃` on this space-time. The theory exhibits manifest $ (�, �) structure. The $ (�, �)
DFT is the T-duality covariantized extension of the NSNS sector in type II supergravity.

The $ (�, �) DFT has a gauge symmetry which is described by the C-bracket. The C-bracket
does not satisfy the Jacobi identity, then that is defferent from Lie bracket. This suggests the ex-
istence of more general algebraic structures. Actually, the C-bracket defines the metric algebroid
which is presented by Vaisman [2]. The metric algebroid is also discussed as the pre-DFT algebroid
in [3]. We call this structure as the Vaisman algebroid. The Vaisman algebroid has a doubled struc-
ture which is the direct sum of two Lie algebroids [4]. This idea is based on the Drinfel’d double for
Lie algebras [5] and for Courant algebroids [6]. The notion of Drinfel’d double is important to con-
sider the Poisson-Lie T-duality. The Poisson-Lie T-duality is well as a solution-generating technique
for type II supergravities. The application for DFT is also discussed in many papers [7–9].

In this proceeding, we consider the heterotic case. It is related to the T-duality covariantized
extension of the gauged supergravities called gauged DFT [10, 11]. This is the alternative formalism
of the effective theory with T-duality. Gauged DFT includes non-Abelian gauge symmetries which
are introduced by gauging a duality group $ (�, � + =). This theory is defined on the (2� + =)-
dimentional space M2�+=. Gauged DFT also has a gauge symmetry which is described by the
modified C-bracket. We call this bracket the twisted C-bracket [·, ·]� because this includes the
structure constant �"# of the gauge group.

[Ξ1,Ξ2]� = Ξ"1 m Ξ
"
2 − Ξ 2 m Ξ

"
1 m"

− 1
2
["#[ ! (Ξ 1 m#Ξ

!
2 − Ξ 2 m#Ξ

!
1 )m" + Ξ#2 Ξ 1 �

"
# m" . (1)

Here, Ξ8 (8 = 1, 2) is the (2� + =)-vector on M2�+= and [ is the $ (�, � + =) invariant metric. We
show that the twisted C-bracket (14) in gauged DFT is rewritten by the geometric quantities. We
will see that the twisted C-bracket also defines the Vaisman algebroid. Then, we also see that the
Vaisman algebroid with the twisted C-bracket has a tripled structure which is Drinfel’d double-like
structure. The contents of this proceeding is based on [12].

2. Gauged double field theory and twisted C-bracket

First, we give a brief ntruduction about the gauged doubled field theory and the gauge symme-
tries. The $ (�, � + =) gauged DFT acton is given by

(0 =

∫
d2�+=X 4−23

(
1
8
H"#m"H !m#H ! −

1
2
H"#m#H !m!H" 

− 2m"3m#H"# + 4H"#m"3m# 3

)
, (2)
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where H"# (X), (", # = 1, . . . , 2� + =) and 3 (X) are the generalized metric and the generalized
dilaton. These are the fundamental fields defined in the (2�+=)-dimensional doubled spaceM2�+=.
The coordinate X" may be decomposed into X" = (G̃`, G`, ḠU), (`, a = 1, . . . , �, U = 1, . . . , =).
The standard parametrizations of the generalized metric and the dilaton are given by

H"# =
©­­«

6`a −6`d2da −6`d�dV
−6ad2d` 6`a + 2d`6df2fa + ^UV�`U�aV 2d`6

df�f
V + �`V

−6ad�dU 2da6
df�f

U + �a U ^UV + �dU6df�fV

ª®®¬ ,
4−23 =

√−64−2q, (3)

where

2`a = �`a +
1
2
^UV�`U�aV . (4)

6`a (X), 6`a (X) are a symmetric �×� matrix and its inverse. An =×= symmetric constant matrix
^UV and its inverse ^UV and a �×=matrix �`U (X) and a scalar quantity q(X) have been introduced.
�`a is a �×� anti-symmetric matrix. The indices ", #, . . . = 1, . . . , 2�+= are raised and lowered
by the $ (�, � + =) invariant metric,

