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1. Introduction

In the context of four-dimensional type IIB supergravities, the study of non-geometric fluxes has
attracted a huge amount of interest in last two decades. The existence of such fluxes are supported
through the presence of various dualities which, in general, have played a crucial role in connecting
different limits of string theories, providing supplemental interpretations and new perspectives. For
instance, considering the NS-NS three-form flux 𝐻𝑚𝑛𝑝 of the type II supergravities, a chain of
successive T-dualities leads to various (non-)geometric fluxes [1, 2],

𝐻𝑚𝑛𝑝 → 𝜔𝑛𝑝
𝑚 → 𝑄𝑝

𝑚𝑛 → 𝑅𝑚𝑛𝑝, (1)

where𝜔𝑛𝑝𝑚 denotes the geometric fluxes (also known as metric flux) while𝑄𝑝𝑚𝑛 and 𝑅𝑚𝑛𝑝 denote
the set of non-geometric fluxes. For type IIB orientifold models one can choose the holomorphic
involutions such that the geometric flux 𝜔𝑛𝑝𝑚 and the non-geometric flux 𝑅𝑚𝑛𝑝 are absent [3–
6], and one is left with a pair of S-dual flux RR and NS-NS three-form fluxes (𝐹, 𝐻), and the
non-geometric 𝑄-flux. However after adding these non-geometric fluxes, the underlying modular
invariance in broken, and it can only be restored through the inclusion of a new kind of non-geometric
flux, the so-called 𝑃-flux, which is S-dual to the non-geometric 𝑄-flux [5, 7–12]. Subsequently
if one demands a successive application of such S/T-dualities, one needs two additional S-dual
pairs of fluxes, denoted as (𝑃′, 𝑄′) and (𝐻′, 𝐹′) [5, 10, 13–15]. The presence of such four S-
dual pairs of ‘generalized’ fluxes, namely (𝐹, 𝐻), (𝑄, 𝑃), (𝑃′, 𝑄′) and (𝐻′, 𝐹′), induces a wide
range of superpotential couplings which can subsequently result in a very rich structure for the
four-dimensional effective scalar potential. However, how many and which type of fluxes can be
simultaneously turned-on in a given concrete construction remains an open challenge for the most
generic models. Some initiatives have been taken in this direction leading to a set of flux constraints
arising in the form of Bianchi identities and tadpole cancellation conditions [5, 7, 10, 14–17].

The study of models based on non-geometric flux compactifications has been motivated along
(but not limited to) the following points:

• One of the main attractive features of non-geometric flux models is the fact that one can in
principle stabilize all types of moduli [18–30] without invoking non-perturbative effects in the
superpotential, or utilizing any corrections of the Kähler potential. In this regard, it should
be emphasized that this approach of stabilization includes also the Kähler moduli which,
in conventional flux compactifications, are protected by the so-called “no-scale structure".
From this point of view, the subsequent consideration of non-geometric fluxes which can
generically induce the superpotential couplings for the Kähler moduli as well, has emerged as
an important ingredient in the area of moduli stabilization and generic model building [18–
34].

• However, as we have earlier argued, although the inclusion of the new (non-geometric) fluxes
may greatly facilitate the presence of new flux vacua, it is also true that it introduces numerous
inevitable complexities due to the huge number of flux-induced terms in the scalar potential.
For example, in the context of type IIB on T6/(Z2 ×Z2) orientifold- it has been found that the
resulting four-dimensional scalar potential is very often so huge that it gets hard to analytically
solve the extremization conditions. Thus, one has to look either for a simplified Ansatz by
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switching off certain flux components at a time, or else one has to opt for a rather involved
numerical analysis; for phenomenological model building attempts with (non-)geometric
fluxes see [7, 8, 10, 21, 23–25, 34–38, 38–44].

• Apart from the phenomenological applications, understanding the higher dimensional origin
of the four-dimensional scalar potential induced from the generalized flux superpotential has
helped in exploiting the applications of symplectic geometries [40, 45–51].

• The natural incorporation of non-geometric fluxes in the context of Double Field Theory and
its subsequent connection with the non-geometric type II models arrived at after dimensional
reduction has opened a completely new avenue to explore the higher dimensional origins of
the generalized flux superpotentials [50, 52, 53].

• In addition to the phenomenological model building motivations, the interesting connections
among the ingredients of superstring flux-compactifications and those of the gauged super-
gravities have significant relevance in understanding both sectors as fluxes in one setting are
related to the gauging in the other one [1, 5, 18–20, 54–59].

The main aim of this work is to present a brief review about the scalar potential formulations which
is a crucial step towards performing any model building attempts using non-geometric setups. The
F-term scalar potential governing the dynamics of the N = 1 low energy effective supergravity can
be computed from the Kähler potential (𝐾) and the flux induced holomorphic superpotential (𝑊)
by considering the following well known formula,

𝑉 = 𝑒𝐾
(
𝐾𝐴𝐵 (𝐷𝐴𝑊) (𝐷

𝐵
𝑊) − 3|𝑊 |2

)
, (2)

where the covariant derivatives for a chiral coordinate 𝐴 is defined as 𝐷𝐴𝑊 = 𝜕𝐴𝑊 + (𝜕𝑇𝐾)𝑊 .
This general expression (2) has resulted in a series of the so-called “master-formulae" for the scalar
potential for a given set of Kähler- and the super-potentials; e.g. see [13, 17, 42, 49, 51, 53, 60–67]
Along these lines we plan to briefly recall the iterative steps taken in the literature to understand
the insights of the (generalized) flux superpotential via the understanding of the effective scalar
potential. In this regard, the initial model building studies have been performed by considering the
4D effective potential derived by merely knowing the Kähler- and the super-potentials [6, 16, 21–
24, 26, 52, 59, 68], and without having a complete understanding of their ten-dimensional origin.
This issue has been taken into consideration in recent years via two approaches; the first one being
through the Double Field Theory (DFT) [50, 69, 70] and the second approach being through the
study of the underlying supergravity theories [49, 52, 59, 68, 71–76]. Some of the timelines about
exploring the 10D origin of the 4D effective potential can be recalled as below:

• Step-0: In the context of standard type IIB flux compactification with the usual NS-NS and
RR fluxes, 𝐻3 and 𝐹3, the four-dimensional scalar potential induced by the flux superpotential
[77, 78] has been compactly derived through the dimensional reduction of the 10D kinetic
pieces [46, 47]. In this case the flux superpotential takes the following schematic form:

𝑊FH = 𝑝1(𝑈𝑖) + 𝑆 𝑝2(𝑈𝑖), (3)
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where 𝑝1, 𝑝2 are some cubic polynomials in terms of 𝑈𝑖 moduli. This leads to the so-called
“no-scale-structure" as there is no dependence on the Kähler moduli in 𝑉 defined in (2),
except from a V−2 dependence arising from the overall factor 𝑒𝐾 .

• Step-1: Motivated by the study of 4D effective scalar potential in a type IIA flux com-
pactification setup with geometric flux [59], a rearrangement of the scalar potential induced
through a generalized flux superpotential with non-geometric 𝑄-fluxes on top of having the
standard 𝐻3/𝐹3 within a type IIB non-geometric framework, has been presented in [52].
This “rearranged" scalar potential has a “suitable" form which helps in anticipating the 10D
origin of the 4D pieces, a process called as “dimensional oxidation" of the non-geometric
flux superpotential [52].

In this case the flux superpotential takes the following schematic form:

𝑊FHQ = 𝑝1(𝑈𝑖 , 𝑇𝛼) + 𝑆 𝑝2(𝑈𝑖), (4)

where 𝑝1, 𝑝2 are some cubic polynomials in terms of𝑈𝑖 moduli. In addition, the polynomial
𝑝1 has a linear dependence on the Kähler moduli 𝑇𝛼 which breaks the no-scale structure and
creates the possibilities of stabilizing all moduli without including any (non-)perturbative
effects from string-loops or instanton series.

• Step-2: In order to restore the S-duality invariance broken by including the non-geometric
𝑄-flux in the type IIB T6/(Z2 × Z2)-orientifold setup, the proposal of [52] was further
generalized in [68] via the inclusion of the so-called 𝑃-flux which is S-dual to the 𝑄-flux. In
the meantime the prescription was further extended for the odd axion models within a type
IIB compactification on T6/Z4-orientifold in [71, 72].

In this case the flux superpotential takes the following schematic form:

𝑊FHQP = 𝑝1(𝑈𝑖 , 𝑇𝛼) + 𝑆 𝑝2(𝑈𝑖 , 𝑇𝛼), (5)

where 𝑝1, 𝑝2 are some cubic polynomials in terms of 𝑈𝑖 moduli whereas they both have
only a linear dependence on the Kähler moduli 𝑇𝛼. The scalar potential induced through this
superpotential beyond the toroidal case has been studied in [13].

