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Taming the N3LO corrections to semileptonic 𝑏 → 𝑢 decay Matteo Fael

1. Introduction

The decay 𝐵 → 𝑋𝑠𝛾 is a pivotal probe of new physics beyond the Standard Model (SM). Thus,
it is essential to measure it with the highest accuracy and to provide precise predictions in the SM.
The width of inclusive 𝐵 decays has a strong sensitivity the value of 𝑚𝑏, the bottom quark mass,
since it depends on the fifth power of 𝑚𝑏. In order to reduce the uncertainty on it, Gambino and
Misiak proposed in [1] to express the rate of 𝐵 → 𝑋𝑠𝛾 in terms of the CKM favoured semileptonic
Br(𝐵 → 𝑋𝑐𝑙 �̄�𝑙). Normalising the rare 𝐵 decay to the semileptonic width, i.e.

Br(𝐵 → 𝑋𝑠𝛾)𝐸𝛾>𝐸0 = 𝜏𝐵 Γ(𝐵 → 𝑋𝑐𝑙 �̄�𝑙)
Γ(𝐵 → 𝑋𝑠𝛾)𝐸𝛾>𝐸0

Γ(𝐵 → 𝑋𝑐𝑙 �̄�𝑙)
, (1)

is also advantageous because the ratio between 𝐵 → 𝑋𝑠𝛾 and 𝐵 → 𝑋𝑐𝑙 �̄�𝑙 depends on the CKM
factor |𝑉★

𝑡𝑠𝑉𝑡𝑏 |2
|𝑉𝑐𝑏 |2

≃ [1+𝜆2 (2�̄�−1)+𝑂 (𝜆4 ) ] |𝑉𝑐𝑏 |2
|𝑉𝑐𝑏 |2

= (0.965 ± 0.001) known to permill level. In Eq. (1),
the ratio on the r.h.s. is calculated within the heavy quark expansion (HQE) by making a double
expansion in the strong coupling constant 𝛼𝑠 and inverse power of 𝑚𝑏. However, the r.h.s. has a
considerable dependence on the charm quark mass entering already at tree level in Γ(𝐵 → 𝑋𝑐𝑙 �̄�𝑙).
For 𝐵 → 𝑋𝑠𝛾, the charm mass dependence arises at two loops from the interference between the
four-quark operators (𝑄1 and 𝑄2) and the electromagnetic dipole operator (𝑄7) in the Δ𝐵 = Δ𝑆 = 1
effective Hamiltonian.

Therefore, to normalise the rate of 𝐵 → 𝑋𝑠𝛾 one can write instead

Br(𝐵 → 𝑋𝑠𝛾)𝐸𝛾>𝐸0 =
𝜏𝐵 Γ(𝐵 → 𝑋𝑐𝑙 �̄�𝑙)

𝐶

Γ(𝐵 → 𝑋𝑠𝛾)𝐸𝛾>𝐸0

|𝑉𝑐𝑏 |2/|𝑉𝑢𝑏 |2Γ(𝐵 → 𝑋𝑢𝑙 �̄�𝑙)
(2)

where the phase-space ratio 𝐶 is given by

𝐶 =

����𝑉𝑢𝑏𝑉𝑐𝑏

����2 Γ(𝐵 → 𝑋𝑐𝑙 �̄�𝑙)
Γ(𝐵 → 𝑋𝑢𝑙 �̄�𝑙)

. (3)

In Eq. (2) the width of 𝐵 → 𝑋𝑠𝛾 is normalized to the charmless semileptonic decay. The charm
mass dependence is now clearly separated between the perturbative matrix elements of 𝑏 → 𝑋𝑠𝛾,
which is a two-loop effect, and the normalization factor 𝐶 which is a tree-level effect. The ratio 𝐶

can be calculated using the HQE.
The most precise theory prediction for 𝐵 → 𝑋𝑠𝛾 from Refs. [2, 3] has an uncertainty of 5%

and is given by

B(𝐵 → 𝑋𝑠𝛾)
���
𝐸𝛾>1.6 GeV

= (3.40 ± 0.17) × 10−4 , (4)