["# =
©­­«

0 X`a 0
X`
a 0 0

0 0 ^UV

ª®®¬ , (5)

and its inverse ["# . Note that the generalized metric H"# is an element of $ (�, � + =). The
action (2) is manifestly invariant under the $ (�, � + =) transformation;

H ′"# (X′) = $"%$
#
&H %& (X), 3′(X′) = 3 (X), X′" = $"#X

# , $ ∈ $ (�, � + =).
(6)

Now we gauge a subgroup � of $ (�, � + =) and break it down to $ (�, �) ×�. This is done
by introducing a constant flux �"# such as

�"# =

{
�U

VW if (", #,  ) = (U, V, W)
0 else

. (7)

Here �UVW is the structure constant for the gauge group � whose dimension is dim� = =. The
constant �"# must satisfy the following relations;

� ("
% [

# ) = 0, �"# = �["# ] , �"# [ �
#
!% ] = 0. (8)

In order to keep the gauge invariance, the action (2) is deformed such as [10]

( = (0 + X(, (9)

where

X( =

∫
d2�+=X 4−23

(
− 1

2
�"# H#%H &m%H&" − 1

12
�" %�

#
!&H"#H !H %&

− 1
4
�"# �

#
"!H ! − 1

6
�"# �"# 

)
. (10)
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The action (9) is invariant under the following gauge transformation;

XΞH"# = Ξ%m%H"# + (m"Ξ% − m%Ξ" )H %# + (m#Ξ% − b%Ξ# )H"% − 2Ξ%� ("
% H# ) ,

mΞ3 = Ξ"m"3 −
1
2
m"Ξ" , (11)

provided that the following physical conditions are satisfied;

["#m"m#∗ = 0, ["#m" ∗ m#∗ = 0, �"# m"∗ = 0. (12)

Here ∗ are all the quantities in DFT including the generalized metric, the generalized dilaton and
the gauge parameters Ξ" . The first condition above is just the level matching condition of closed
strings and the second is known as the strong constraint in the context of the ordinary $ (�, �)
DFT. We call these the physical conditions. The last one is specific to the gauged version of DFT
and we call it the gauge condition in the following.

The gauge transformation (11) is closed under the conditions (12), namely, for an arbitrary
$ (�, � + =) vector +" , we have

[XΞ1 , XΞ2]+" = X[Ξ1,Ξ2 ]�+
" , (13)

where the left-hand side is the commutator of XΞ1 and XΞ2 . In the right-hand side, we have defined
the twisted C-bracket;

( [Ξ1,Ξ2]�)" = Ξ 1 m Ξ
"
2 − Ξ 2 m Ξ

"
1 − 1

2
["#[ ! (Ξ 1 m#Ξ

!
2 − Ξ 2 m#Ξ

!
1 ) + Ξ#2 Ξ 1 �

"
# .

(14)

Note that the conditions (12) are trivially solved by quantities that depend only on G`. In this
case, the action (9) reduces to that of a gauged supergravity in � dimensions. Among other things,
when � = 10 and = = 496 and � is ($ (32) or �8 × �8, the theory reduces to the heterotic
supergravities in ten dimensions.

3. Geometrical realization of (2� + =)-dimensional doubled space

In this section, we consider a geometrical realization of (2� + =) space M2�+=. Then, we
rewrite the twisted C-bracket geometrically.

First, we assume that a (2� + =)-dimentional manifold M2�+= with the (psuedo-)Riemannian
metric ["# . We introduce the ["# as the $ (�, � + =) invariant metric (5). The ["# defines an
endmorphism P : M2�+= → M2�+= which is the integrable product structure. The endmorphism
satisfies P2 = 1, therefore % = ±1. The P decomposes )M2�+= into a rank = distoribution !̄
and a rank 2� distoribution D on M2�+=. We can define the coordinate on M2�+= as (-" , ḠU),
" = 1, . . . , 2�, U = 1, . . . , = because the distributions are integrable. We suppose that the D has
a para-Hermitian structure of the $ (�, �) DFT (see [4]). Then, the coordinate of the base space
M2�+= is decomposed as (G`, G̃`, ḠU). Therefore, we have a decomposition

