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We present our preliminary results on the machine learning estimation of Tr 𝑀−𝑛 from other
observables with the gradient boosting decision tree regression, where 𝑀 is the Dirac operator.
Ordinarily, Tr 𝑀−𝑛 is obtained by linear CG solver for stochastic sources which needs considerable
computational cost. Hence, we explore the possibility of cost reduction on the trace estimation by
the adoption of gradient boosting decision tree algorithm. We also discuss effects of bias and its
correction.
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ID 𝐿3 × 𝑇 𝛽 𝜅 𝑐SW 𝑁conf

0 163 × 4 1.60 0.13575 2.065 5500
1 163 × 4 1.60 0.13580 2.065 5500
2 163 × 4 1.60 0.13585 2.065 5500

Table 1: Data used in this paper. These data are originally produced for Ref. [8]. Note that the first phase
transition is observed in the ID-1 (the row with bold text).

1. Introduction

For Lattice QCD calculations on observables such as cumulants of the chiral order parameter,
the trace of operators (Tr𝑂) is often necessary where 𝑂 represents an observable such as 𝑂 = 𝑀−1,
inverse Dirac operator. Here, the trace of operator is often estimated with a stochastic source method
[1]. Since 𝑀 = (𝐷̸ + 𝑚0), the Dirac operator, is a large sparse matrix on the lattice, its inverse
matrix obtained by a linear CG solver requires a considerable computational cost.

In this paper, we present our preliminary result on machine learning estimation of Tr 𝑀−𝑛

from other observables such as Tr 𝑀−𝑚 (𝑚 < 𝑛). As input observables, we also use plaquette and
Polyakov loop obtained when generating gauge configurations with the hybrid Monte Carlo (HMC)
algorithm [2–4]. Here, we use the gradient boosting decision tree regression method [5], based
on the methodology of Yoon et al. [6]. Note that recently, a machine learning mapping between
Tr 𝑀−1 at different quark masses and gradient flow times was studied in the similar way [7].

For this preliminary analysis, we use the data originally produced for Ref. [8] where Oakforest-
PACS system [9] and BQCD program [10] are used. In this data, we use 𝑁 𝑓 = 4 Wilson clover
action [11] and Iwasaki gauge action [12, 13] as explained in Ref. [8]. The data used in this
work are given in Table 1. We choose 3 datasets which have the same lattice size of 163 × 4, the
lattice coupling constant 𝛽 = 1.60, the clover coefficient 𝑐SW = 2.065 and the number of gauge
configurations 𝑁conf = 5500 but different 𝜅 values. Especially, at the ID-1 in Table 1, a first phase
transition is observed.

2. Analysis detail

Our notation and convention used in this work are summarized in Table 2. For the machine
learning (ML) estimation, we perform the following two steps:

1. We train a model 𝑓 (𝑋) using the data in the 𝑆𝑋TR and 𝑆𝑌TR.

2. We input 𝑋 ∈ 𝑆𝑋UL into the model 𝑓 (𝑋) and obtain ML estimation 𝑓 (𝑋) = 𝑌𝑃 ≈ 𝑌 .

Note that only 𝑍 ∈ 𝑆𝑍LB ⊂ 𝑆𝑍 (𝑍 = 𝑋,𝑌 ) can be used for the model training, which means that
there may exist any kind of unwanted fluctuations or weird bias due to the partial data usage, in
principle. Therefore, using the methodology given in Ref. [6], we do not use all 𝑆𝑍LB for the model
training but use only 𝑆𝑍TR ⊂ 𝑆𝑍LB, the training set. We use remaining 𝑆𝑍BC = 𝑆𝑍LB \ 𝑆𝑍TR for the bias
correction. Then we calculate following two estimations:

𝑌P1 =
1

𝑁UL

∑︁
𝑌𝑖∈𝑆𝑌UL

𝑌𝑃
𝑖 + 1

𝑁BC

∑︁
𝑌𝑗 ∈𝑆𝑌BC

(
𝑌 𝑗 − 𝑌𝑃

𝑗

)
, (1)
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Symbol Description

𝑋 , 𝑌 observables used as input (𝑋) and output (𝑌 ) (e.g., 𝑋 = Tr 𝑀−1, 𝑌 = Tr 𝑀−2)
𝑆𝑍 the total dataset of 𝑍 = 𝑋,𝑌 where 𝑆𝑍 = 𝑆𝑍LB ∪ 𝑆𝑍UL

