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1. Introduction

The method of normalizing flows (NF) is a generative approach for sampling from complex
probability distributions. The samples are generated by applying a series of invertible transforma-
tions to samples drawn from a simpler, prior distribution. In the area of lattice field theory, this
method has been applied to several models, including gauge theories; see, e.g., Refs. [1–4].

In this work, we apply NF on the Wilson’s discretization of the SU(3) gauge theory. We
construct gauge-equivariant transformations by applying singular value decomposition (SVD) to
the sum of adjacent staples of each link. By imposing gauge-equivariance, the NF transformation
becomes aligned with the structure of the underlying theory, consequently improving the training.

As the prior, we use SU(3) links generated uniformly with respect to the Haar measure. We
expect the model to achieve higher efficiency if the prior resembles the target distribution. To address
this, we also apply the transformations to an alternative prior inspired by trivializing maps [5]. A
trivializing map is itself a continuous normalizing flow (CNF), which provides a natural bridge
between simpler priors and more complex ones.

Here, we first briefly discuss trivializing maps and apply their leading-order approximation to
the SU(3) gauge theory with the Wilson action on a 44 lattice at 𝛽 = 1. We then propose how to
use SVD to construct gauge-equivariant normalizing flows for SU(𝑁) gauge links with a focus on
SU(3). We construct an SVD-based representative model, train it and its variants—including two
different priors—and discuss their training efficiency.

2. Trivializing maps and Wilson flow

A CNF consists of infinitesimal transformations and is described as an ordinary differential
equation with respect to a fictitious flow time 𝑡. With a similar premise, Ref. [5] introduces the
method of trivializing maps for gauge theories as:

𝑑

𝑑𝑡
𝑉𝑡 = 𝑓 (𝑉𝑡 , 𝑡)𝑉𝑡 . (1)

Here, 𝑉𝑡 at 𝑡 = 0 and 𝑡 = 1 represents SU(𝑁) link variables corresponding to the prior and target
distributions, respectively1. For the Wilson gauge action,

𝑆W [𝑈] = − 𝛽

2𝑁C

∑︁
𝑥∈Λ

∑︁
𝜇≠𝜈

Tr 𝑈𝜇 (𝑥)𝑈𝜈 (𝑥 + �̂�)𝑈†
𝜇 (𝑥 + �̂�)𝑈†

𝜈 (𝑥) , (2)

the leading-term trivializing map coincides with the Wilson flow up to an overall scaling factor:

𝑑

𝑑𝑡
𝑉𝑡 = − 𝑁C

2(𝑁C 2 − 1)
𝛽

2𝑁C
P {𝑉𝑡Γ𝑡 } 𝑉𝑡 , (3)

where Γ𝑡 is the sum of adjacent staples, and P is a projection operator to the anti-hermitian traceless
space. The Jacobian of the transformation 𝑉 (0) → 𝑉 (𝑡) reads

log 𝐽 (𝑡) = −
∫ 𝑡

0
𝑑𝜏 𝑆W [𝑉𝜏] . (4)

1In Ref. [5], the flow is in the reverse direction of the convention adopted here.
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Figure 1: Evolution of SU(3) gauge links due to the (scaled) Wilson flow (3).

Figure 1 illustrates the flow applied to one configuration of SU(3) gauge links on a 44 lattice
with 𝛽 = 1. The initial links at 𝑡 = 0 are uniformly drawn with the Haar measure. The left panel of
Fig. 1 shows the evolution of the Wilson gauge action, labeled as − log(𝑝), along with the negative
log-Jacobian of the transformation. The Wilson gauge action decreases monotonically, while the
negative log-Jacobian increases as the fictitious time increases. As shown in the right panel, the
sum of these two quantities reaches its minimum value at 𝑡 ≈ 1. This sum corresponds to the
Kullback-Leibler (KL) divergence, as discussed below.

The flow in equation (3) does not involve any trainable parameters. The flow from 𝑡 = 0 to
𝑡 = 1 transforms the uniform prior distribution of SU(3) gauge links into a distribution that more
closely resembles the target distribution, with 𝑝 ∝ 𝑒−𝑆W . In principle, higher-order terms can be
included in the trivializing map to further improve the similarity between the output of the flow and
the target distribution, as discussed in Refs. [4, 5]. However, in this work, we do not consider such
higher-order terms. Instead, we use the flow to transform the prior distribution before feeding it to
NF-based models that we introduce below. In fact, the Wilson flow serves a dual purpose in this
work: as a benchmark for evaluating the efficiency of our normalizing flow models and as a tool for
creating a prior distribution that resembles the target.