)M2�+= = ! ⊕ !̃ ⊕ !̄. (15)
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Then a vector Ξ on M2�+= is decomposed as Ξ = Ξ"m" = -`m` + b` m̃` + 0U m̄U.
Given this decomposition, we introduce operators on the bundles !, !̃and !̄. The Lie brackets

in each subbundle are defined by

[-1, -2]! = (-a1 ma-
`

2 − -a2 ma-
`

1 )m`, -1, -2 ∈ Γ(!),
[b1, b2] !̃ = (b1a m̃

ab2` − b2a m̃
ab1`)m̃`, b1, b2 ∈ Γ( !̃),

[01, 02] !̄ = (01V m̄
V02U − 02V m̄

V01U)m̄U, 01, 02 ∈ Γ( !̄). (16)

Here ^UV is an invertible matrix. We also define the exterior derivatives for function 5 ∈ �∞(M2�+=)
as

d 5 = m̃` 5 m` ∈ Γ(!), d̃ 5 = m` 5 m̃` ∈ Γ( !̃), d̄ 5 = ^UV m̄U 5 m̄V ∈ Γ( !̄). (17)

We can also define the totally anti-symmetric products for each bundle as follows,

- =
1
?!
-`1 · · ·`?m`1 ∧ . . . ∧ m`? ∈ Γ(!∧?),

b =
1
?!
b`1 · · ·`? m̃

`1 ∧ · · · ∧ m̃`? ∈ Γ( !̃∧?),

0 =
1
?!
0U1 · · ·U?

m̄U1 ∧ · · · ∧ m̄U? ∈ Γ( !̄∧?), (18)

where 1 ≤ ? ≤ � for !, !̃ and 1 ≤ ? ≤ = for !̄. They are defined in the subspaces in )M2�+=.
The exterior derivatives d, d̃, d̄ act on a ?-vector Ξ(?) = Ξ"1 · · ·"?m"1 ∧ · · · ∧ m"?

in )M2�+= as

dΞ(?) =
1
?!
m`Ξ

"1 · · ·"? (X)m̃` ∧ m"1 ∧ · · · ∧ m"?
,

d̃Ξ(?) =
1
?!
m̃`Ξ"1 · · ·"? (X)m` ∧ m"1 ∧ · · · ∧ m"?

,

d̄Ξ(?) =
1
?!
^UV m̄

VΞ"1 · · ·"? (X)m̄U ∧ m"1 ∧ · · · ∧ m"?
. (19)

These are defined by maps that increase the rank of each wedge product. For example, when Ξ(?) =

- (?) = -`1 · · ·`?m`1 ∧ · · · ∧ m`? ∈ Γ(!∧?), we have

d- = m`-
`1 · · ·`? m̃` ∧ m`1 ∧ · · · ∧ m`? ,

d̃- = m̃`-`1 · · ·`?m` ∧ m`1 ∧ · · · ∧ m`? ,
d̄- = ^UV m̄

V-`1 · · ·`? m̄U ∧ m`1 ∧ · · · ∧ m`? . (20)

By the definition, the d, d̃ and d̄ satisfy the properties,

d2 = d̃2 = d̄2 = 0,
dd̃ + d̃d = dd̄ + d̄d = d̃d̄ + d̄d̃ = 0. (21)

These are a generalization of para-Dolbeault operators on the para-Hermitian geometry. We next
define “inner products” by

〈-, b〉 = -`b` = - (b) = b (-), - ∈ Γ(!), b ∈ Γ( !̃),
〈01, 02〉 = ^UV0U1 0

V

2 = 01(02) = 02(01), 01, 02 ∈ Γ( !̄). (22)

5
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The other combinations vanish. They are maps that decrease the rank in each wedge products. They
act, for example, like

