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Fourier Accelerated HMC in the 𝑆𝑈 (𝑁) × 𝑆𝑈 (𝑁) Principal Chiral Model Brian Pendleton

1. Introduction

In lattice simulations, critical slowing down refers to the significant increase in run time required to
obtain results as the lattice spacing, 𝑎, is reduced. This phenomenon arises because our algorithms
generate Monte Carlo configurations which become highly correlated in the 𝑎 → 0 limit. In
practice, the degree of autocorrelation in the configurations is measured through the integrated
autocorrelation time (IAT), 𝜏𝐼 𝐴𝑇 , which can be interpreted as the number of configurations between
independent samples. In the case of Hybrid Monte Carlo (HMC) [1], critical slowing down emerges
because the algorithm treats both long- and short-wavelength modes equally. The short wavelength
modes evolve faster in the simulation and set a strict upper limit on the integration step size for
accurate integration. This means the more physical long wavelength modes, which evolve more
slowly, barely evolve in each molecular dynamics step, resulting in highly correlated configurations.

Consider a free theory, the equations of motion lead to the dispersion relation 𝜔2(𝑝) = 𝑝2 + 𝑚2

[2], which shows that modes with higher (shorter) momentum (wavelength) evolve faster than those
with lower (longer) ones. Generally, the maximum integration step size 𝑑𝑡 is inversely proportional
to the maximum possible frequency [2]. Therefore, the number of steps required for the mode with
the lowest momentum to complete a whole cycle is given by:

𝑇

𝑑𝑡
=
𝜔(𝑝𝑚𝑎𝑥)
𝜔(𝑝𝑚𝑖𝑛)

=

√︄
𝑝2
𝑚𝑎𝑥 + 𝑚2

𝑝2
𝑚𝑖𝑛

+ 𝑚2
(1)

Critical slowing down occurs when this ratio diverges as 𝑎 → 0 as more modes are included in the
simulation. One possible way to circumvent this issue is Fourier Acceleration (FA), in which the
dynamics are modified such that the slow modes are accelerated and the fast ones are slowed down
by adding a momentum-dependent "mass" to the system. Ideally, this would make the evolution
speed of the modes independent of the momentum. To achieve this, the Hamiltonian is modified by
introducing the inverse kernel of the action in the distribution of the momenta.

Returning to the free theory, this modification yields a new dispersion relation of 𝜔2(𝑝) = 𝑝2+𝑚2

𝑝2+𝑀2

[2] where 𝑀 is a tunable parameter included in the kernel introduced in the momenta distribution.
Choosing 𝑀 = 𝑚 makes the evolution rate independent of the mode’s momentum, completely
avoiding critical slowing down. While being exemplified through the free theory, the idea of
modifying the dynamics of the system to change the evolution rates of the different modes can,
in principle, be applied to asymptotically free theories (like QCD) [3–5] in which the problematic
high momentum modes enter the simulation as asymptotically free modes.

2. The SU(N) x SU(N) Principal Chiral Model

In the continuum, the 2D 𝑆𝑈 (𝑁) × 𝑆𝑈 (𝑁) model is defined via the Euclidean Lagrangian:

L =
1
𝑇

Tr 𝜕𝜇𝑈𝜕𝜇𝑈† 𝑈 ∈ 𝑆𝑈 (𝑁) (2)

On the lattice, the model is defined via the action:

𝑆 = −𝛽𝑁
∑︁
𝑥,𝜇>0

Tr{𝑈†
𝑥𝑈𝑥+𝜇 +𝑈†

𝑥+𝜇𝑈𝑥} 𝛽 =
1
𝑁𝑇

(3)
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This model shares properties with QCD such as asymptotic freedom and dynamical mass generation.
Still, it only possesses a 𝑆𝑈 (𝑁) × 𝑆𝑈 (𝑁) global symmetry and is not locally gauge invariant.
Furthermore, it is possible to obtain analytical predictions using the Bethe ansatz to calculate the
exact solution [6]. By studying the effect of Fourier acceleration in this model, we aim to establish
a foundation for investigating more complex theories and, ultimately, QCD.