• Step-3: One can further extend the S/T dual completion arguments to arrive at a more
general flux superpotential of the following form, via including two more S-dual pairs of
fluxes, usually denoted as (𝑃′, 𝑄′) and (𝐻′, 𝐹′) [5, 10, 14, 15, 79]

𝑊FHQPP′Q′H′F′ = 𝑝1(𝑈𝑖 , 𝑇𝛼) + 𝑆 𝑝2(𝑈𝑖 , 𝑇𝛼), (6)

where now 𝑝1, 𝑝2 are some cubic polynomials in terms of 𝑈𝑖 as well as 𝑇𝛼 moduli. Let
us note that such a U-dual completed flux superpotential has been explicitly known since
quite some time, and for the toroidal type IIB T6/(Z2 × Z2) orientifold based model it has
a total of 128 flux parameters and 7 complexified variable [5]. However its insights (or any
phenomenological application in model building) have not been explored in detail because of
the huge size of the scalar potential which was recently found to have a total of 76276 terms
[17, 51]!
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In the current work we plan to briefly elaborate on these iterative steps taken to understand the
deeper insights of the four-dimensional scalar potentials in the presence of non-geometric fluxes.
For this task we basically follow two approaches: (i). To formulate the scalar potential using the
metric of the internal toroidal background [52, 68, 71], and (ii). To formulate the scalar potential
using the symplectic ingredients [13, 17, 49–51, 62, 67, 80, 81]. These beyond toroidal formulations
are generically valid for arbitrary number of complex structure moduli as well as Kähler moduli,
and on top of it, do not need the knowledge of internal background metric.

2. Internal metric formulation

Most of the studies related to the 4D type II effective theories in a non-geometric flux com-
pactification framework have been centered around toroidal examples, and in particular using a
T6/(Z2 × Z2) orientifold. An obvious reason is its relatively simpler structure to perform explicit
and concrete computations, which have led toroidal setups to serve as promising toolkit in studying
concrete examples. In this regard, one useful ingredient is the metric of the toroidal background
which is explicitly known unlike the case of generic CY backgrounds, and we will demonstrate
the use of internal metric in writing down the scalar potential pieces a la ‘dimensional oxidation’
approach of [17, 52, 68, 72].

2.1 Type IIB model using a T6/(Z2 × Z2) orientifold

Let us start by briefly revisiting the relevant features of a concrete setup in the framework of
the type IIB orientifold compactification using the well studied T6/(Z2 × Z2) orbifold, where the
two Z2 actions are defined as,

𝜃 : (𝑧1, 𝑧2, 𝑧3) → (−𝑧1,−𝑧2, 𝑧3) (7)
𝜃 : (𝑧1, 𝑧2, 𝑧3) → (𝑧1,−𝑧2,−𝑧3) .

Next, the orientifold action is defined via O ≡ Ω𝑝 𝐼6 (−1)𝐹𝐿 where Ω𝑝 is the worldsheet parity, 𝐹𝐿
is left-fermion number and 𝐼6 denotes the holomorphic involution defined as,

𝐼6 : (𝑧1, 𝑧2, 𝑧3) → (−𝑧1,−𝑧2,−𝑧3) , (8)

which subsequently results in a setup of 𝑂3/𝑂7-type. The complexified coordinates (𝑧𝑖) on the
six-torus T6 = T2 × T2 × T2 are defined as below,

𝑧1 = 𝑥1 +𝑈1𝑥2, 𝑧2 = 𝑥3 +𝑈2𝑥4, 𝑧3 = 𝑥5 +𝑈3𝑥6, (9)

where the three complex structure moduli 𝑈𝑖’s can be written as 𝑈𝑖 = 𝑣𝑖 − 𝑖 𝑢𝑖 , 𝑖 = 1, 2, 3. Now,
the holomorphic three-form Ω3 = 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧3 can be expanded as,

Ω3 = 𝛼0 + 𝑈1 𝛼1 +𝑈2 𝛼2 +𝑈3𝛼3 (10)
+𝑈1𝑈2𝑈3 𝛽0 −𝑈2𝑈3 𝛽1 −𝑈1𝑈3 𝛽2 −𝑈1𝑈2 𝛽3 ,

where we have chosen the following basis of the closed three-forms,

𝛼0 = 1 ∧ 3 ∧ 5 , 𝛼1 = 2 ∧ 3 ∧ 5 , 𝛼2 = 1 ∧ 4 ∧ 5 , 𝛼3 = 1 ∧ 3 ∧ 6, (11)
𝛽0 = 2 ∧ 4 ∧ 6, 𝛽1 = −1 ∧ 4 ∧ 6, 𝛽2 = −2 ∧ 3 ∧ 6, 𝛽3 = − 2 ∧ 4 ∧ 5 .
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In the above we use the shorthand notations such as 1∧ 3∧ 5 = 𝑑𝑥1 ∧ 𝑑𝑥3 ∧ 𝑑𝑥5 etc. along with the
normalization

∫
𝛼Λ ∧ 𝛽Δ = −𝛿ΛΔ. Using these ingredients, the holomorphic three-form can also

be expressed in terms of the symplectic period vectors (XΛ, FΛ) as Ω3 ≡ XΛ𝛼Λ − FΛ𝛽
Λ, where

the complex structure moduli dependent prepotential F is given as,

F =
X1 X2 X3

X0 = 𝑈1𝑈2𝑈3 (12)

which results in the following period-vectors,

X0 = 1 , X1 = 𝑈1 , X2 = 𝑈2 , X3 = 𝑈3 , (13)
F0 = − 𝑈1𝑈2𝑈3 , F1 = 𝑈2𝑈3 , F2 = 𝑈3𝑈1 , F3 = 𝑈1𝑈2 .

Now, using the same shorthand notations we choose the following bases for the orientifold even
two-forms 𝜇𝛼, and their dual four-forms �̃�𝛼,

𝜇1 = 1 ∧ 2, 𝜇2 = 3 ∧ 4, 𝜇3 = 5 ∧ 6; (14)
�̃�1 = 3 ∧ 4 ∧ 5 ∧ 6, �̃�2 = 1 ∧ 2 ∧ 5 ∧ 6, �̃�3 = 1 ∧ 2 ∧ 3 ∧ 4,

Let us mention that for this toroidal orientifold construction there are no two-forms which are
anti-invariant under the orientifold projection, i.e. ℎ1,1

− (𝑋) = 0, and similarly there dual four-forms
are also trivial, and therefore no 𝐵2 and 𝐶2 moduli as well as no geometric-flux components will be
present in this model; for the construction of concrete type IIB orientifold models with odd moduli,
e.g. see [65, 82–87].

The other chiral variables are the so-called axio-dilaton 𝑆 and the complexified Kähler moduli
which are defined as,

𝑆 = 𝐶0 + 𝑖 𝑒−𝜙 J = 𝐶 (4) − 𝑖

2
𝐽 ∧ 𝐽 ≡ 𝑇𝛼 �̃�𝛼 , (15)

where 𝐽 = 𝑡𝛼𝜇𝛼 is the Kähler form involving the (Einstein-frame) two-cycle volume moduli 𝑡𝛼

while the moduli 𝑇𝛼 = 𝜌𝛼 − 𝑖 𝜏𝛼 consist of RR axions 𝐶 (4)
𝑖 𝑗𝑘𝑙

and the four-cycle volume moduli 𝜏𝑖 𝑗𝑘𝑙
which in terms of six-dimensional components are given as follows,

𝑇1 = 𝐶
(4)
3456 − 𝑖 𝜏3456, 𝑇2 = 𝐶

(4)
1256 − 𝑖 𝜏1256, 𝑇3 = 𝐶

(4)
1234 − 𝑖 𝜏1234, (16)

where 𝜏1 = 𝑡2 𝑡3, 𝜏2 = 𝑡3 𝑡1, 𝜏3 = 𝑡1 𝑡2 are expressed in the Einstein-frame. The overall volume
(V) of the sixfold (in the Einstein-frame) can be given as,

V = 𝑡1 𝑡2 𝑡3 =
√
𝜏1𝜏2𝜏3, 𝜏𝛼 =

𝜕V
𝜕𝑡𝛼

, (17)

where a useful relation between the two-cycle volumes 𝑡𝛼 and the four-cycles volumes 𝜏𝛼 can be
given as below,

𝑡1 =

√︂
𝜏2 𝜏3
𝜏1

, 𝑡2 =

√︂
𝜏1 𝜏3
𝜏2

, 𝑡3 =

√︂
𝜏1 𝜏2
𝜏3

. (18)
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Another crucially relevant ingredient in our current study is the information about the internal
metric of the toroidal sixfold. It turns out that the internal metric 𝑔𝑖 𝑗 is block-diagonal and has the
following non-vanishing components,

𝑔11 =
𝑡1

𝑢1 , 𝑔12 =
𝑡1𝑣1

𝑢1 = 𝑔21 , 𝑔22 =
𝑡1((𝑢1)2 + (𝑣1)2)

𝑢1 ,

𝑔33 =
𝑡2

𝑢2 , 𝑔34 =
𝑡2𝑣2

𝑢2 = 𝑔43 , 𝑔44 =
𝑡2((𝑢2)2 + (𝑣2)2)

𝑢2 , (19)

𝑔55 =
𝑡3

𝑢3 , 𝑔56 =
𝑡3𝑣3

𝑢3 = 𝑔65 , 𝑔66 =
𝑡3((𝑢3)2 + (𝑣3)2)

𝑢3 .