𝑆𝑍LB the labeled set of 𝑍 = 𝑋,𝑌 where 𝑆𝑍LB = 𝑆𝑍TR ∪ 𝑆𝑍BC

𝑆𝑍TR the training set of 𝑍 = 𝑋,𝑌

𝑆𝑍BC the bias correction set of 𝑍 = 𝑋,𝑌

𝑆𝑍UL the unlabeled set of 𝑍 = 𝑋,𝑌

𝑁 the number of elements of 𝑆𝑍 where 𝑁 =
��𝑆𝑋�� = ��𝑆𝑌 ��

𝑁LB the number of elements of 𝑆𝑍LB where 𝑁LB =
��𝑆𝑋LB

�� = ��𝑆𝑌LB
��

𝑁TR the number of elements of 𝑆𝑍TR where 𝑁TR =
��𝑆𝑋TR

�� = ��𝑆𝑌TR
��

𝑁BC the number of elements of 𝑆𝑍BC where 𝑁BC =
��𝑆𝑋BC

�� = ��𝑆𝑌BC
��

𝑁UL the number of elements of 𝑆𝑍UL where 𝑁UL =
��𝑆𝑋UL

�� = ��𝑆𝑌UL
��

𝑓 (𝑋) the model trained with 𝑆𝑋TR and 𝑆𝑌TR

𝑌𝑃 the machine learning estimation on 𝑌

Table 2: Notation and convention used in this paper for the explanation of our work.

𝑌P2 =
𝑁UL
𝑁

𝑌P1 +
𝑁LB
𝑁

𝑌(LB) where 𝑁 = 𝑁LB + 𝑁UL , 𝑌(LB) =
1

𝑁LB

∑︁
𝑌𝑘∈𝑆𝑌LB

𝑌𝑘 . (2)

Here,𝑌P1 in Eq. (1) is the statistical average on𝑌𝑃 with the bias correction. To improve the statistical
precision, we further introduce 𝑌P2 in Eq. (2), the weighted average of 𝑌P1 and the original CG
results in the labeled set,𝑌(LB) . To obtain statistical errors, we use the bootstrap resampling method
with 𝑁BS = 10, 000 where 𝑁BS represents the number of bootstrap resamples.

For the ML estimation on 𝑌 using 𝑋 , the strong correlation between 𝑋 and 𝑌 is often required.
In the Fig. 1, we report the correlation between Tr 𝑀−𝑛 (𝑛 = 1, 2, 3, 4), plaquette and Polyakov
loop from two datasets: ID-0 (the heaviest quark) and ID-2 (the lightest quark). The red (yellow)
color represents strong (weak) correlation between observables. Note that we need to be careful
with 𝑌 = Tr 𝑀−4 case, due to the weak correlation with other observables such as 𝑋 = Tr 𝑀−𝑚

(𝑚 = 1, 2, 3), 𝑋 = Plaquette and 𝑋 = Polyakov loop. Except for it, we observe strong correlations in
most cases. Hence, using the overall tendency of strong correlation, we perform the ML estimation.
We also check the results for 𝑌 = Tr 𝑀−4 and compare it with the other analysis results for
𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2, 3).

For the economic efficiency of the ML estimation, that is, to reduce the computational cost
from the linear CG solver, we should use the least possible 𝑆𝑍LB (𝑍 = 𝑋,𝑌 ). Here, note that we need
to use 𝑌 as well as 𝑌𝑃 for the bias correction. This means that we should grant sufficient statistics
to the 𝑆𝑍BC among the 𝑆𝑍LB. In summary, we monitor the following two factors in this work:

1. We find out minimal RLB ≡ 𝑁LB
𝑁

where 𝑁 = 𝑁LB + 𝑁UL and RLB = 5, 10, · · · , 50%.