]̃b -
(?) =

1
(? − 1)!b`-

``2 · · ·`?m`2 ∧ · · · m`? ,

]-b
(?) =

1
(? − 1)!-

`b``2 · · ·`? m̃
`2 ∧ · · · ∧ m̃`? ,

]̄010
(?)
2 =

1
(? − 1)! ^

UU101U02U1U2 · · ·U?
m̄U2 ∧ · · · ∧ m̄U? . (23)

Note that all the interior products anti-commute with all the exterior derivatives. Then, we have the
following properties;

]̃2 = ]2 = ]̄2 = 0,
]̃ ] + ] ]̃ = ] ]̄ + ]̄ ] = ]̄ ]̃ + ]̃ ]̄ = 0. (24)

These are economically written as

im"m# = ["# =
©­­«

0 1 0
1 0 0
0 0 ^UV

ª®®¬ , (25)

where i = ( ]̃, ], ]̄). These inner products determine the relevance of each bundle. ! and !̃ are dual
vector spaces each other and !̄ is seld-dual. Then, we can introduce the inner products ]b , ]-, ]0 as
the anti-derivatives of the d, d̃ and d̄. Using these operators, we can define the Lie derivatives,

L- = ]-d + d]-, L̃b = ]̃b d̃ + d̃]̃b , L̄0 = ]̄0d̄ + d̄]̄0,
- ∈ Γ(!), b ∈ Γ( !̃), 0 ∈ Γ( !̄). (26)

We can also “Lie-like derivatives” as follows,

L̄- = ]-d̄ + d̄]-, L̄b = ]̃b d̄ + d̄]̃b , L0 = ]̄0d + d]̄0, L̃0 = ]̄0d̃ + d̃]̄0 . (27)

Using these operators and Lie(-like) derivatives, we can rewrite the twisted C-bracket (14) geomet-
rically as follows,

[Ξ1,Ξ2]�

= [-1, -2]! +
(
L̃b1-2 − L̃b2-1

)
+

(
L̄01-2 − L̄02-1

)
+ 1

2
(
L̃0102 − L̃0201

)
+ 1

2
d̃
(
]-1b2 − ]-2b1

)
+ [b1, b2] !̃ +

(
L-1b2 − L-2b1

)
+

(
L̄01b2 − L̄02b1

)
+ 1

2
(
L0102 − L0201

)
− 1

2
d
(
]-1b2 − ]-2b1

)
+ 1

2
[01, 02] !̄ +

1
2
(
L̄0102 − L̄0201

)
+

(
L-102 − L-201

)
+

(
L̃b102 − L̃b201

)
+ 1

2
(
L̄-1b2 − L̄-2b1

)
+ 1

2
(
L̄b1-2 − L̄b2-1

)
+ iΞ2 iΞ1�. (28)

This bracket includes the C-bracket that appeared in $ (�, �) DFT. We expect that the algebroid
defined by the twisted C-bracket has the extension of the doubled structure. The first line of the
right-hand side is in Γ(!). Similarly, the second line is in Γ( !̃), and the third and fourth line is in
Γ( !̄). This strongly suggests the tripled structure. We discuss algebroid structures related to the
twisted C-bracket in the next section.

6
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4. Vaisman algebroid by the twisted C-bracket

In this section, we introduce some algebroid structures. Then, we discuss the algebroid struc-
ture defined by the twisted C-bracket and the Drinfel’d double-like structures.

Lie algebroid

A Lie algebroid is a most fundamental algebroid structure. This is defined by a vector bundle �
on the manifold " , an anchor map d : � → )" , and a Lie algebroid bracket [·, ·] : Γ(�)×Γ(�) →
Γ(�)satisfying the Jacobi identity. We can say that this is defined as a generalization of Lie algebras.
The structures d,[·, ·] and � are satisfies following properties.