3. Normalizing flows for gauge theories and gauge equivariance

Let us briefly highlight the essential components of the normalizing flows method. Three
key elements are required: a prior distribution to draw initial samples, an invertible map with
trainable parameters to transform the samples, and an action that defines the target distribution
as 𝑝 ∝ 𝑒−𝑆 . The NF model is then trained by minimizing the Kullback-Leibler (KL) divergence
between the probability density function (PDF) of the transformed samples, denoted by 𝑞, and the
target distribution 𝑝:

𝐷KL(𝑞 ∥ 𝑝) ≡
∫

𝑑𝑈 𝑞(𝑈) log
𝑞(𝑈)
𝑝(𝑈) ≥ 0. (5)

Note that the lower limit of the integral may shift if 𝑝 and/or 𝑞 are known only up to an overall
normalization constant. Figure 2 illustrates the training process, which employs a self-learning
method for optimizing the parameters.

In the context of gauge theories, the prior distribution of gauge links is typically chosen to be
uniform with respect to the Haar measure. Since both the prior and target distributions inherently
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Figure 2: Block diagram for the method of normalizing flows. 𝑉𝜇 (𝑥) and𝑈𝜇 (𝑥) are the prior and transformed
fields, and 𝑟 (𝑉) and 𝑞(𝑈) are the corresponding probability densities. See Ref. [6] for more information.

respect gauge symmetry, it is natural to employ gauge-equivariant transformations. By explicitly
incorporating gauge symmetry into these transformations, the model no longer needs to learn this
symmetry, resulting in a more efficient training process. Additionally, this approach eliminates the
risk of introducing unintended gauge fixing in the training process.

A transformation is gauge-equivariant if it commutes with gauge transformations, thereby
ensuring that gauge symmetry is preserved. One approach to construct such transformations is to
work with gauge-invariant quantities. To this end, one can start by identifying the gauge-invariant
quantities associated with the link variables. These quantities are then transformed, while the
gauge-dependent components remain unchanged. Finally, the link variables are updated using the
transformed gauge-invariant quantities and the frozen gauge-dependent components. To provide an
example, we briefly review the gauge symmetry in the Wilson action for SU(𝑁C) gauge theory and
discuss the associated gauge-invariant quantities.

The Wilson action in equation (2) is invariant under the following class of local transformations:

𝑈𝜇 (𝑥) → 𝑄(𝑥)𝑈𝜇 (𝑥)𝑄†(𝑥 + �̂�), (6)

where 𝑄(𝑥) is an arbitrary SU(𝑁) matrix at each site of the lattice. The action depends on the links
through the trace of the plaquette Wilson loops,

𝑃𝜇𝜈 (𝑥) = 𝑈𝜇 (𝑥)𝑈𝜈 (𝑥 + �̂�)𝑈†
𝜇 (𝑥 + �̂�)𝑈†

𝜈 (𝑥). (7)

More specifically, the action depends on the eigenvalues of 𝑃𝜇𝜈 (𝑥), which are gauge invariant.
Reference [1] uses these eigenvalues to construct (plaquette-based) spectral flows.

The steps of a plaquette-based spectral flow for transforming the link variables 𝑈𝜇 (𝑥) are as
follows. First, among all the plaquette Wilson loops containing 𝑈𝜇 (𝑥), one is chosen and labeled
as 𝑃𝜇𝜈 (𝑥). Then, the eigenvalues of 𝑃𝜇𝜈 (𝑥) are transformed to new values. Next, the updated
plaquette Wilson loop, 𝑃′

𝜇𝜈 (𝑥), is constructed using the updated eigenvalues and the unchanged
eigenvectors. Finally, 𝑈𝜇 (𝑥) is updated as

𝑈′
𝜇 (𝑥) = 𝑃′

𝜇𝜈 (𝑥)𝑃†
𝜇𝜈 (𝑥)𝑈𝜇 (𝑥). (8)

To ensure the invertibility of the transformations, coupling layers are used with a masking pattern
that divides all plaquette Wilson loops into frozen, active, and passive ones.
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In the plaquette-based spectral flow described above, the link variable 𝑈𝜇 (𝑥) is updated based
on only one of the adjacent plaquette Wilson loops. However, when𝑈𝜇 (𝑥) is updated, it (passively)
affects other adjacent plaquette Wilson loops too. To avoid this passive updating, we propose a new
method that updates the link variable 𝑈𝜇 (𝑥) based on all adjacent plaquette Wilson loops.