2. We find out maximal RTR ≡ 𝑁TR
𝑁LB

where 𝑁LB = 𝑁TR + 𝑁BC and RTR = 10, 20, · · · , 90%.
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(a) 𝜅 = 0.13575, ID-0 (the heaviest quark)
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(b) 𝜅 = 0.13585, ID-2 (the lightest quark)

Figure 1: Correlation between physical observables.

Here, we also monitor RTR = 0% (𝑆𝑍TR = ∅ for 𝑍 = 𝑋,𝑌 ) to check that 𝑆𝑌LB itself approaches to the
true answer along the increase of RLB, that is, we do not perform ML estimation at RTR = 0% but
observe only the statistical average and error of the 𝑆𝑌LB. We also monitor RTR = 100% (𝑆𝑍BC = ∅)
to check what happens when we do not use the bias correction method in the ML estimation.

For the ML estimation of 𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2, 3, 4), we use the gradient boosting decision
tree regression method [5]. To be specific, we use LightGBM [14] framework via JuliaAI/MLJ.jl
[15]. We use 40 boosting stages of depth-3 trees with learning rate of 0.1 and sub-sampling of 0.7.

To check the usefulness of this method, we compare the ML estimation, {𝑌Q , 𝜎Q} (Q = P1,P2),
with the original CG result, {𝑌Orig, 𝜎Orig}. We prepare following two evaluation criteria (EC-x).

EC-1 We check whether statistical average of ML estimation and original CG results are close to
each other or not.

(a) If both of𝑌Orig and𝑌Q agree with 1𝜎 level each other, then we grant score 2. (Fig. 2(a))

(b) If only one of them is included in the other’s 1𝜎 error, then we grant score 1. (Fig. 2(b))

(c) If 𝑌Orig and 𝑌Q do not agree with 1𝜎 level each other, then we grant score 0. (Fig. 2(c))

(a) Score 2 (b) Score 1 (c) Score 0

Figure 2: Histograms on the three possible cases can be occurred where blue (red) histogram represents
original CG result (ML estimation). Here, data for 𝑋 = Tr 𝑀−1 and 𝑌 = Tr 𝑀−2 are used. Vertical solid
(dotted) lines represent statistical averages (1𝜎 errors).

4
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(a) Result of EC-1 (b) Result of EC-2

Figure 3: Results on (a) EC-1 and (b) EC-2 of P2 estimation using (𝑋 , 𝑌 ) = (Plaquette , Tr 𝑀−3) for ID-0
dataset where the heaviest quark is used. White, orange, red color of (a) represents score 2, 1, 0, respectively.
Here, the magnitude of R𝜎 (Eq. (3)) in (b) is represented using the color of rainbow. For example, if R𝜎 ≈ 7
for certain point, then we observe purple-like color there.{

R
≳
LB,R

≲
TR
}

Plaquette Polyakov loop Tr 𝑀−1 Tr 𝑀−2 Tr 𝑀−3

Tr 𝑀−1 {40, 50} {40, 40}
Tr 𝑀−2 {30, 40} {35, 30} {30, 40}
Tr 𝑀−3 {30, 40} {40, 40} {35, 40} {25, 70}
Tr 𝑀−4 {45, 40} {45, 40} {45, 40} {35, 40} {25, 40}

Table 3: Results on
{
R

≳
LB,R

≲
TR

}
of P2 estimation for ID-0 dataset where the heaviest quark is used. Here,

the column and row represent the 𝑋 (input) and𝑌 (output), respectively. For example,
{
R

≳
LB,R

≲
TR

}
= {30, 40}

represents that ML estimation got consistent score 2 at EC-1 and showedR𝜎 ≤ 1.2 at EC-2 in theRLB ≳ 30%
and RTR ≲ 40% region.

EC-2 We check whether

R𝜎 ≡ 𝜎Q
𝜎Orig

≈ 1 , (3)

that is, the statistical error of ML estimation, 𝜎Q , is close to that of original CG result, 𝜎Orig,
or not. Currently, we are finding unambiguous explicit criterion for this. In this paper, we use
R𝜎 ≤ 1.2 which is tentatively determined empirically, monitoring our preliminary results.