These internal metric components can be written out in a more suitable form, to be utilized later,
by using the four-cycle volumes 𝜏𝑖’s and the same is given as below,

𝑔11 =

√
𝜏2
√
𝜏3

𝑢1 √𝜏1
, 𝑔12 =

𝑣1 √𝜏2
√
𝜏3

𝑢1 √𝜏1
= 𝑔21 , 𝑔22 =

(
(𝑢1)2 + (𝑣1)2) √𝜏2

√
𝜏3

𝑢1 √𝜏1
,

𝑔33 =

√
𝜏1
√
𝜏3

𝑢2 √𝜏2
, 𝑔34 =

𝑣2 √𝜏1
√
𝜏3

𝑢2 √𝜏2
= 𝑔43 , 𝑔44 =

(
(𝑢2)2 + (𝑣2)2) √𝜏1

√
𝜏3

𝑢2 √𝜏2
, (20)

𝑔55 =

√
𝜏1
√
𝜏2

𝑢3 √𝜏3
, 𝑔56 =

𝑣3 √𝜏1
√
𝜏2

𝑢3 √𝜏3
= 𝑔65 , 𝑔66 =

(
(𝑢3)2 + (𝑣3)2) √𝜏1

√
𝜏2

𝑢3 √𝜏3
.

For the current toroidal setup, the (tree level) Kähler potential takes the following form in terms of
the 𝑆, 𝑇 and𝑈 moduli,

𝐾 = − ln
(
−𝑖(𝑆 − 𝑆)

)
−

3∑︁
𝑗=1

ln
(
𝑖(𝑈 𝑗 −𝑈 𝑗)

)
−

3∑︁
𝛼=1

ln

(
𝑖 (𝑇𝛼 − 𝑇 𝛼)

2

)
. (21)

2.2 U-dual completion of the flux Superpotential

The four-dimensional effective scalar potential generically has an S-duality invariance following
from the underlying ten-dimensional type IIB supergravity. This corresponds to the following
𝑆𝐿 (2,Z) transformation,

𝑆 → 𝑎 𝑆 + 𝑏
𝑐 𝑆 + 𝑑 where 𝑎𝑑 − 𝑏𝑐 = 1 ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z (22)

Under this 𝑆𝐿 (2,Z) transformation, the complex-structure moduli (𝑈𝑖) and the Einstein-frame
internal volume (V) are invariant. Moreover, the Einstein-frame chiral coordinate 𝑇𝛼 is S-duality
invariant, without orientifold odd axions, i.e. ℎ11

− (𝑋6/O) = 0 [88]. Subsequently, it turns out that
the tree level Kähler potential given in eqn. (46) transforms as:

𝑒𝐾 −→ |𝑐 𝑆 + 𝑑 |2 𝑒𝐾 . (23)

This subsequently implies that the S-duality invariance of the physical quantities (such as gravitino
mass-square 𝑚2

3/2 ∝ 𝑒𝐾 |𝑊 |2) suggests that the holomorphic superpotential, 𝑊 should have a
modularity of weight −1, which means the following [88–90]

𝑊 → 𝑊

𝑐 𝑆 + 𝑑 . (24)
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As we will discuss in the upcoming sections, a generic holomorphic superpotential, respecting the
modular weight being -1, can have four S-dual pairs of fluxes denoted as (𝐹, 𝐻), (𝑄, 𝑃), (𝑃′, 𝑄′)
and (𝐻′, 𝐹′) [5, 10, 14, 15, 79]. This set of eight fluxes transforms in the following manner under
the 𝑆𝐿 (2,Z) transformations,(

𝐹

𝐻

)
→

(
𝑎 𝑏

𝑐 𝑑

) (
𝐹

𝐻

)
,

(
𝑄

𝑃

)
→

(
𝑎 𝑏

𝑐 𝑑

) (
𝑄

𝑃

)
, (25)(

𝐻′

𝐹′

)
→

(
𝑎 𝑏

𝑐 𝑑

) (
𝐻′

𝐹′

)
,

(
𝑃′

𝑄′

)
→

(
𝑎 𝑏

𝑐 𝑑

) (
𝑃′

𝑄′

)
.

Under the 𝑆𝐿 (2,Z) transformations, the various fluxes can readjust themselves to respect the
modularity condition (24) in the following two ways [5],

(𝑖). 𝑆 → 𝑆 + 1, (𝑖𝑖). 𝑆 → −1
𝑆
. (26)

Note that the first case simply corresponds to a shift in the universal axion 𝐶0 → 𝐶0 + 1 which
amounts to having a constant rescaling of the Kähler potential as 𝑒𝐾 → |𝑑 |2 𝑒𝐾 , and the super-
potential as 𝑊 → 𝑊/𝑑. This follows from Eqs. (23)-(24) due to the fact that 𝑆 → 𝑆 + 1 simply
corresponds to 𝑐 = 0 case in the 𝑆𝐿 (2,Z) transformation (22). The second case is quite peculiar in
the sense that it corresponds to the following transformation of the universal axions and the dilaton,

𝐶0 → − 𝐶0

𝑠2 + 𝐶2
0
, 𝑠 → 𝑠

𝑠2 + 𝐶2
0
, (27)

which takes 𝑔𝑠 → 𝑔−1
𝑠 and hence is known as strong-week duality or S-duality. This relation (27)

shows that 𝐶0/𝑠 flips sign under 𝑆-duality, something which will be useful in understanding the
modular completion of the scalar potential later on. From now onwards we will focus only on the
second case, i.e. on strong/weak duality. This means that under the 𝑆𝐿 (2,Z) transformation of
the second type which simply takes the axio-dilaton 𝑆 → −1/𝑆, the fluxes can be considered to
transform as below,

𝐻 → 𝐹, 𝐹 → −𝐻, 𝑄 → −𝑃, 𝑃 → 𝑄, (28)
𝐹′ → 𝐻′, 𝐻′ → −𝐹′, 𝑃′ → −𝑄′, 𝑄′ → 𝑃′.

Now let us mention that the complete set of fluxes, including the so-called prime fluxes 𝑃′, 𝑄′, 𝐻′

and 𝐹′ which are some mixed-tensor quantities, have the following index structure [5, 10, 14, 15, 79],

𝐹𝑖 𝑗𝑘 , 𝐻𝑖 𝑗𝑘 , 𝑄𝑖
𝑗𝑘 , 𝑃𝑖

𝑗𝑘 , (29)
𝑃′𝑖, 𝑗𝑘𝑙𝑚, 𝑄′𝑖, 𝑗𝑘𝑙𝑚, 𝐻′𝑖 𝑗𝑘,𝑙𝑚𝑛𝑝𝑞𝑟 , 𝐹′𝑖 𝑗𝑘,𝑙𝑚𝑛𝑝𝑞𝑟 .

Subsequently, one can understand (𝑃′, 𝑄′) flux as a (1, 4) tensor such that only the last four-indices
are anti-symmetrized, while (𝐻′, 𝐹′) flux can be considered as a (3, 6) tensor where first three
indices and last six indices are separately anti-symmetrized. These can also be understood as

𝑃′
𝑖 𝑗
𝑘 =

1
4!
𝜖𝑖 𝑗𝑙𝑚𝑛𝑝 𝑃

′𝑘,𝑙𝑚𝑛𝑝, 𝑄′
𝑖 𝑗
𝑘 =

1
4!
𝜖𝑖 𝑗𝑙𝑚𝑛𝑝 𝑄

′𝑘,𝑙𝑚𝑛𝑝, (30)

𝐻′𝑖 𝑗𝑘 =
1
6!
𝜖𝑙𝑚𝑛𝑝𝑞𝑟 𝐻

′𝑖 𝑗𝑘,𝑙𝑚𝑛𝑝𝑞𝑟 , 𝐹′𝑖 𝑗𝑘 =
1
6!
𝜖𝑙𝑚𝑛𝑝𝑞𝑟 𝐹

′𝑖 𝑗𝑘,𝑙𝑚𝑛𝑝𝑞𝑟 .
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Using (30) for prime fluxes, the number of flux parameters consistent with our toroidal orientifold
for (𝑃′, 𝑄′) are 24 each, while those of (𝐻′, 𝐹′) are 8 each. Subsequently, one has a total of
8+8+24+24+24+24+8+8 = 128 flux parameters allowed by the orientifold action, however these
flux parameters are not all independent, since they are subject to restrictions derived from the
Bianchi identities and tadpole cancellation conditions [6, 26, 40, 91, 92]. Using generalized geom-
etry motivated through toroidal constructions, it has been argued that the type IIB superpotential
governing the dynamics of the four-dimensional effective theory which respects the invariance under
𝑆𝐿 (2,Z)7 symmetry can be given as [5, 10, 14, 15, 79],

𝑊 =

∫
𝑋3

( 𝑓+ − 𝑆 𝑓−) · 𝑒J ∧Ω3 , (31)

where J denotes the complexified four-form defined in Eq. (15), and one has the following
expansions for the quantities 𝑓±,

𝑓+ · 𝑒J = 𝐹 +𝑄 ⊲ J + 𝑃′ ⋄ J 2 + 𝐻′ ⊙ J 3 (32)
𝑓− · 𝑒J = 𝐻 + 𝑃 ⊲ J +𝑄′ ⋄ J 2 + 𝐹′ ⊙ J 3 .