[-1, 5 -2] = d(-1) [ 5 ]-2 + 5 [-1, -2], -8 (8 = 1, 2) ∈ Γ(�), (29)
d( [-1, -2]) = [d(-1), d(-2)] . (30)

If we assume a bundle E as the ! (or !̃, !̄), the Lie bracket [·, ·]! (or [·, ·] !̃ , [·, ·] !̄) satisfies the
Jacobi identity. The anchor d : ! → )M2�+= ( or d̃ : !̃ → )M2�+=, d̄ : !̄ → )M2�+= ) is
defined with the exterior derivatives (17) as

d 5 (-) = d(-) · 5 , d̃ 5 (b) = d̃(b) · 5 , d̄ 5 (0) = d̄(0) 5 ,
- ∈ Γ(!), b ∈ Γ( !̃), 0 ∈ Γ( !̄). (31)

Then, the set (!, d! , [·, ·]!) becomes the Lie algebroid. The same applies to !̃ and !̄. The term
includes the structure constant � can be interpreted as a twisted term.

Vaisman algebroid

A Vaisman algebroid is defined by a vector bundle V on a manifold " , an anchor map 1 :
V → )" , a non-degenerate symmetric bilinear form (·, ·) and a Vaisman bracket [·, ·]V : Γ(V) ×
Γ(V) → Γ(V). If the (V, 1, (·, ·), [·, ·]V) satisfies the following two axioms, this quadruple be-
comes the Vaisman algebroid.

Axiom V1. [Ξ1, 5Ξ2]+ = 5 [Ξ1,Ξ2]+ + (1(Ξ1) · 5 )Ξ2 − (Ξ1,Ξ2)D 5 .

Axiom V2. d+ (Ξ1) · (Ξ2,Ξ3) = ( [Ξ1,Ξ2]+ + D(Ξ1,Ξ2),Ξ3) + (Ξ2, [Ξ1,Ξ3]+ + D(Ξ1,Ξ3)).

In the following, we check the twisted C-bracket (28) defines a Vaisman algebroid in M2�+=.
Since we have seen the tripled structure in the twisted C-bracket, we deduce the bilinear form as

(Ξ1,Ξ2) =
1
2
(
]̃b1-2 + ]-1b2 + ]̄0102

)
. (32)

and the anchor map as 1 = d+ d̃+ d̄ and the derivation as D = d+ d̃+ d̄. Then, we check the axioms
with the quadraple (! ⊕ !̃ ⊕ !̄, (·, ·), [·, ·]� , 1).

We first check the Axiom V1.

[Ξ1, 5Ξ2]� = 5 [Ξ1,Ξ2]� +
(
1(Ξ1) · 5

)
Ξ2 − (Ξ1,Ξ2)D 5 . (33)

7
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The (2� + =)-dim vectors Ξ8 (8 = 1, 2) are given by Ξ8 = -8 + b8 + 08 (8 = 1, 2). The left hand side
in (33) is decomposed as

[Ξ1, 5Ξ2]� = [-1, 5 -2]� + [-1, 5 b2]� + [-1, 5 02]�
+ [b1, 5 -2]� + [b1, 5 b2]� + [b1, 5 02]�
+ [01, 5 -2]� + [01, 5 b2]� + [01, 5 02]� . (34)

For example, the gauge part [01, 5 02]� contains following terms. It is not only the Lie bracket
because of Lie-like derivatives.

[01, 5 02]� =
1
2
[01, 5 02] !̄ +

1
2

(
L̃01 ( 5 02) − L̃ 5 0201

)
+ 1

2
(
L01 ( 5 02) − L 5 0201

)
+ 1

2
(
L̄01 ( 5 02) − L̄ 5 0201

)
+ ]02 ]01�. (35)

Then we have

[01, 5 02]� =
1
2
5

(
[01, 02] !̄-� + (L̃0102 − L̃0201) + (L0102 − L0201) + (L̄0102 − L̄0201)

)
+ 1

2
( (
d̄(01) · 5

)
02 − ]̄0201d̃ 5 − ]̄0201d 5 +

(
d̄(01) · 5

)
02 − ]̄0201d̄ 5

)
= 5 [01, 02]� +

(
d̄(01) · 5

)
02 −

1
2
]̄0201D 5 , (36)

If we repeat a similar calculation for the other eight parts in (34), we can show the relation (33).
Therefore, the quadraple (! ⊕ !̃ ⊕ !̄, (·, ·), [·, ·]� , 1) satisfies the Axiom V1.