By summing all the plaquette Wilson loops involving a designated link 𝑈𝜇 (𝑥), we express the
Wilson action as

𝑆W [𝑈] = − 𝛽

𝑁C
ReTr

[
𝑈𝜇 (𝑥)Γ𝜇 (𝑥)

]
+ rest , (9)

Γ𝜇 (𝑥) =
∑︁
𝜈≠𝜇

{
𝑈𝜈 (𝑥 + �̂�)𝑈†

𝜇 (𝑥 + �̂�)𝑈†
𝜈 (𝑥) −𝑈†

𝜈 (𝑥 + �̂� − �̂�)𝑈†
𝜇 (𝑥 − �̂�)𝑈𝜈 (𝑥 − �̂�)

}
(10)

where Γ𝜇 (𝑥) is the sum of all staples corresponding to𝑈𝜇 (𝑥), and “rest” contains for all other terms
independent of 𝑈𝜇 (𝑥). We now apply singular value decomposition (SVD) to express Γ𝜇 (𝑥) as

Γ𝜇 (𝑥) = 𝑊𝜇 (𝑥)𝑆𝜇 (𝑥)𝑉†
𝜇 (𝑥) , (11)

where 𝑆 is the diagonal matrix of singular values, and𝑊 and𝑉 are unitary matrices.2 It turns out that
the singular values are gauge invariant. Starting from the fact that under the gauge transformations
(6), Γ𝜇 (𝑥) transforms as

Γ𝜇 (𝑥) → 𝑄(𝑥 + �̂�)Γ𝜇 (𝑥)𝑄†(𝑥) , (12)

we conclude that the components of the SVD transform as

𝑊𝜇 (𝑥) → 𝑄(𝑥 + �̂�)𝑊𝜇 (𝑥) , (13)
𝑆𝜇 (𝑥) → 𝑆𝜇 (𝑥) , (14)
𝑉𝜇 (𝑥) → 𝑉𝜇 (𝑥)𝑄†(𝑥) . (15)

Taking these transformations into account, we now perform a change of variables as

�̃�𝜇 (𝑥) = 𝑉†
𝜇 (𝑥)𝑈𝜇 (𝑥)𝑊𝜇 (𝑥)𝑒−𝑖𝜙𝜇 (𝑥 ) , (16)

where 𝑒𝑖𝜙𝜇 (𝑥 ) is a phase factor introduced to ensure that the transformed link �̃�𝜇 (𝑥) remains special
unitary, just like 𝑈𝜇 (𝑥). One can easily verify that the transformed link �̃�𝜇 (𝑥) is invariant under
any gauge transformations.

Using the transformed link, we first express the Wilson gauge action as

𝑆W [𝑈] = − 𝛽

𝑁C
ReTr

[
�̃�𝜇 (𝑥)𝑆𝜇 (𝑥)𝑒𝑖𝜙𝜇 (𝑥 ) ] + rest . (17)

Next, we perform the eigenvalue decomposition of the transformed link, and rewrite the action as

𝑆W [𝑈] = − 𝛽

𝑁C
ReTr

[
Ω𝜇 (𝑥)Λ𝜇 (𝑥)Ω†

𝜇 (𝑥)𝑆𝜇 (𝑥)𝑒𝑖𝜙𝜇 (𝑥 ) ] + rest . (18)

The building blocks in equation (18) are completely gauge invariant.3 Thus, any transformation of
these components is gauge-equivariant. We proceed by transforming both the spectral and modal

2Note that 𝑊 and 𝑉 are not unique; for example, they can always be multiplied by a common overall phase factor.
3Note that the modal matrixΩ𝜇 (𝑥) is not unique unless one fixes the algorithm used for the eigenvalue decomposition.
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matrices, namely Λ and Ω to Λ′ and Ω′, as discussed below. Afterward, we construct the updated
values of �̃�𝜇 (𝑥) and 𝑈𝜇 (𝑥) as