Here, the flux-actions on the J𝑖 𝑗𝑘𝑙 four-form polynomial pieces resulting in three-forms are [5, 10,
14, 15, 79]

(𝑄 ⊲ J)𝑎1𝑎2𝑎3 =
3
2
𝑄
𝑏1𝑏2
[𝑎1

J𝑎2 𝑎3 ]𝑏1𝑏2 , (33)

(𝑃 ⊲ J)𝑎1𝑎2𝑎3 =
3
2
𝑃
𝑏1𝑏2
[𝑎1

J𝑎2 𝑎3 ]𝑏1𝑏2 ,(
𝑃′ ⋄ J 2

)
𝑎1𝑎2𝑎3

=
1
4
𝑃′𝑐,𝑏1𝑏2𝑏3𝑏4 J[𝑎1𝑎2 |𝑐𝑏1 | J𝑎3 ]𝑏2𝑏3𝑏4 ,(

𝑄′ ⋄ J 2
)
𝑎1𝑎2𝑎3

=
1
4
𝑄′𝑐,𝑏1𝑏2𝑏3𝑏4 J[𝑎1𝑎2 |𝑐𝑏1 | J𝑎3 ]𝑏2𝑏3𝑏4 ,(

𝐻′ ⊙ J 3
)
𝑎1𝑎2𝑎3

=
1

192
𝐻′𝑐1𝑐2𝑐3,𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6 J[𝑎1𝑎2 |𝑐1𝑐2 | J𝑎3 ]𝑐3𝑏1𝑏2 J𝑏3𝑏4𝑏5𝑏6 ,(

𝐹′ ⊙ J 3
)
𝑎1𝑎2𝑎3

=
1

192
𝐹′𝑐1𝑐2𝑐3,𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6 J[𝑎1𝑎2 |𝑐1𝑐2 | J𝑎3 ]𝑐3𝑏1𝑏2 J𝑏3𝑏4𝑏5𝑏6 .

Subsequently one finds an explicit and expanded version of the generalized flux superpotential 𝑊
with 128 terms, each having one of the 128 flux parameters such that they are coupled with the
complexified moduli resulting in cubic polynomial in 𝑇𝛼 as well as𝑈𝑖 moduli while being linear in
the axio-dilaton 𝑆.

2.3 Axionic fluxes and the scalar potential taxonomy

From the iterative models studied/revisited so far, one has the educated guess to invoke the
following set of so-called axionic-flux combinations which will turn out to be extremely useful for

9
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rearranging the scalar potential pieces into a compact form [17],

F𝑖 𝑗𝑘 =
(
𝐹𝑖 𝑗𝑘 +

3
2
𝑄
𝑏1𝑏2
[𝑖 𝜌 𝑗 𝑘 ]𝑏1𝑏2 +

1
4
𝑃′𝑐,𝑏1𝑏2𝑏3𝑏4 𝜌[𝑖 𝑗 |𝑐𝑏1 | 𝜌𝑘 ]𝑏2𝑏3𝑏4 (34)

+ 1
192

𝐻′𝑐1𝑐2𝑐3,𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6 𝜌[𝑖 𝑗 |𝑐1𝑐2 | 𝜌𝑘 ]𝑐3𝑏1𝑏2 𝜌𝑏3𝑏4𝑏5𝑏6

)
− 𝐶0 H𝑖 𝑗𝑘 ,

H𝑖 𝑗𝑘 =
(
𝐻𝑖 𝑗𝑘 +

3
2
𝑃
𝑏1𝑏2
[𝑖 𝜌 𝑗 𝑘 ]𝑏1𝑏2 +

1
4
𝑄′𝑐,𝑏1𝑏2𝑏3𝑏4 𝜌[𝑖 𝑗 |𝑐𝑏1 | 𝜌𝑘 ]𝑏2𝑏3𝑏4

+ 1
192

𝐹′𝑐1𝑐2𝑐3,𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6 𝜌[𝑖 𝑗 |𝑐1𝑐2 | 𝜌𝑘 ]𝑐3𝑏1𝑏2 𝜌𝑏3𝑏4𝑏5𝑏6

)
,

Q𝑖 𝑗𝑘 =
(
𝑄𝑖

𝑗𝑘 − 1
2
𝑃′𝑐, 𝑗𝑘𝑏1𝑏2 𝜌𝑖 𝑐 𝑏1𝑏2 + 1

48
𝐻′ 𝑗𝑘𝑐,𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6 𝜌𝑖 𝑐 𝑏1𝑏2 𝜌𝑏3𝑏4𝑏5𝑏6

)
− 𝐶0 P𝑖 𝑗𝑘 ,

P𝑖 𝑗𝑘 =
(
𝑃𝑖
𝑗𝑘 − 1

2
𝑄′𝑐, 𝑗𝑘𝑏1𝑏2 𝜌𝑖 𝑐 𝑏1𝑏2 + 1

48
𝐹′ 𝑗𝑘𝑐,𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6 𝜌𝑖 𝑐 𝑏1𝑏2 𝜌𝑏3𝑏4𝑏5𝑏6

)
,

P′𝑖, 𝑗𝑘𝑙𝑚 =

(
𝑃′𝑖, 𝑗𝑘𝑙𝑚 + 1

4
𝐻′𝑖 𝑗′𝑘′ ,𝑙′𝑚′ 𝑗𝑘𝑙𝑚

𝜌 𝑗′𝑘′𝑙′𝑚′

)
− 𝐶0 Q′𝑖, 𝑗𝑘𝑙𝑚,

Q′𝑖, 𝑗𝑘𝑙𝑚 =

(
𝑄′𝑖, 𝑗𝑘𝑙𝑚 + 1

4
𝐹′𝑖 𝑗′𝑘′ ,𝑙′𝑚′ 𝑗𝑘𝑙𝑚

𝜌 𝑗′𝑘′𝑙′𝑚′

)
,

H′𝑖 𝑗𝑘,𝑙𝑚𝑛𝑝𝑞𝑟 = 𝐻′𝑖 𝑗𝑘,𝑙𝑚𝑛𝑝𝑞𝑟 − 𝐶0 F′
𝑖 𝑗𝑘,𝑙𝑚𝑛𝑝𝑞𝑟

,

F′𝑖 𝑗𝑘,𝑙𝑚𝑛𝑝𝑞𝑟 = 𝐹′𝑖 𝑗𝑘,𝑙𝑚𝑛𝑝𝑞𝑟 .

Using Eq. (34) for our toroidal construction, one finds that there are 128 axionic fluxes corresponding
to 128 standard fluxes, and one can solve this set of linear relations to determine one set of fluxes
from the other,

{𝐹, 𝐻,𝑄, 𝑃, 𝑃′, 𝑄′, 𝐻′, 𝐹′} ⇐⇒ {F,H,Q, P, P′,Q′,H′, F′} . (35)

Subsequently using the 𝑁 = 1 formula (2) for this toroidal model, one can compute the scalar
potential induced by the generalized flux superpotential (31) having 128 terms. The final result
consists of 76276 terms in the scalar potential, in a so-called bilinear formulation presented in
[42, 43, 93–96]. All these 76276 terms can be distributed into 36 types of pieces, in the form of
diagonal and off-diagonal flux bilinears arising from {𝐹, 𝐻,𝑄, 𝑃, 𝑃′, 𝑄′, 𝐻′, 𝐹′}. As an immediate
illustration of the significant use of the axionic fluxes (34), let us mention that the scalar potential
can be equivalently expressed by 10888 terms if we use the axionic flux components, distributed
into the new 36 pieces arising as bilinears from {F,H,Q, P, P′,Q′,H′, F′}.

It is not very illuminating to display all the 36 pieces of the scalar potential which are detailed in
[17], however to appreciate the importance of the axionic-flux polynomials we present the taxonomy
of various pieces from the perspective of counting terms in scalar potential written with usual fluxes
or the axionic fluxes in Table 1.
Another point worth mentioning here is the fact that all the RR axionic dependencies are encoded
in the axionic fluxes (34) and the scalar potential does not have an explicit dependence on any of the
RR axions. In our detailed analysis of rewriting the scalar potential pieces we find that using the set
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Fluxes #(terms) in 𝑉 using Axionic-fluxes #(terms) in 𝑉 using
standard fluxes axionic-fluxes in (60)

1 𝐹 76 F 76
2 𝐹, 𝐻 361 F,H 160
3 𝐹, 𝐻,𝑄 2422 F,H,Q 772
4 𝐹, 𝐻,𝑄, 𝑃 9661 F,H,Q, P 2356
5 𝐹, 𝐻,𝑄, 𝑃, 𝑃′ 23314 F,H,Q, P, P′ 4855
6 𝐹, 𝐻,𝑄, 𝑃 50185 F,H,Q, P, 8326

𝑃′, 𝑄′ P′,Q′

7 𝐹, 𝐻,𝑄, 𝑃, 60750 F,H,Q, P, 9603
𝑃′, 𝑄′, 𝐻′ P′,Q′,H′

8 𝐹, 𝐻,𝑄, 𝑃, 76276 F,H,Q, P, 10888
𝑃′, 𝑄′, 𝐻′, 𝐹′ P′,Q′,H′, F′

Table 1: Counting of scalar potential terms for a set of fluxes being turned-on at a time. [17, 51]

of axionic fluxes reduces the number of scalar potential terms quite significantly. This subsequently
helps us in understanding the insights within each terms towards seeking a compact and concise
formulation of the full scalar potential and we can take an educated route to arrive at generic setups
beyond the torodial orientifold. This is what is the motivation for the symplectic formulation we
present next.