Therefore, if an ML estimation got score 2 at the EC-1 and turned out that R𝜎 ≈ 1 (tentatively
R𝜎 ≤ 1.2 in this paper) at the EC-2, then this ML estimation can be thought that it imitates its
original CG result as well as possible.

3. Results

Here we show our preliminary results on the ML estimation of 𝑌 = Tr 𝑀−𝑛. Note that we use
single 𝑋 for the ML estimation of 𝑌 in this analysis. As examples, we show results on EC-1 and

5
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(a) Result of EC-1 (b) Result of EC-2

Figure 4: Results on (a) EC-1 and (b) EC-2 of P2 estimation using (𝑋 , 𝑌 ) = (Plaquette , Tr 𝑀−3) for ID-2
dataset where the lightest quark is used. We use same notation as in Fig. 3.{

R
≳
LB,R

≲
TR
}

Plaquette Polyakov loop Tr 𝑀−1 Tr 𝑀−2 Tr 𝑀−3

Tr 𝑀−1 {30, 40} {35, 30}
Tr 𝑀−2 {40, 80} {40, 40} {30, 50}
Tr 𝑀−3 N.A. N.A. N.A. N.A.
Tr 𝑀−4 N.A. N.A. N.A. N.A. N.A.

Table 4: Results on
{
R

≳
LB,R

≲
TR

}
of P2 estimation for ID-2 dataset where the lightest quark is used. We use

same notation as in Table 3. Here, “N.A.” means that we cannot find consistent good region for EC-1 and
EC-2.

EC-2 using (𝑋 , 𝑌 ) = (Plaquette , Tr 𝑀−3) for ID-0 dataset (Fig. 3), ID-1 dataset (Fig. 5), and
ID-2 dataset (Fig. 4).

We report our results on ID-0 dataset where the heaviest quark is used in the measurement.
In Fig. 3(a), we observe that we obtain score 2 consistently in the region of RLB ≳ 30% and
RTR ≲ 50% (EC-1). In Fig. 3(b), we observe that we obtain R𝜎 ≤ 1.2 in the region of RLB ≳ 30%
and RTR ≲ 40% (EC-2). As we can see from RTR = 100% column (𝑆𝑍BC = ∅ for 𝑍 = 𝑋,𝑌 ) of
Fig. 3(a), we need RLB ≳ 35%, slightly larger RLB than those of 𝑆𝑍BC ≠ ∅ case.

In Table 3, we report our analysis on all possible cases with single input (𝑋) and output (𝑌 )
for ID-0 dataset. We found that the ML estimation on 𝑌 = Tr 𝑀−𝑛 works well for RLB ≳ 40%
even when we use 𝑋 = Plaquette and 𝑋 = Polyakov loop. We also found that the ML estimation
on 𝑌 = Tr 𝑀−4 needs more ratio of labeled set (RLB) than 𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2, 3). However, we
need RLB ≳ 25% when (𝑋 , 𝑌 ) = (Tr 𝑀−2 , Tr 𝑀−3) and (𝑋 , 𝑌 ) = (Tr 𝑀−3 , Tr 𝑀−4).

Next, we report our results on ID-2 dataset where the lightest quark is used in the measurement.
We cannot find consistent score-2 region (EC-1) from Fig. 4(a). We also cannot find consistent
R𝜎 ≤ 1.2 region (EC-2) from Fig. 4(b). The ML estimation on 𝑌 = Tr 𝑀−3 using 𝑋 = Plaquette
does not work well for ID-2 dataset.

In Table 4, we report our analysis on all possible cases with single input (𝑋) and output (𝑌 )
for ID-2 dataset. We found that only the ML estimation on 𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2) works well for

6
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(a) Result of EC-1 (b) Result of EC-2

Figure 5: Results on (a) EC-1 and (b) EC-2 of P2 estimation using (𝑋 , 𝑌 ) = (Plaquette , Tr 𝑀−3) for ID-1
dataset where the first order phase transition observed. We use same notation as in Fig. 3.{

R
≳
LB,R

≲
TR
}

Plaquette Polyakov loop Tr 𝑀−1 Tr 𝑀−2 Tr 𝑀−3

Tr 𝑀−1 {10, 80} {10, 70}
Tr 𝑀−2 {10, 90} {10, 70} {10, 80}
Tr 𝑀−3 {10, 80} {10, 70} {10, 70} {10, 90}
Tr 𝑀−4 {40, 70} {40, 80} {40, 80} {40, 80} {40, 80}

Table 5: Results on
{
R

≳
LB,R

≲
TR

}
of P2 estimation for ID-1 dataset where the first order phase transition is

observed. We use same notation as in Table 3.