2.1 HMC & Fourier Acceleration in the Principal Chiral Model

The field elements𝑈𝑥 belong to the 𝑆𝑈 (𝑁) group and hence they can be expressed as:

𝑈𝑥 = exp{𝑖𝛼𝑎
𝑥𝜆𝑎} (4)

Where 𝜆𝑎 are a generalization of the Gell-Mann matrices. We define the canonical momentum 𝜋𝑎

conjugate to the 𝛼𝑎
𝑥 and we choose:

𝐻 =
1
2

∑︁
𝑥

𝜋𝑎𝑥𝜋
𝑎
𝑥 + 𝑆 (5)

The equations of motion are:
¤𝑈𝑥 = 𝑖𝜋𝑥𝑈𝑥 𝜋𝑥 = 𝜋𝑎𝑥𝜆𝑎 (6)

¤𝜋𝑥 = −2𝑖𝛽𝑁

∑︁
𝜇>0

( (
𝑈𝑥+𝜇 +𝑈𝑥−𝜇

)
𝑈†

𝑥 − ℎ.𝑐
)
− 1
𝑁

Tr{...}𝐼
 (7)

The Leapfrog discretisations are:

𝜋𝑥

(
𝑡 + 𝑑𝑡

2

)
= 𝜋𝑥

(
𝑡 − 𝑑𝑡

2

)
+ 𝑑𝑡 ¤𝜋𝑥 (𝑡) 𝑈𝑥 (𝑡 + 𝑑𝑡) = exp

{
𝑖𝜋𝑥

(
𝑡 + 𝑑𝑡

2

)
𝑑𝑡

}
𝑈𝑥 (𝑡) (8)

In order to implement FA we introduce the inverse kernel of the action in the canonical momentum
distribution, that is:

𝐻𝐹𝐴 =
1
2

∑︁
𝑥,𝑦

𝜋𝑥𝐾
−1
𝑥,𝑦 (𝑀)𝜋𝑦 + 𝑆 𝑆 = 𝛽𝑁

∑︁
𝑥,𝑦

Re Tr{𝑈†
𝑥𝐾𝑥,𝑦 (0)𝑈𝑦} (9)

In Fourier space the kernel is diagonal, simplifying its inversion. The Fourier transform and its
inverse on an 𝐿𝐷 lattice are defined as

𝑓 (𝑘) = F [ 𝑓 (𝑥)]𝑘 =
∑︁
𝑥

𝑓 (𝑥) exp
{
−2𝜋𝑖

𝑘 · 𝑥
𝐿

}
(10)

𝑓 (𝑥) = 1
𝐿𝐷

F −1 [ 𝑓 (𝑘)]𝑥 =
∑︁
𝑘

𝑓 (𝑘) exp
{
2𝜋𝑖

𝑘 · 𝑥
𝐿

}
(11)

The inverted kernel in Fourier space is given by:

�̃�−1
𝑘,𝑘′ (𝑀) = 𝛿𝑘,𝑘′

1∑
𝜇 4 sin2

(
𝜋𝑘𝜇

𝐿

)
+ 𝑀2

(12)

This modification leaves the momentum’s time evolution unchanged but complicates the equation
for the field. In discrete time this becomes:

𝑈𝑥 (𝑡 + 𝑑𝑡) = exp
{
𝑖F −1

[
�̃�−1
𝑘 (𝑀)�̃�𝑘

(
𝑡 + 𝑑𝑡

2

)]
𝑥

𝑑𝑡

}
𝑈𝑥 (𝑡) (13)

For details on the implementation of HMC and FA in this theory see [7].
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3. Results

3.1 Acceleration

To assess the algorithm’s efficiency relative to traditional HMC, we measured the IAT of the model’s
susceptibility, a long-wavelength observable prone to critical slowdown. Following [8, 9], the IAT
and its error were calculated for 𝑁 = 2, 3, 4, 6 at various correlation lengths using both FA and
traditional HMC. The data were fitted to the ansatz 𝜏𝐼 𝐴𝑇 = 𝑏𝜉𝑧 , where 𝑧 is the dynamical critical
exponent and 𝜉 = 1