3. Symplectic formulation

To begin with, let us also recollect some relevant ingredients for rewriting the F-term scalar potential
in a symplectic formulation. We start by resetting our notations and conventions for symplectic
formulation which would be valid for setups beyond the toroidal orientifolds.

3.1 Necessary cohomological and symplectic ingredients

The massless states in the four dimensional (4D) effective theory are in one-to-one correspondence
with harmonic forms which are either even or odd under the action of an isometric, holomorphic
involution (𝜎) acting on the internal compactifying sixfold 𝑋 , and these do generate the equivariant
cohomology groups 𝐻 𝑝,𝑞

± (𝑋). For that purpose, let us fix our conventions, and denote the bases
of even/odd two-forms as (𝜇𝛼, 𝜈𝑎) and four-forms as ( �̃�𝛼, �̃�𝑎) where 𝛼 ∈ ℎ1,1

+ (𝑋), 𝑎 ∈ ℎ1,1
− (𝑋).

However for our current objectives, we will be interested in orientifold setups resulting in ℎ1,1
− (𝑋) =

0 which means that the so-called odd-moduli 𝐺𝑎 counted by ℎ1,1
− (𝑋) ≠ 0 will be absent, and

explicit construction of such CY orientifolds with odd two-cycles can be found in [82, 97–101]. In
addition, we consider the orientifold involutions resulting in O3/O7 system with a trivial𝐻3

+(𝑋), and
basis of 3-forms in the odd (2,1)-cohomology sector being denoted as (AΛ,BΔ) where {Λ,Δ} ∈
{0, 1, .., ℎ2,1

− (𝑋)}. We fix the normalization in the various cohomology bases as,∫
𝑋

𝜇𝛼 ∧ �̃�𝛽 = 𝛿
𝛽
𝛼 ,

∫
𝑋

𝜇𝛼 ∧ 𝜇𝛽 ∧ 𝜇𝛾 = 𝜅𝛼𝛽𝛾 ,

∫
𝑋

AΛ ∧ BΔ = 𝛿Λ
Δ. (36)

11
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Subsequently the Kähler form 𝐽, and the RR four-form 𝐶4 can be expanded as [102]: 𝐽 =

𝑡𝛼 𝜇𝛼, 𝐶4 ≃ 𝜌𝛼 �̃�
𝛼 where 𝑡𝛼, and 𝜌𝛼 denote the Einstein-frame two-cycle volume moduli, and ax-

ions descending from the 4-form potential𝐶4. For the choice of involution 𝜎 we have 𝜎∗Ω3 = −Ω3,
where Ω3 denotes the nowhere vanishing holomorphic three-form depending on the complex struc-
ture moduli𝑈𝑖 counted in the ℎ2,1

− (𝑋) cohomology, which can be generically given as below,

Ω3 ≡ XΛ AΛ − FΛ BΛ . (37)

Here, the period vectors (XΛ, FΛ) are encoded in a pre-potential (F ) of the following form,

F = (X0)2 𝑓 (𝑈𝑖) , 𝑓 (𝑈𝑖) = −1
6
ℓ𝑖 𝑗𝑘𝑈

𝑖𝑈 𝑗 𝑈𝑘 + 1
2
𝑎𝑖 𝑗 𝑈

𝑖𝑈 𝑗 + 𝑏𝑖𝑈
𝑖 + 𝑖

2
𝛾. (38)

In fact, the function 𝑓 (𝑈𝑖) can generically have an infinite series of non-perturbative contributions,
which we ignore for the current work assuming to be working in the large complex structure limit.
The quantities 𝑎𝑖 𝑗 , 𝑏𝑖 and 𝛾 are real numbers where 𝛾 is related to the perturbative (𝛼′)3-corrections
on the mirror side [103–105]. Furthermore, the chiral coordinates 𝑈𝑖’s are defined as 𝑈𝑖 = 𝛿𝑖

Λ
XΛ

X0

where ℓ𝑖 𝑗𝑘’s are triple intersection numbers on the mirror (CY) threefold.
In addition to the normalizations defined in (36) we define the following Hodge star operations

acting on the various (odd) 3-forms via introducing a set of so-called M matrices [45],

★AΛ = M Σ
Λ AΣ +MΛΣ BΣ, and ★ BΛ = MΛΣ AΣ +MΛ

Σ BΣ , (39)

where

MΛΔ = ImNΛΔ, M Δ
Λ = ReNΛΓ ImNΓΔ, (40)

MΛ
Δ = −

(
M Δ

Λ

)𝑇
, MΛΔ = −ImNΛΔ − ReNΛΣ ImNΣΓ ReNΓΔ.

Here the period matrix N for the involutively odd (2,1)-cohomology sector can be given by the
derivatives of the prepotential (38) as below,

NΛΔ = F ΛΔ + 2 𝑖
𝐼𝑚(FΛΓ) XΓ𝑋Σ (𝐼𝑚FΣΔ)

𝐼𝑚(FΓΣ)XΓ𝑋Σ
. (41)

Moreover, it was observed in [49] that an interesting relation analogous to the period matrix
expression (41) holds which is given as below:

FΛΔ = NΛΔ + 2 𝑖
𝐼𝑚(NΛΓ) XΓ𝑋Σ (𝐼𝑚NΣΔ)

𝐼𝑚(NΓΣ)XΓ𝑋Σ
, (42)

and, similar to the period matrices given in (40), one can define another set of symplectic quantities
as below,

LΛΔ = ImF ΛΔ, L Δ
Λ = ReF ΛΓ ImF ΓΔ, (43)

LΛ
Δ = −

(
L Δ

Λ

)𝑇
, LΛΔ = −ImF ΛΔ − ReF ΛΣ ImF ΣΓ ReF ΓΔ.

Let us mention here at the outset that in addition to having ℎ2,1
+ (𝑋) = 0 = ℎ1,1

− (𝑋) in order to
avoid the D-term effects and the presence of odd moduli (𝐺𝑎), in our current analysis we will make
another assumption in our superpotential by considering the fluxes to adopt appropriate rational
shifts [95, 105] in order to absorb the appearance of 𝑎𝑖 𝑗 and 𝑏𝑖 sourced from the prepotential (38).
Also, we set 𝛾 = 0 assuming the large complex structure limit.
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3.2 The Kähler potential and the flux superpotential

Using these pieces of information one defines a set of chiral coordinates, namely 𝑆, 𝑇𝛼 and 𝑈𝑖 , as
below [3],

𝑆 ≡ 𝐶0 + 𝑖 𝑒−𝜙 = 𝐶0 + 𝑖 𝑠, 𝑇𝛼 = 𝜌𝛼 − 𝑖 𝜏𝛼, 𝑈𝑖 = 𝑣𝑖 − 𝑖 𝑢𝑖 , (44)

where {𝐶0, 𝜌𝛼, 𝑣
𝑖} are axionic moduli while {𝑠, 𝜏𝛼, 𝑢𝑖} are saxionic moduli. The Einstein-frame

overall volume (V) of the internal background is connected with the 2-cycle volume moduli 𝑡𝛼 and
the 4-cycle volume moduli as below,

V =
1
6
𝜅𝛼𝛽𝛾 𝑡

𝛼 𝑡𝛽 𝑡𝛾 , 𝜏𝛼 = 𝜕𝑡𝛼V =
1
2
𝜅𝛼𝛽𝛾𝑡

𝛽𝑡𝛾 . (45)

Using appropriate chiral variables (𝑆, 𝑇𝛼,𝑈𝑖) as defined in (44), a generic form of the tree-level
Kähler potential can be written as below,

𝐾 = − ln
(
− 𝑖

∫
𝑋

Ω3 ∧ Ω̄3

)
− ln

(
−𝑖(𝑆 − 𝑆)

)
− 2 lnV . (46)

The tree-level Kähler potential (46) leads to a decoupled sector for 𝑈𝑖 moduli and the {𝑆, 𝑇𝛼}
moduli sectors, thus implying the following derivatives along with the block diagonals matrices,

𝐾𝑆 =
𝑖

2 𝑠
= −𝐾

𝑆
, 𝐾𝑇𝛼 = − 𝑖 𝑡

𝛼

2V = −𝐾
𝑇𝛼
, (47)

𝐾
𝑆𝑆

=
1

4 𝑠2 , 𝐾
𝑆𝑇𝛼

= 0 = 𝐾
𝑇𝛼𝑆

, 𝐾
𝑇𝛼𝑇𝛽

= 4
(
𝜏𝛼𝜏𝛽 −V𝜅𝛼𝛽

)
≡ 4 G𝛼𝛽,

𝐾𝑆𝑆 = 4 𝑠2, 𝐾𝑆𝑇𝛼 = 0 = 𝐾𝑇𝛼𝑆 , 𝐾𝑇𝛼𝑇𝛽 =
1

16V2

(
2 𝑡𝛼𝑡𝛽 − 4V𝜅𝛼𝛽

)
≡ 1

4
G𝛼𝛽,

where we have introduced two new quantities G𝛼𝛽 and G𝛼𝛽 to avoid any confusion with lower/upper
indices in the Kähler metric and its inverse metric. We also note that the metrics defined in (47)
result in the following useful identities [67],