Next, we check the axiom V2. We need to consider the extension of Lemma 3.2 in [6]. We
introduce a scalar )� as

)� (Ξ1,Ξ2,Ξ3) =
1
3
(
([Ξ1,Ξ2]� ,Ξ3) + c.p.

)
= ) (41, 42, 43)

+ 1
4

{(
]b2 ]03 d̄-1 + ]-2 ]03 d̄b1 + ]02 ]-3d01 + ]02 ]b3 d̃01 + ]02 ]03 d̄01

)
−

(
]b3 ]02 d̄-1 + ]-3 ]02 d̄b1 + ]03 ]-2d01 + ]03 ]b2 d̃01

)
+ c.p.

}
+ 1

2
]Ξ3 ]Ξ2 ]Ξ1�. (37)

After some calculations, we obtain the following relation.

([Ξ1,Ξ2]� ,Ξ3) = )� (Ξ1,Ξ2,Ξ3) +
1
2
1(Ξ1) · (Ξ3,Ξ2) −

1
2
1(Ξ2) · (Ξ1,Ξ3) +

1
2

iΞ3 iΞ2 iΞ1�. (38)

By summing up the equation (38) after the label of 2 and 3 are replaced, we obtain

1(Ξ1) · (Ξ2,Ξ3) = ([Ξ1,Ξ2]� ,Ξ3) + ([Ξ1,Ξ3]� ,Ξ2)

+ 1
2
1(Ξ2) · (Ξ1,Ξ3) +

1
2
1(Ξ3) · (Ξ1,Ξ2). (39)

Since we have 1 = d! + d!̃ + d!̄ , finally we obtain the following relation.

1(Ξ1) · (Ξ2,Ξ3) = ([Ξ1,Ξ2]� + D(Ξ1,Ξ2),Ξ3) + ([Ξ1,Ξ3]� + D(Ξ1,Ξ3),Ξ2). (40)

This is just the Axiom V2. The quadraple (! ⊕ !̃ ⊕ !̄, (·, ·), [·, ·]� , 1) satisfies the Axiom V2.
Therefore, the (! ⊕ !̃ ⊕ !̄, (·, ·), [·, ·]� , 1) defines the Vaisman algebroid with the tripled structure.

8
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5. Conclusion

In this proceeding, we discussed the extended doubled structure of algebroids. This is related
to the gauge symmetry in the gauged DFT which is defined by the twisted C-bracket (14). First,
we consider the geometrical realization of (2� + =) space and we rewrite the twisted C-bracket as
geometrical language (28). This gives explicit expression of the twisted C-bracket in the Drinfel’d
double-like (tripled) form that is different from the one for the C-bracket in the ordinary DFT. There
are not only ordinary operators and Lie derivatives but also “Lie-like derivatives”. Next, we check
the definition of the Vaisman algebroid with the twisted C-bracket (please see our paper [12] for
details of the proof). Finally, we can show that the twisted C-bracket also defines the Vaisman
algebroid. It has the tripled structure ! ⊕ !̃ ⊕ !̄ which is an extension of the doubled structure with
the C-bracket.

Based on this result, we can consider the heterotic case of the Poisson-Lie T-duality. In general,
the Drinfel’d double structure is needed to treat this duality. We discussed the tripled structure on
the gauged DFT as a generalization of the Drinfel’d double. I expect that this will be useful to
consider the heterotic Poisson-Lie T-duality

We can also consider other algebroid structures with the twisted C-bracket for example Courant
algebroid. Partially discussed in [13] and tripred case is in progress. We can also discuss the finite
gauge transformation in gauged DFT. This is to consider the “integration” of the Vaisman algebroid
with the twisted C-bracket. The relationship with the pre-Rackoid structure is recently discussed in
[14].
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