�̃�′
𝜇 (𝑥) = 𝑄′

𝜇 (𝑥)Λ′
𝜇 (𝑥)𝑄′†

𝜇 (𝑥), (19)
𝑈′

𝜇 (𝑥) = 𝑉𝜇 (𝑥)�̃�′
𝜇 (𝑥)𝑊†

𝜇 (𝑥)𝑒𝑖𝜙𝜇 (𝑥 ) . (20)

The advantage of this method, compared to the plaquette-based spectral flow described above, is that
we update the link variables by incorporating information from all adjacent plaquettes. Moreover,
we use masks that divide all plaquette Wilson loops into active and frozen ones — there are no
passive loops.

For SU(2) gauge theories, the proposed decomposition is particularly convenient because the
phase 𝜙𝜇 (𝑥) vanishes, the matrix of singular values is proportional to the identity matrix, and the
spectral matrix of the transformed link becomes a diagonal matrix consisting of a phase factor and
its conjugate:

𝑆𝜇 (𝑥) = 𝜎𝜇 (𝑥)
(

1 0
0 1

)
, Λ𝜇 (𝑥) =

(
𝑒𝑖 𝜃𝜇 (𝑥 ) 0

0 𝑒−𝑖 𝜃𝜇 (𝑥 )

)
. (21)

Putting things together, the SU(2) Wilson action reads

𝑆W [𝑈]
���
SU(2)

= − 𝛽

𝑁C
𝜎𝜇 (𝑥) cos(𝜃𝜇 (𝑥)) + rest . (22)

For SU(3) gauge theories, we use the following parametrization of the spectral matrix [7]:

Λ𝜇 (𝑥) =
©«
𝑒𝑖 𝜃𝑠1 0 0

0 𝑒𝑖 𝜃𝑠2 0
0 0 𝑒𝑖 𝜃𝑠3

ª®®¬ , 𝑠𝑘 =
2
√

3
sin

(
𝜑 + 2𝜋

3
𝑘

)
, (𝑠1 + 𝑠2 + 𝑠3 = 0).

The parametrization of the eigenvalues in terms of (𝜃, 𝜑) is not unique. The left panel of Fig. 3 shows
the principal cell of this parametrization, where the vertical and horizontal axes represent 𝜃 and 𝜑,
respectively. The middle panel displays several equivalent cells separated by dotted white lines. In
the right panel, the vertical axis is replaced by 𝜃 cos(𝜑), making the principal cell rectangular. The
color coding in the middle and right panels indicates the conjugacy volume of the eigenvalues.

We parameterize the eigenvalues of SU(3) matrices as
(
𝑒𝑖 𝜃1 , 𝑒𝑖 𝜃2 , 𝑒𝑖 𝜃3

)
, where 𝑒𝑖 𝜃𝑘 , 𝑘 = 1, 2, 3,

are the three eigenvalues, −𝜋 ≤ 𝜃𝑘 < 𝜋 and 𝜃1 ≤ 𝜃2 ≤ 𝜃3. The sum of these phases can be either 0,
−2𝜋, or 2𝜋. In the second and third cases, we adjust the phases by adding 2𝜋 and −2𝜋 to the first and
last phases, respectively. As a consequence of these adjustments, the sum of the phases is always 0.
We sort these phases and label them as (𝑥, 𝑦, 𝑧). Next, we identify (𝑥, 𝑦, 𝑧) with (𝜃𝑠1, 𝜃𝑠2, 𝜃𝑠3) and
map (𝑥, 𝑦, 𝑧) to (𝜃, 𝜑) using

𝜃 cos(𝜑) = 𝑧 − 𝑥 , tan(𝜑) = 𝑦

𝑧 − 𝑥
. (23)

We then employ rational quadratic splines (RQS) [8–10] to transform 𝜃 cos(𝜑) and tan(𝜑). This
leads to the transformation of the spectral matrix Λ𝜇 (𝑥) to Λ′

𝜇 (𝑥). In our implementation, the
transformations depend on the singular values too. Furthermore, we transform the modal matrix;
the details of this transformation will be discussed in the follow-ups to this work.
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Figure 3: Left panel shows the principal cell of the parametrization introduced in Eq. (23). Middle and right
panels show more cells and conjugacy volume as a color coding. The dotted white lines separate different
cells.