G𝛼𝛽𝑡𝛼 = V 𝜏𝛽 , G𝛼𝛽𝑡𝛼𝑡𝛽 = 3V2, G𝛼𝛽𝜏𝛼 =
𝑡𝛼

V , G𝛼𝛽𝜏𝛼𝜏𝛽 = 3. (48)

Now, it turns out that making successive applications of T/S-dualities results in the need of intro-
ducing more and more fluxes. In fact, one needs a total of four S-dual pairs of fluxes, commonly
denotes as: (𝐹, 𝐻), (𝑄, 𝑃), (𝑃′, 𝑄′) and (𝐻′, 𝐹′) [5, 5, 10, 10, 14, 15, 17, 71, 79]. This leads to
the following generalized flux superpotential,

𝑊 =

∫
𝑋

[
(𝐹 − 𝑆 𝐻) + (𝑄 − 𝑆 𝑃) ⊲ J + (𝑃′ − 𝑆 𝑄′) ⋄ J 2 + (𝐻′ − 𝑆 𝐹′) ⊙ J 3

]
∧Ω3 , (49)

where J = 𝑇𝛼 𝜇
𝛼 the dual complexified four-form dual to the Kähler form, and the symplectic

form of the various flux actions are defined as below [51],

(𝑄 ⊲ J) = 𝑇𝛼𝑄𝛼, (𝑃 ⊲ J) = 𝑇𝛼 𝑃𝛼 , (50)(
𝑃′ ⋄ J 2

)
=

1
2
𝑃′𝛽𝛾 𝑇𝛽 𝑇𝛾 ,

(
𝑄′ ⋄ J 2

)
=

1
2
𝑄′𝛽𝛾 𝑇𝛽 𝑇𝛾 ,(

𝐻′ ⊙ J 3
)
=

1
3!
𝐻′𝛼𝛽𝛾 𝑇𝛼 𝑇𝛽 𝑇𝛾 ,

(
𝐹′ ⊙ J 3

)
=

1
3!
𝐹′𝛼𝛽𝛾 𝑇𝛼 𝑇𝛽 𝑇𝛾 .
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Here𝑄𝛼, 𝑃𝛼, 𝑃′𝛽𝛾 , 𝑄′𝛽𝛾 , 𝐻′𝛼𝛽𝛾 and 𝐹′𝛼𝛽𝛾 denote the 3-forms similar to the standard 𝐹3/𝐻3 fluxes
and can be expanded in the symplectic basis {AΛ,BΔ} in the following manner,

𝐹 = 𝐹Λ AΛ − 𝐹Λ BΛ , 𝐻 = 𝐻Λ AΛ − 𝐻Λ BΛ , (51)
𝑄𝛼 = 𝑄𝛼Λ AΛ −𝑄𝛼Λ BΛ , 𝑃𝛼 = 𝑃𝛼Λ AΛ − 𝑃𝛼Λ BΛ ,

𝑃′𝛽𝛾 = 𝑃′𝛽𝛾Λ AΛ − 𝑃′𝛽𝛾
Λ BΛ , 𝑄′𝛽𝛾 = 𝑄′𝛽𝛾Λ AΛ −𝑄′𝛽𝛾

Λ BΛ ,

𝐻′𝛼𝛽𝛾 = 𝐻′𝛼𝛽𝛾Λ AΛ − 𝐻′𝛼𝛽𝛾
Λ BΛ , 𝐹′𝛼𝛽𝛾 = 𝐹′𝛼𝛽𝛾Λ AΛ − 𝐹′𝛼𝛽𝛾

Λ BΛ .

Note that the flux components𝑄𝛼 and 𝑃𝛼 having a single index 𝛼 ∈ ℎ1,1
+ (and Λ ∈ ℎ2,1

− indices) are
counted accordingly. However, counting of the prime flux components is a bit tricky because their
appearance as 𝑃′𝛽𝛾 , 𝑄′𝛽𝛾 , 𝐻′𝛼𝛽𝛾 and 𝐹′𝛼𝛽𝛾 in (50) does not seem to have any constraint except for
being symmetric in indices {𝛼, 𝛽, 𝛾} ∈ ℎ1,1

+ . For that purpose, motivated by the previous toroidal
studies [14, 15, 17, 79], one can equivalently define [51],

𝑃′
𝛼Λ, 𝑃

′
𝛼
Λ, 𝑄′

𝛼Λ, 𝑄
′
𝛼
Λ, 𝐻′

Λ, 𝐻
′Λ, 𝐹′

Λ, 𝐹
′Λ , (52)

which are related to the earlier set of prime fluxes as below

𝑃′𝛽𝛾Λ = 𝑃′
𝛼
Λ 𝜅𝛼𝛽𝛾 , 𝑃′𝛽𝛾

Λ = 𝑃′
𝛼Λ 𝜅

𝛼𝛽𝛾 , (53)
𝑄′𝛽𝛾Λ = 𝑄′

𝛼
Λ 𝜅𝛼𝛽𝛾 , 𝑄′𝛽𝛾

Λ = 𝑄′
𝛼Λ 𝜅

𝛼𝛽𝛾 ,

𝐻′𝛼𝛽𝛾Λ = 𝐻′Λ 𝜅𝛼𝛽𝛾 , 𝐻′𝛼𝛽𝛾
Λ = 𝐻′

Λ 𝜅
𝛼𝛽𝛾 ,

𝐹′𝛼𝛽𝛾Λ = 𝐹′Λ 𝜅𝛼𝛽𝛾 , 𝐹′𝛼𝛽𝛾
Λ = 𝐹′

Λ 𝜅
𝛼𝛽𝛾 .

Here 𝜅𝛼𝛽𝛾 is defined as 𝜅𝛼𝛽𝛾 = V3 𝜅𝛼′𝛽′𝛾′ G𝛼𝛼′ G𝛽𝛽′ G𝛾𝛾′ where the tree-level metric G𝛼𝛽 and
its inverse G𝛼𝛽 are introduced in (47). This leads to the following interesting relation [51]

𝑡𝛼 =
1
2
𝜅𝛼𝛽𝛾 𝜏𝛽 𝜏𝛾 , V =

1
3!
𝜅𝛼𝛽𝛾 𝜏𝛼 𝜏𝛽 𝜏𝛾 ,

where 𝜏𝛼 corresponds to the volume of the 4-cycle and can be written in terms of the 2-cycle volumes
as: 𝜏𝛼 = 1

2 𝜅𝛼𝛽𝛾 𝑡
𝛽 𝑡𝛾 = 1

2 𝜅𝛼. Here we used the shorthand notations 𝜅𝛼 = 𝜅𝛼𝛽 𝑡
𝛽 = 𝜅𝛼𝛽𝛾 𝑡

𝛽 𝑡𝛾 etc.
From this approach it is clear that counting of prime fluxes is also similar to those of the

non-prime fluxes, i.e. {𝐻′, 𝐹′} are counted by the ℎ2,1
− (CY) indices similar to the standard 𝐻3/𝐹3

fluxes while {𝑃′, 𝑄′} are counted via one 𝛼 index and one Λ index. However, the crucial property
we must take into account is the holomorphicity of the flux superpotential which shows that fluxes
used in actions (50) and (51) are the ones to be considered in the superpotential along with the
chiral variables 𝑆, 𝑇𝛼 and𝑈𝑖 . Subsequently one has the following generalized flux superpotential,

𝑊 =

∫
𝑋

[(
𝐹 +𝑄𝛼 𝑇𝛼 + 1

2
𝑃′𝛼𝛽 𝑇𝛼 𝑇𝛽 + 1

6
𝐻′𝛼𝛽𝛾 𝑇𝛼 𝑇𝛽 𝑇𝛾

)
(54)

− 𝑆
(
𝐻 + 𝑃𝛼 𝑇𝛼 + 1

2
𝑄𝛼𝛽 𝑇𝛼 𝑇𝛽 + 1

6
𝐹′𝛼𝛽𝛾 𝑇𝛼 𝑇𝛽 𝑇𝛾

)]
3

∧Ω3 ,

where all the terms appearing inside the bracket [...]3 denote a collection of three-forms as expanded
in (51). Let us also make a side remark that for the holomorphicity of the flux superpotential all
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these 3-form flux ingredients in (54), or equivalently in (51), are independent of the volume moduli
and therefore such fluxes are used for expressing the superpotential for the purpose of computing
the scalar potential using the 𝑁 = 1 formula (2). After the scalar potential is computed one can
always reshuffle and rewrite the scalar potential pieces in order to achieve a more compact way of
expressing the full potential, which a priori is a complicated task.

Using the flux actions in Eq. (51), the generalized flux superpotential 𝑊 in (54) can be
equivalently given as,

𝑊 ≡
∫
𝑋

[Flux]3 ∧Ω3 = 𝑒ΛXΛ − 𝑚Λ FΛ , (55)

where the symplectic electromagnetic vectors (𝑒Λ, 𝑚Λ) are given as,

𝑒Λ = (𝐹Λ − 𝑆 𝐻Λ) + 𝑇𝛼 (𝑄𝛼Λ − 𝑆 𝑃𝛼Λ) +
1
2
𝑇𝛼 𝑇𝛽

(
𝑃′𝛼𝛽

Λ − 𝑆 𝑄′𝛼𝛽
Λ

)
(56)

+ 1
6
𝑇𝛼 𝑇𝛽 𝑇𝛾

(
𝐻′𝛼𝛽𝛾

Λ − 𝑆 𝐹′𝛼𝛽𝛾
Λ

)
,

𝑚Λ =

(
𝐹Λ − 𝑆 𝐻Λ

)
+ 𝑇𝛼

(
𝑄𝛼Λ − 𝑆 𝑃𝛼Λ

)
+ 1

2
𝑇𝛼 𝑇𝛽

(
𝑃′𝛼𝛽Λ − 𝑆 𝑄′𝛼𝛽Λ

)
+ 1

6
𝑇𝛼 𝑇𝛽 𝑇𝛾

(
𝐻′𝛼𝛽𝛾Λ − 𝑆 𝐹′𝛼𝛽𝛾Λ

)
.