RLB ≳ 40%. The results on EC-1 and EC-2 for 𝑌 = Tr 𝑀−𝑛 (𝑛 = 3, 4) are all similar with Fig. 4.
Finally, we report our results on ID-1 dataset where the first order phase transition is observed.

In Fig. 5(a), we observe that we obtain score 2 consistently in the region of RLB ≳ 10% and
RTR ≲ 90% (EC-1). In Fig. 5(b), we observe that we obtain R𝜎 ≤ 1.2 in the region of RLB ≳ 10%
and RTR ≲ 80% (EC-2).

In Table 5, we report our analysis on all possible cases with single input (𝑋) and output (𝑌 )
for ID-1 dataset. We found that the ML estimation on 𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2, 3) works well for
RLB ≳ 10% even when we use 𝑋 = Plaquette and 𝑋 = Polyakov loop. On the other hand, the ML
estimation on 𝑌 = Tr 𝑀−4 needs more ratio of labeled set (RLB) than 𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2, 3), i.e.,
RLB ≳ 40%.

4. Summary and to-do list

We performed preliminary analysis on ML estimation on 𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2, 3, 4) using
𝑋 = Tr 𝑀−𝑚 (𝑚 < 𝑛), 𝑋 = Plaquette and 𝑋 = Polyakov loop. Here, we used the gradient boosting
decision tree regression method [5].

With the heaviest quark (ID-0 dataset), we observed that the ML estimation of 𝑌 = Tr 𝑀−𝑛

(𝑛 = 1, 2, 3) showed consistently good results at RLB ≳ 40% where 𝑌 = Tr 𝑀−4 required slightly
more RLB than 𝑛 = 1, 2, 3 cases. With the lightest quark (ID-2 dataset), we observed that only the

7
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ML estimation of 𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2) works well at RLB ≳ 40%. On the other hand, the ID-1
dataset where the first order phase transition is observed, we observed that the ML estimation of
𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2, 3) showed consistently good results at RLB ≳ 10%. However, 𝑌 = Tr 𝑀−4

still required RLB ≳ 40% even in this dataset.
In this preliminary result with three datasets, we observed that ML estimation of 𝑌 = Tr 𝑀−𝑛

works well with heavier quark mass. Especially, we observed that the ML estimation of𝑌 = Tr 𝑀−𝑛

works quite well when the first order phase transition is observed at the dataset. However, the quality
of 𝑌 = Tr 𝑀−4 estimation is not good comparing with 𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2, 3). To get better
𝑌 = Tr 𝑀−4 estimation, we need to use 𝑋 = Tr 𝑀−3, for example (except for ID-2 dataset where
the lightest quark is used).

In this paper, we used single input (𝑋) for the ML estimation of 𝑌 = Tr 𝑀−𝑛 (𝑛 = 1, 2, 3, 4).
We need to check whether we get better results when we use multiple inputs: for example, we use
𝑋 = {Plaquette ,Tr 𝑀−1} for the ML estimation of 𝑌 = Tr 𝑀−4. This work is in progress.

We need to check whether we can obtain reliable cumulants of chiral order parameters such as
susceptibility, skewness, kurtosis [8] using ML estimation. This work is also in progress.

Acknowledgments

The work of A. T. was partially supported by JSPS KAKENHI Grant Numbers 20K14479,
22H05111 and 22K03539. A. T. and H. O. were partially supported by JSPS KAKENHI Grant Num-
ber 22H05112. This work was partially supported by MEXT as “Program for Promoting Researches
on the Supercomputer Fugaku” (Grant Number JPMXP1020230411, JPMXP1020230409).