𝑚0𝑎
is the system’s correlation length (inverse of the lightest mass). This ansatz

captures the correct behaviour for the IAT for sufficiently large correlation lengths and it was found
to describe the data well. The acceleration mass parameter 𝑀 was chosen to be 𝑀 = 𝜉−1 for each
point, this was found to yield a near to optimal acceleration rate using Eq. (14) to compare different
runs. Details of 𝜉 calculations for each 𝛽-value are provided in Section 3.2. To ensure consistency,
only runs with acceptance rates near 0.7 were included. Results are shown in Fig. 1, with red and
blue points representing HMC and FA HMC measurements, respectively.

(a) 𝑆𝑈 (2) (b) 𝑆𝑈 (3)

(c) 𝑆𝑈 (4) (d) 𝑆𝑈 (6)

Figure 1: The plots show the autocorrelation time 𝜏𝐼 𝐴𝑇 as a function of the correlation length for several
𝑆𝑈 (𝑁) in HMC and FA HMC.

The reduction in the critical exponent 𝑧 demonstrates that FA HMC outperforms traditional HMC,
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though it does not fully eliminate critical slowing down. For 𝑁 = 3, 4, 6, with correlation lengths
up to 10, FA achieved a tenfold speedup. For 𝑁 = 2, the final three data points from [7] align
well with our extrapolated results, and suggest a two-orders-of-magnitude improvement at larger
correlation lengths. Notably, our 𝑧 = 0.24 ± 0.03 for the 𝑆𝑈 (3) model is significantly lower than
𝑧 = 0.45 ± 0.02 reported in [10] using Multigrid Monte Carlo, highlighting FA HMC’s success
when compared to other methods used to reduce autocorrelations. However, FA HMC’s relative
advantage over HMC decreases with increasing 𝑁 , possibly due to the larger group space at higher
𝑁 .

Fourier acceleration introduces a more complex molecular dynamics evolution of the field and
conjugate momentum. Ensuring that the IAT’s reduction compensates for any potential increase in
the algorithm’s runtime is crucial. To measure this, we define the cost of a sampling algorithm as:

Cost =
Computer Time

Nº Effective Configurations
=

Computer Time
Nº Configurations

𝜏𝐼 𝐴𝑇 (14)

The plots in Fig. 2 show the traditional HMC and FA HMC cost ratio for various 𝜉 and N values. We
followed a similar procedure to the one outlined above (acceptance ≈ 70%) to select the points used
for the fit to the ansatz with the additional criteria of only showing the points in which 𝐿 ≳ 8.5𝜉 (to
reduce finite volume effects). The results confirm that FA HMC outperforms HMC, achieving an
order of magnitude speed-up for moderate 𝜉 ∼ 10 even when accounting for run-time. Once more,
the advantage of FA HMC diminishes as 𝑁 increases.

(a) 𝑆𝑈 (2) (b) 𝑆𝑈 (3) (c) 𝑆𝑈 (6)

Figure 2: Cost ratio as a function of the correlation length for several 𝑆𝑈 (𝑁).

3.2 Mass Spectrum

The extraction of the correlation length 𝜉 for a given 𝛽 is crucial to study the variation the 𝜏𝐼 𝐴𝑇 as a
function of 𝜉. To extract the mass of the lightest state (inverse of correlation length) in lattice units
we make use of (zero momentum) two-point functions:

𝐶𝑤𝑤 (𝑡) =
1
𝑉

〈 ∑︁
𝑥,𝑦,𝜏

2 Re Tr(𝑈𝑥,𝜏𝑈
†
𝑦,𝜏+𝑡 )

〉
=
∑︁
𝑖

𝐴𝑖 cosh
(
𝑚𝑖

(
𝑡 − 𝐿

2

))
(15)

which, given the periodic boundary conditions, is expected to have a spectral decomposition given by
the second equality of Eq. (15) where the lowest energy state dominates as long as the measurements

5
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are taken at large enough time. This provides a reliable method to extract the lightest mass 𝑚0. To
determine 𝑚0, we used the effective mass 𝑚𝑒 𝑓 𝑓 :