4. Simulation results for SU(3) gauge theory

The SVD-based transformation introduced above can be executed efficiently in parallel by
employing a mask that ensures the invertibility of the transformation. For each direction 𝜇, we
transform the gauge link variable 𝑈𝜇 (𝑥) at all sites 𝑥 in two sequential steps: updating the even
sites followed by the odd sites. Consequently, each transformation block that operates on all link
variables is composed of 2𝑑 sub-blocks on a 𝑑-dimensional lattice. As a basic representative model,
we construct one transformation block for a four-dimensional lattice, containing 1288 parameters.

We now discuss the training of our SVD-based models. For training, we use the path-gradient
estimator [11] to compute the derivative of the KL divergence. Training is restricted to 2000 epochs
with a batch size of 64. To measure training efficiency, we use the effective sample size (ESS):

ESS =

(
E𝑞

𝑝 [𝑈]
𝑞 [𝑈]

)2
/

E𝑞

(
𝑝 [𝑈]
𝑞 [𝑈]

)2
. (24)

Figure 4 shows the evolution of the ESS for three SU(3) models on a 44 lattice with 𝛽 = 1. For
comparison, the leading-order trivializing map is shown with a dashed line. This map has no
trainable parameters, and its ESS is approximately 1/2. The training progress for our SVD-based
representative model with 1288 parameters is shown with red points. The model’s ESS matches
the reference point after about 500 epochs and surpasses it as training progresses. Cascading
two such blocks creates a larger model, generally outperforming the initial model (green points).
Additionally, we trained a model combining the leading-order trivializing map with one block layer.
As shown by magenta points, this combination improves efficiency in terms of training epochs.

Our investigations show that our SVD-based representative models train significantly better in
four dimensions than a plaquette-based spectral flow with a similar number of parameters. In fact,
we could not train any of such models to yield ESS of order 0.1 or larger (with number of parameters
of size of a few thousands). In contrast, in two dimensions, the latter generally exhibits slightly
better performance. This difference can be attributed to the distinct dynamics of how these models
update the link variables based on the plaquette Wilson loops. Specifically, in the plaquette-based
spectral flows, 2𝑑 − 3 plaquettes are passively updated for each link. While only one plaquette per
link needs to be updated in two dimensions, it increases to five in four dimensions, reducing the
competitiveness of the plaquette-based spectral flows relative to the SVD-based approach.

7
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Figure 4: The ESS, as defined in Eq. (24), as a function of the epoch number is shown for various models
applied to a lattice of size 44 using the Wilson action for SU(3) gauge links with 𝛽 = 1. The ESS values
are measured every 10 epochs, with batch sizes set to 16364, 8192, 1024, and 8192 for the models labeled
as “Triv Map”, “NF:1”, “NF:1+1”, and “Triv Map + NF:1”, respectively. The larger fluctuations in the
“NF:1+1” data points (green circles) are due to the smaller batch size used in that case. This plot can be
directly compared to Fig. 6 in [12].

5. Summary and concluding remarks

In this work, we investigated the application of normalizing flows to generate lattice gauge con-
figurations, with a particular focus on the SU(3) Wilson action. By introducing a novel SVD-based
approach to construct gauge-equivariant transformations, we addressed the challenge of preserving
gauge symmetry directly within the transformation process while incorporating information from
all plaquette Wilson loops sharing the same link variables. Our representative model demonstrated
the effectiveness of this approach for four-dimensional lattices, as reflected in the training process.

In the representative model, we employed element-wise maps to update the transformed links
�̃�𝜇 (𝑥). To further enhance efficiency, future work could explore more complex transformations,
such as coupling layers [6, 13–15], which enable richer dependencies across sites.

In conclusion, the proposed SVD-based approach provides a promising framework for improv-
ing lattice gauge theory simulations through neural network-based methods. Incorporating gauge
symmetry directly into transformations not only simplifies training but also ensures consistent sym-
metry preservation from prior to target distribution, eliminating unintended gauge fixing. Future
directions include deploying heavier neural network architectures, as well as investigating larger
volumes and more complex systems.
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