References

[1] S.-J. Dong and K.-F. Liu, Stochastic estimation with Z(2) noise, Phys. Lett. B 328 (1994) 130
[hep-lat/9308015].

[2] S. Duane and J.B. Kogut, Hybrid Stochastic Differential Equations Applied to Quantum
Chromodynamics, Phys. Rev. Lett. 55 (1985) 2774.

[3] S. Duane and J.B. Kogut, The Theory of Hybrid Stochastic Algorithms, Nucl. Phys. B 275
(1986) 398.

[4] S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B
195 (1987) 216.

[5] J.H. Friedman, Greedy function approximation: A gradient boosting machine., The Annals
of Statistics 29 (2001) 1189 .

[6] B. Yoon, T. Bhattacharya and R. Gupta, Machine Learning Estimators for Lattice QCD
Observables, Phys. Rev. D 100 (2019) 014504 [1807.05971].

[7] J. Kim, G. Pederiva and A. Shindler, Machine learning mapping of lattice correlated data,
Phys. Lett. B 856 (2024) 138894 [2402.07450].

8

https://doi.org/10.1016/0370-2693(94)90440-5
https://arxiv.org/abs/hep-lat/9308015
https://doi.org/10.1103/PhysRevLett.55.2774
https://doi.org/10.1016/0550-3213(86)90606-1
https://doi.org/10.1016/0550-3213(86)90606-1
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1103/PhysRevD.100.014504
https://arxiv.org/abs/1807.05971
https://doi.org/10.1016/j.physletb.2024.138894
https://doi.org/10.1016/j.physletb.2024.138894
https://arxiv.org/abs/2402.07450


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
3
3

Trace estimation with gradient boosting decision tree regression Benjamin J. Choi

[8] H. Ohno, Y. Kuramashi, Y. Nakamura and S. Takeda, Continuum extrapolation of the critical
endpoint in 4-flavor QCD with Wilson-Clover fermions, PoS LATTICE2018 (2018) 174
[1812.01318].

[9] T. Boku, K.-I. Ishikawa, Y. Kuramashi and L. Meadows, Mixed Precision Solver Scalable to
16000 MPI Processes for Lattice Quantum Chromodynamics Simulations on the
Oakforest-PACS System, in 5th International Workshop on Legacy HPC Application
Migration: International Symposium on Computing and Networking, 9, 2017 [1709.08785].

[10] Y. Nakamura and H. Stuben, BQCD - Berlin quantum chromodynamics program, PoS
LATTICE2010 (2010) 040 [1011.0199].

[11] B. Sheikholeslami and R. Wohlert, Improved Continuum Limit Lattice Action for QCD with
Wilson Fermions, Nucl. Phys. B 259 (1985) 572.

[12] Y. Iwasaki, Renormalization group analysis of lattice theories and improved lattice action:
Two-dimensional non-linear O(N) sigma model, Nucl. Phys. B 258 (1985) 141.

[13] Y. Iwasaki, Renormalization Group Analysis of Lattice Theories and Improved Lattice
Action. II. Four-dimensional non-Abelian SU(N) gauge model, 1111.7054.

[14] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma et al., LightGBM: A highly efficient
gradient boosting decision tree, Advances in Neural Information Processing Systems 30
(2017) .

[15] A.D. Blaom, F. Kiraly, T. Lienart, Y. Simillides, D. Arenas and S.J. Vollmer, MLJ: A julia
package for composable machine learning, Journal of Open Source Software 5 (2020) 2704.

9

https://doi.org/10.22323/1.334.0174
https://arxiv.org/abs/1812.01318
https://arxiv.org/abs/1709.08785
https://doi.org/10.22323/1.105.0040
https://doi.org/10.22323/1.105.0040
https://arxiv.org/abs/1011.0199
https://doi.org/10.1016/0550-3213(85)90002-1
https://doi.org/10.1016/0550-3213(85)90606-6
https://arxiv.org/abs/1111.7054
https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://doi.org/10.21105/joss.02704

	Introduction
	Analysis detail
	Results
	Summary and to-do list