The generic superpotential (55) is linear in the axio-dilaton modulus 𝑆 and has cubic dependence
in moduli𝑈𝑖 and 𝑇𝛼 both. Using the symplectic vectors (𝑒Λ, 𝑚Λ) of (56) in the flux superpotential
(55), one can compute the derivatives with respect to chiral variables, 𝑆 and 𝑇𝛼 which are given by

𝑊𝑆 = (𝑒1)ΛXΛ − (𝑚1)Λ FΛ, 𝑊𝑇𝛼 = (𝑒2)𝛼Λ XΛ − (𝑚2)𝛼Λ FΛ, (57)

where the two new pairs of symplectic vectors (𝑒1, 𝑚1) and (𝑒2, 𝑚2) are given as:

(𝑒1)Λ = −
[
𝐻Λ + 𝑇𝛼 𝑃𝛼Λ + 1

2
𝑇𝛼 𝑇𝛽 𝑄

′𝛼𝛽
Λ + 1

6
𝑇𝛼 𝑇𝛽 𝑇𝛾 𝐹

′𝛼𝛽𝛾
Λ

]
, (58)

(𝑚1)Λ = −
[
𝐻Λ + 𝑇𝛼 𝑃𝛼Λ + 1

2
𝑇𝛼 𝑇𝛽 𝑄

′𝛼𝛽Λ + 1
6
𝑇𝛼 𝑇𝛽 𝑇𝛾 𝐹

′𝛼𝛽𝛾Λ
]
,

and

(𝑒2)𝛼Λ = (𝑄𝛼Λ − 𝑆 𝑃𝛼Λ) + 𝑇𝛽
(
𝑃′𝛼𝛽

Λ − 𝑆 𝑄′𝛼𝛽
Λ

)
+ 1

2
𝑇𝛽 𝑇𝛾

(
𝐻′𝛼𝛽𝛾

Λ − 𝑆 𝐹′𝛼𝛽𝛾
Λ

)
, (59)

(𝑚2)𝛼Λ =

(
𝑄𝛼Λ − 𝑆 𝑃𝛼Λ

)
+ 𝑇𝛽

(
𝑃′𝛼𝛽Λ − 𝑆 𝑄′𝛼𝛽Λ

)
+ 1

2
𝑇𝛽 𝑇𝛾

(
𝐻′𝛼𝛽𝛾Λ − 𝑆 𝐹′𝛼𝛽𝛾Λ

)
.

3.3 Invoking the axionic fluxes

With the concrete form of the holomorphic superpotential at hand, now, we define the following set
of the so-called axionic-flux combinations which will turn out to be extremely useful for rearranging

15



P
o
S
(
C
O
R
F
U
2
0
2
3
)
3
1
1

On Formulating the Non-Geometric Scalar Potentials George K. Leontaris

the scalar potential pieces into a compact form,

FΛ = 𝐹Λ + 𝜌𝛼𝑄𝛼Λ + 1
2
𝜌𝛼 𝜌𝛽 𝑃

′𝛼𝛽
Λ + 1

6
𝜌𝛼 𝜌𝛽 𝜌𝛾 𝐻

′𝛼𝛽𝛾
Λ − 𝐶0 HΛ , (60)

HΛ = 𝐻Λ + 𝜌𝛼 𝑃𝛼Λ + 1
2
𝜌𝛼 𝜌𝛽 𝑄

′𝛼𝛽
Λ + 1

6
𝜌𝛼 𝜌𝛽 𝜌𝛾 𝐹

′𝛼𝛽𝛾
Λ,

Q𝛼Λ = 𝑄𝛼Λ + 𝜌𝛽 𝑃
′𝛼𝛽

Λ + 1
2
𝜌𝛽 𝜌𝛾 𝐻

′𝛼𝛽𝛾
Λ − 𝐶0 P𝛼Λ,

P𝛼Λ = 𝑃𝛼Λ + 𝜌𝛽 𝑄
′𝛼𝛽

Λ + 1
2
𝜌𝛽 𝜌𝛾 𝐹

′𝛼𝛽𝛾
Λ ,

P′𝛼𝛽Λ = 𝑃′𝛼𝛽
Λ + 𝜌𝛾 𝐻

′𝛼𝛽𝛾
Λ − 𝐶0 Q′𝛼𝛽

Λ ,

Q′𝛼𝛽
Λ = 𝑄′𝛼𝛽

Λ + 𝜌𝛾 𝐹
′𝛼𝛽𝛾

Λ,

H′𝛼𝛽𝛾
Λ = 𝐻′𝛼𝛽𝛾

Λ − 𝐶0 F′𝛼𝛽𝛾Λ,

F′𝛼𝛽𝛾Λ = 𝐹′𝛼𝛽𝛾
Λ ,

where the analogous axionic fluxes with upper Λ index are expressed in a similar fashion. Using
these axionic-flux combinations (60) along with the definitions of chiral variables in Eq. (44), the
three pairs of symplectic vectors, namely (𝑒, 𝑚), (𝑒1, 𝑚1) and (𝑒2, 𝑚2) which are respectively given
in Eqs. (56), (58) and (59), can be expressed in the following compact form,

𝑒Λ = (FΛ − 𝑠 PΛ − P′Λ + 𝑠 F′Λ) + 𝑖 (−𝑠HΛ − QΛ + 𝑠Q′
Λ + H′

Λ) , (61)
𝑚Λ =

(
FΛ − 𝑠 PΛ − P′Λ + 𝑠 F′Λ

)
+ 𝑖

(
− 𝑠HΛ − QΛ + 𝑠Q′Λ + H′Λ

)
,

(𝑒1)Λ = (−HΛ + Q′
Λ) + 𝑖 (PΛ − F′Λ) , (𝑚1)Λ =

(
−HΛ + Q′Λ

)
+ 𝑖

(
PΛ − F′Λ

)
, (62)

(𝑒2)𝛼Λ = (Q𝛼Λ − 𝑠Q′𝛼
Λ − H′𝛼

Λ) + 𝑖 (−𝑠 P𝛼Λ − P′𝛼Λ + 𝑠 F′𝛼Λ) , (63)
(𝑚2)𝛼Λ =

(
Q𝛼Λ − 𝑠Q′𝛼Λ − H′𝛼Λ

)
+ 𝑖

(
− 𝑠 P𝛼Λ − Q′𝛼Λ + 𝑠 F′𝛼Λ

)
,

where we have used the shorthand notations such as Q
Λ

= 𝜏𝛼 Q𝛼Λ, Q′𝛼
Λ

= 𝜏𝛽Q′𝛼𝛽
Λ, Q′

Λ
=

1
2𝜏𝛼 𝜏𝛽Q

′𝛼𝛽
Λ, H′

Λ
= 1

6 𝜏𝛼𝜏𝛽𝜏𝛾H
′𝛼𝛽𝛾

Λ etc. In addition, we mention that such shorthand notations
are applicable only with 𝜏𝛼 contractions, and not to be (conf)used with axionic (𝜌𝛼) contractions.
This convention will be used wherever the (𝑄, 𝑃), (𝑃′, 𝑄′) and (𝐻′, 𝐹′) fluxes are seen with/without
a free index 𝛼 ∈ ℎ1,1

+ (𝑋). Here we recall that 𝜏𝛼 = 1
2 𝜅𝛼𝛽𝛾𝑡

𝛽𝑡𝛾 .
Now the main task is to rewrite the scalar potential (2) in a generic symplectic formulation. The

blocks in the Kähler metric and inverse metric corresponding to the Kähler moduli and axio-dilaton
dependent sector are determined by (47) while for simplifying the complex structure dependent
pieces one needs to use the period matrix components defined in (40)-(43). In this regard, one of
the most important identities for simplifying the scalar potential is the following one [45],

𝐾 𝑖 𝑗 (𝐷𝑖XΛ) (𝐷 𝑗XΔ) = −XΛXΔ − 1
2
𝑒−𝐾𝑐𝑠 ImNΛΔ. (64)
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Subsequently after some tedious computations, one arrives at a generic scalar potential promoted
for the beyond toroidal case. This scalar potential can be expressed using the following 36 pieces,

𝑉 = 𝑉FF +𝑉HH +𝑉QQ +𝑉PP +𝑉P′P′ +𝑉Q′Q′ +𝑉H′H′ +𝑉F′F′ , (65)
+𝑉FH +𝑉FQ +𝑉FP +𝑉FP′ +𝑉FQ′ +𝑉FH′ +𝑉FF′ +𝑉HQ +𝑉HP +𝑉HP′ +𝑉HQ′ +𝑉HH′ +𝑉HF′
+𝑉QP +𝑉QP′ +𝑉QQ′ +𝑉QH′ +𝑉QF′ +𝑉PP′ +𝑉PQ′ +𝑉PH′ +𝑉PF′ +𝑉P′Q′ +𝑉P′H′ +𝑉P′F′
+𝑉Q′H′ +𝑉Q′F′ +𝑉H′F′ .