𝑚𝑒 𝑓 𝑓 (𝑡) = cosh−1
(
𝐶𝑤𝑤 (𝑡 + 1) + 𝐶𝑤𝑤 (𝑡 − 1)

2𝐶𝑤𝑤 (𝑡)

)
(16)

The effective mass was fitted to a constant (𝑚0) using a version of the Akaike Information Criterion
(AIC) model averaging procedure [11] to mitigate the bias in selecting the fitting region. This
approach assigned weights to fits based on their chi-squared values and the extent of their fitting
ranges. Correlation lengths were determined for 𝑁 = 2, 3, 4, 6, 9 across several beta-values, showing
good agreement with literature results [12] but with much smaller error bars. Below, we present
findings for SU(3).

𝛽 L 𝜉 𝜉 Ref [12]

0.29 82 8.02(2) 8.08(13)
0.3 90 10.44(2) 10.48(12)

0.315 120 15.42(3) 15.8(4)

Table 1: Correlation Length values obtained for the SU(3) model.

The exact solution in the continuum [6] predicts only one bound state for 𝑆𝑈 (2), implying a constant
𝑚𝑒 𝑓 𝑓 even at short time separations. However, significant deviations from this behaviour were found
in the 𝑆𝑈 (2) results at short times. Since the continuum model does not contain excited states,
the physical interpretation of this contamination is less clear. Nevertheless, a careful examination
of this phenomenon revealed that it is likely a lattice artifact as the physical distance over which it
occurs shrinks to zero in the continuum limit.

This analysis can be extended to excited energy levels in the spectrum by replacing the field𝑈 with
an operator 𝑂 in the definition of 𝐶𝑤𝑤 , which overlaps strongly with the state of interest. Then,
the modified two-point correlation function will present (ideally) only that state in the spectral
decomposition (allowing for contamination from excited states). The relevant operators for this
theory are given in [12], with the first excited state operator being:

𝑂𝑎𝑏𝑐𝑑 = 𝑈𝑎𝑏𝑈𝑐𝑑 −𝑈𝑎𝑑𝑈𝑐𝑏 (17)

We extracted the first excited state mass for 𝑁 = 3, 4, 6. Here, we present the ratio of the lightest
state to the first excited state for 𝑁 = 4 alongside the continuum prediction. The ratio approaches
the continuum value as 𝛽 increases and the results agree with [12] with smaller error bars.

𝛽 L 𝑚1
𝑚0

0.225 24 1.509(7)
0.29 82 1.439(5)
0.31 100 1.421(9)

Continuum
√

2 ≈ 1.41421356

Table 2: Ratio between the ground state mass 𝑚0 and the first excited state mass 𝑚1 for the 𝑆𝑈 (4) model.
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3.3 Asymptotic Scaling

To study rigorously how the continuum limit is approached in this theory and to test how well it
is approached in our simulation we look at the lattice beta function, which is expanded in a power
series in 𝑇 :

𝛽𝐿 (𝑇) ≡ − 𝜕𝑇

𝜕 ln 𝑎
= −𝛽0𝑇

2 − 𝛽1𝑇
3 + O(𝑇4) 𝛽0 =

𝑁

8𝜋
𝛽1 =

𝑁2

128𝜋2 (18)

The parameters 𝛽0, 𝛽1 are determined by two-loop perturbation theory [12]. Integrating Eq. (18)
yields the two-loop relation between 𝑎 and 𝑇 :

𝑎Λ𝐿,2𝑙 =

√︂
8𝜋
𝑁𝑇

exp
{
− 8𝜋
𝑁𝑇

}
(19)

where Λ𝐿,2𝑙 is an integration constant (Λ−parameter). Eq. (19) implies that the continuum limit
is obtained by taking 𝛽 → ∞, which is the lattice version of asymptotic freedom. It is possible to
test how well the continuum limit is approached by ensuring the ratio between physical masses and
the Λ-parameter remains constant (asymptotic scaling). Using the Bethe ansatz solution, the exact
ratio between physical masses and the Λ-parameter in the 𝑀𝑆 scheme can be calculated, and it also
allows for determining the ratio between the Λ-parameters in the lattice and 𝑀𝑆 schemes [6]:

