Constraints on the Dirac spectrum from chiral symmetry restoration and the fate of $\mathrm{U}(1)_A$ symmetry
Pre-published on:
December 05, 2024
Published on:
—
Abstract
I discuss chiral symmetry restoration in the chiral limit $m\to 0$ of QCD with two light quark flavours of mass $m$, focussing on its consequences for scalar and pseudoscalar susceptibilities, and on the resulting constraints on the Dirac spectrum. I show that $\mathrm{U}(1)_A$ symmetry remains broken in the $\mathrm{SU}(2)_A$ symmetric phase if the spectral density $\rho(\lambda;m)$ develops a singular near-zero peak, tending to $O(m^4)/\lambda$ in the chiral limit. Moreover, $\mathrm{SU}(2)_A$ restoration requires that the number of modes in the peak be proportional to the topological susceptibility, indicating that such a peak must be of topological origin.
DOI: https://doi.org/10.22323/1.466.0188
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.