The explicit forms of the various pieces are elaborated in the appendix of [51].

3.4 Master formula for the scalar potential

The attempts so far have just been to elaborate on the insights of various terms and how they could
appear from the flux superpotential in connection with the standard U-dual flux parameters, and it
is desirable that we club these 36 terms in a more concise symplectic formulation. With this goal
in mind, we investigated the 36 pieces in some more detail and found that using the axionic fluxes
(60), the following triplet {𝜒, 𝜓,Ψ𝛼} of quantities turn out to be useful,

𝜓Λ = 𝑠 (−HΛ + Q′
Λ) + 𝑖 𝑠 (PΛ − F′Λ) , (66)

𝜒Λ = (FΛ − P′Λ) + 𝑖 (−QΛ + H′
Λ) + 𝑖 𝜓Λ,

Ψ𝛼
Λ = (Q𝛼Λ − 𝑠Q′𝛼

Λ − H′𝛼
Λ) + 𝑖 (−𝑠 P𝛼Λ − P′𝛼Λ + 𝑠 F′𝛼Λ) ,

where the analogous quantities with upper Λ index are expressed in a similar fashion. Also
we used the shorthand notations such as Q

Λ
= 𝜏𝛼 Q𝛼Λ, Q′𝛼

Λ
= 𝜏𝛽Q′𝛼𝛽

Λ, Q′
Λ
= 1

2𝜏𝛼 𝜏𝛽Q
′𝛼𝛽

Λ,
H′
Λ
= 1

6 𝜏𝛼𝜏𝛽𝜏𝛾H
′𝛼𝛽𝛾

Λ etc. In the similar way we write ΨΛ = 𝜏𝛼 Ψ
𝛼
Λ and ΨΛ = 𝜏𝛼 Ψ

𝛼Λ wherever
Ψ appears without an ℎ1,1

+ index 𝛼. Subsequently, we will have the following relations consistent
with out shorthand notations,

ΨΛ = (QΛ − 2 𝑠Q′
Λ − 3H′

Λ) + 𝑖 (−𝑠 PΛ − 2P′Λ + 3 𝑠 F′Λ) , (67)
ΨΛ =

(
QΛ − 2 𝑠Q′Λ − 3H′Λ

)
+ 𝑖

(
− 𝑠 PΛ − 2Q′Λ + 3 𝑠 F′Λ

)
.

Also, let us recall that the electric/magnetic components of the fluxes defined in (66), are expanded
in the three-form basis as Flux = FluxΛ AΛ − FluxΛ BΛ, where Flux = {𝜒, 𝜓,Ψ}.

Subsequently, the full scalar potential can be expressed in just a few lines, and can be clubbed
into two types of terms, namely (O1 ∧ ∗O2) and (O1 ∧ O2), which we present below,

𝑉 = 𝑉(O1∧∗O2 ) +𝑉(O1∧O2 ) , (68)

where

𝑉(O1∧∗O2 ) = − 1
4 𝑠V2

∫
𝑋6

[
𝜒 ∧ ∗𝜒 + 𝜓 ∧ ∗𝜓 + G𝛼𝛽 Ψ̃𝛼 ∧ ∗Ψ̃𝛽 (69)

+ 𝑖
2

(
�̃� ∧ ∗𝜓 − �̃� ∧ ∗𝜓

)
+ 𝑖

2

(
Ψ̃ ∧ ∗�̃� − Ψ̃ ∧ ∗�̃�

)]
,

𝑉(O1∧O2 ) = − 1
4 𝑠V2

∫
𝑋6

[
(−𝑖)

(
𝜒 ∧ 𝜒 + 𝜒 ∧ �̃� + 2𝜓 ∧ 𝜓 + 2 G𝛼𝛽 Ψ𝛼 ∧ Ψ̃𝛽

)
+

(
�̃� ∧ 𝜓 + �̃� ∧ 𝜓

)
+

(
Ψ̃ ∧ �̃� + Ψ̃ ∧ �̃�

)]
,

17



P
o
S
(
C
O
R
F
U
2
0
2
3
)
3
1
1

On Formulating the Non-Geometric Scalar Potentials George K. Leontaris

where the so-called tilde fluxes for 𝜒, 𝜓 and Ψ𝛼 are defined as below,

�̃� = −
(
SΣΔ𝜒Δ + SΣ

Δ𝜒
Δ
)
AΣ +

(
SΣ

Δ𝜒Δ + SΣΔ𝜒
Δ
)
BΣ, (70)

𝜓 = −
(
SΣΔ𝜓Δ + SΣ

Δ𝜓
Δ
)
AΣ +

(
SΣ

Δ𝜓Δ + SΣΔ𝜓
Δ
)
BΣ,

Ψ̃𝛼 = −
(
SΣΔΨ𝛼

Δ + SΣ
ΔΨ

𝛼Δ
)
AΣ +

(
SΣ

ΔΨ𝛼
Δ + SΣΔΨ

𝛼Δ
)
BΣ

and using (40) and (43) the S matrices are defined as

SΛΔ =

(
MΛ

Σ LΣΔ +MΛΣ LΣ
Δ
)
, (71)

SΛ
Δ = −

(
MΛ

Σ LΣ
Δ +MΛΣ LΣΔ

)
+ 𝛿ΛΔ,

S Δ
Λ =

(
MΛΣ LΣΔ +MΛ

Σ LΣ
Δ
)
− 𝛿ΛΔ ,

SΛΔ = −
(
MΛΣ LΣ

Δ +MΛ
Σ LΣΔ

)
.

In order to demonstrate the use of the mater formula in the symplectic proposal (68)-(69), we get
back to the toroidal type IIB model model based on T6/(Z2 × Z2) orientifold. As we have already
observed for the previous formulation using the metric of the toroidal orbifold, the symplectic
formulation (65) also leads to a total of 76276 terms while being expressed in terms of the usual
fluxes, however this number reduces to 10888 terms when the total scalar potential is expressed in
terms of the axionic-fluxes (60), subsequently leading to the numerics about the number of terms
in each of the 36 pieces as presented in Table 1. As a particular case, several scenarios can be
considered by switching-off certain fluxes at a time. Moreover, in light of recovering the results
from our master formula (68)-(69), we have a clear splitting of 10888 terms in the following manner,

#
(
𝑉(O1∧∗O2 )

)
= 5576, #

(
𝑉(O1∧O2 )

)
= 5312. (72)

4. Summary and conclusions

In this work we presented a brief review about the various available formulations of non-geometric
scalar potential arising from the generalized flux superpotential. The basic starting point is the
four-dimensional type IIB flux superpotential which is induced by the standard three-form RR and
NS-NS fluxes (𝐹, 𝐻) resulting in a cubic polynomial in complex structure moduli along with a
linear dependence on the axio-dilaton modulus. A set of successive applications of S/T-dualities
lead to the U-dual completion of the flux superpotential which has a cubic dependence for the
complex structure moduli as well as the Kähler moduli, in addition to having a linear dependence
on the axio-dilaton. We discussed multiple methods of arriving at the same 𝑁 = 1 four-dimensional
scalar potentials generated by the generalized flux superpotentials. These methods are:

• Method 1: This is the direct method of computing the scalar potential using the 𝑁 = 1
formula (2) for a given generic form of Kähler potential 𝐾 and the superpotenial𝑊 .

• Method 2: In this method the scalar potential is calculated using the metric of the internal
sixfold background. For the same reason this method is applicable for the cases where the
metric of the compactified space is known, e.g. the case of toroidal models.
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• Method 3: The notion of non-geometric fluxes has been motivated by the toroidal setup,
and in order to understand/promote the idea to cases like Calabi Yau compactifications, one
has to understand the insights of the effective scalar potential without the need of using the
internal metric. For this purpose, the role of symplectic geometries gets very crucial [45, 48]
and it turns out that the scalar potential can be equivalently expressed in terms of symplectic
ingredients. We presented the master formula (68) which is generically applicable to such
cases.

• Method 4: After writing all the relevant quantities in terms of symplectic ingredients (68),
one finds that although the formulation is quite generic and compact, making attempts for
phenomenology or addressing any model building issues is still hard. This is because of the
fact that the required symplectic quantities are implicit in terms of moduli dependence and
it is hard to make direct use of symplectic understanding at the level of scalar potential for
the search of physical vacua. In this regard, a particular type IIB setting with the absence
of prime fluxes has been studied in [13, 62] which have been extended for the most generic
case recently in [67]. These formulations are such that one can directly read-off the scalar
potentials by using the topological data of the compactifying CY and its mirror threefold, and
we hope that it can be useful for search physics vacua, including the de-Sitter ones in the vast
landscape of the non-geometric fluxes.

The main aim of formulating the scalar potential in various equivalent forms is to write down the
same in a compact and concise way which can be useful and easy-to-handle for the phenomenological
purposes such as moduli stabilization and the search for de-Sitter vacua [106].
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