𝑚0
Λ𝐿

=

√︂
256𝑁2

𝑒𝜋
sin

( 𝜋
𝑁

)
exp

{
𝜋
𝑁2 − 2
2𝑁2

}
(20)

Hence, we can test the prediction of Eq. (20), and therefore asymptotic freedom, by inspecting
the ratio 𝑚0

Λ𝐿,2𝑙
= 1

𝜉

√︁
8𝜋𝛽 exp{−8𝜋𝛽} to confirm that it converges to the correct value as 𝛽 → ∞.

Our results for several values of 𝑁 are shown in Fig. 3 (blue points). These results show a
significant overshoot in the𝑚0 over Λ𝐿 ratio caused by a dip in the 𝛽 function, which becomes more
pronounced as 𝑁 increases. This feature occurs in the same region where the model’s heat capacity
peaks (which seems to become singular as 𝑁 → ∞, indicating a phase transition), [13] suggesting
a connection between the two phenomena. In [12], the energy scheme is introduced to fill the dip
in the 𝛽-function. The coupling 𝑇 is redefined in terms of the energy density 𝑒:

𝑒(𝛽) = 1 + 1
2𝐷𝑉𝑁2

〈
𝑆

𝛽

〉
𝑇𝐸 (𝛽) =

8𝑁
𝑁2 − 1

𝑒(𝛽) 𝛽𝐸 =
1

𝑁𝑇𝐸 (𝛽)
(21)

The same expression is obtained for the Λ-parameter in this scheme up to two loops (Λ𝐸,2𝑙). To
test asymptotic scaling in this scheme, we look at the ratio defined by:

𝑚0
Λ𝐿,2𝑙

����
𝐸

≡ 1
𝜉𝑎Λ𝐸,2𝑙

Λ𝐸

Λ𝐿

(22)

This ratio converges to the same constant given in Eq. (20) and the results are shown in Fig. 3 (red
points). The energy scheme’s success over the regular scheme is evident for 𝑁 = 4, 6, 9 and appears
to improve with increasing 𝑁 . We also include the three-loop calculation of the ratio in the regular
scheme (green points). Although these corrections improve the results, they are minor, indicating
that perturbation theory alone cannot explain the regular scheme’s failure or the energy scheme’s
success [12]. In contrast, for 𝑁 = 2, the energy scheme offers no improvement, consistent with [7].
Since this phenomenon is linked to the large 𝑁 limit (heat capacity becomes singular), the lack of
improvement for 𝑁 = 2 might arise from 𝑁 not being large enough to create a substantial problem.
Our results are consistent with [12], with FA allowing greater precision.
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(a) 𝑆𝑈 (2) (b) 𝑆𝑈 (4)

(c) 𝑆𝑈 (6) (d) 𝑆𝑈 (9)

Figure 3: The plots display the asymptotic scaling for various 𝑁 . Blue and green points represent the
Mass-to-Λ ratio in the regular scheme at two-loop and three-loop orders, respectively. Red points and the
dashed line correspond to the ratio in the energy scheme and the continuum prediction, respectively.

4. Summary & Outlook

We applied Fourier Acceleration to the 𝑆𝑈 (𝑁) × 𝑆𝑈 (𝑁) Chiral Model, demonstrating its ability to
mitigate critical slowing down and improve computational efficiency compared to HMC. However,
FA’s advantage diminishes as 𝑁 increases, likely due to the enlarged group space. Additionally, we
introduced a method for extracting the mass spectrum using the Akaike Information Criterion and
analyzed the model’s asymptotic scaling. Future work includes extending this approach to locally
gauge-invariant theories, such as ongoing studies on𝑈 (1) gauge theories. Additionally, optimizing
algorithm hyperparameters like the molecular dynamics trajectory length (currently fixed to one)
alongside the acceleration mass 𝑀 using our cost definition (Eq. (14)) could further enhance FA’s
acceleration rate, as explored in other models [14, 15].
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