PoS - Proceedings of Science
Volume 466 - The 41st International Symposium on Lattice Field Theory (LATTICE2024) - Algorithms and Artificial Intelligence
Stochastic normalizing flows for Effective String Theory.
M. Caselle, E. Cellini* and A. Nada
Full text: pdf
Pre-published on: January 08, 2025
Published on:
Abstract
Effective String Theory (EST) is a powerful tool used to study confinement in pure gauge theories by modeling the confining flux tube connecting a static quark-anti-quark pair as a thin vibrating string. Recently, flow-based samplers have been applied as an efficient numerical method to study EST regularized on the lattice, opening the route to study observables previously inaccessible to standard analytical methods. Flow-based samplers are a class of algorithms based on Normalizing Flows (NFs), deep generative models recently proposed as a promising alternative to traditional Markov Chain Monte Carlo methods in lattice field theory calculations. By combining NF layers with out-of-equilibrium stochastic updates, we obtain Stochastic Normalizing Flows (SNFs), a scalable class of machine learning algorithms that can be explained in terms of stochastic thermodynamics. In this contribution, we outline EST and SNFs, and report some numerical results for the shape of the flux tube.
DOI: https://doi.org/10.22323/1.466.0027
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.