where the updates from Ref. [4] are taken into account. The decay 𝐵 → 𝑋𝑠𝛾 is to leading order in
the 1/𝑚𝑏 expansion given by the decay of a free quark 𝑏 → 𝑋𝑠𝛾. The prediction in Eq. (4) includes
next-to-next-to-leading order (NNLO) QCD corrections. However, for charm mass dependence,
only an interpolation from a large charm quark mass [5, 6] to a massless charm quark [3] is
available, which is responsible for 3% of the uncertainty cited in Eq. (4). The remaining theoretical
uncertainties are due to unknown higher-order corrections (3%) and other input in the heavy quark
expansion (2.5%), like the quark masses and the non perturbative parameters.
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Recently, there has been significant progress towards completing the NNLO prediction for
𝐵 → 𝑋𝑠𝛾 with exact dependence on the charm mass [4, 7, 8]. For an update of the SM prediction
for 𝐵 → 𝑋𝑠𝛾, it would therefore be desirable to determine the normalization factor 𝐶 in Eq. (2)
one order higher in 𝛼𝑠 w.r.t. Γ(𝐵 → 𝑋𝑠𝛾), i.e. including corrections up to next-to-next-to-next-to-
leading order (N3LO) at partonic level. The total rate of 𝐵 → 𝑋𝑐𝑙 �̄�𝑙 was calculated at N3LO in
Refs. [9, 10] (see also Ref. [11]) by performing an asymptotic expansion for 𝛿 = 1 − 𝑚𝑐/𝑚𝑏 with
𝛿 ≪ 1, i.e. the limit of equally heavy 𝑏 and 𝑐 quarks 𝑚𝑐 ≃ 𝑚𝑏. The expansion in 𝛿 exhibits a
fast convergence and allows to obtain accurate results for 𝑏 → 𝑐 decay at the physical value of the
charm mass.

In the free quark approximation the total rate of 𝑏 → 𝑢ℓ�̄�ℓ was calculated up to 𝑂 (𝛼2
𝑠) in

Refs. [12–14]. The third order correction was also assessed in Refs. [9, 10] by noticing that the
expansion in 𝛿 shows a good convergence even for the massless final-state quark, happening for
𝛿 → 1. The massless extrapolation allows to estimate Γ(𝐵 → 𝑋𝑢𝑙 �̄�𝑙) with a 10% uncertainty and
results in a systematic 1% uncertainty on Γ(𝐵 → 𝑋𝑢𝑙 �̄�𝑙).

In Ref. [15] it has been observed furthermore that Γ(𝐵 → 𝑋𝑐𝑙 �̄�𝑙) obtained from the asymptotic
expansion for 𝑚𝑐 ≃ 𝑚𝑏 neglects subprocesses where there are three charm quarks in the final
state like 𝑏 → 𝑐𝑐𝑐𝑙�̄�𝑙. Since this decay mode is allowed only for 𝑚𝑐/𝑚𝑏 < 1/3, the expansion
for 𝑚𝑐/𝑚𝑏 ≃ 1 does not include three-charm contributions. Although the branching ratio for
𝑏 → 𝑐𝑐𝑐𝑙�̄�𝑙 is below 10−7 for physical values of the charm mass and thus negligible, it exhibits
a logarithmic enhancement as 𝑚𝑐 → 0. Therefore, the validity of the extrapolation of to Γ(𝐵 →
𝑋𝑐𝑙 �̄�𝑙) computed in [9] to massless up quarks remains questionable.

All these considerations prompted a new calculation of the N3LO corrections to 𝐵 → 𝑋𝑢𝑙 �̄�𝑙

strictly with up quark mass set to zero. In the these proceeding, we review the calculation of
fermionic contributions (the subset of five-loop diagrams containing closed fermion loops) to the
total rate of 𝑏 → 𝑢ℓ�̄�ℓ at order 𝛼3

𝑠 presented in Ref. [16].

2. Technicalities

To extract the 𝑂 (𝛼3
𝑠) correction to the total rate, we compute the imaginary part of diagrams

like those shown in Fig. 1 up to five loops. They contain a neutrino, a charged lepton and an up
quark as internal particles, which are all considered massless. Only the bottom quark is massive
and we set 𝑚𝑏 = 1 for simplicity, so that Feynman integrals depend only on 𝜖 = (4 − 𝑑)/2. The
weak decay mediated by the 𝑊 boson is treated with an effective four-quark operator. We provide
results for the subset of gauge-invariant diagrams containing at least one closed fermion loop, with
massless (𝑢, 𝑑, 𝑠, 𝑐) or massive internal quarks [see e.g. Figs. 1(a) and 1(b)].

For our calculation we use a well-tested chain of programs which allows for a high degree
of automation. We us qgraf [17] for the generation of the amplitude and tapir [18] for the
translation to FORM [19] code and the identification of the underlying integral families. The
program exp [20, 21] performs the mapping of the amplitudes to the integral families and prepares
them for further processing with FORM. We express the complete amplitude, fermionic and bosonic
contributions, as linear combination of Feynman integrals belonging to 1, 21 and 107 integral
families at three, four and five loops, respectively.
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Figure 1: Five-loop diagrams contributing to the 𝛼3
𝑠 correction to 𝑏 → 𝑢𝑙�̄�𝑙 . Sample of fermionic (a,b)

and bosonic (c,d) contributions. Lepton and neutrino are shown with dashed lines, black and red solid lines
represent the bottom and up quark. The effective vertex is shown by a dot.

The IBP reduction of the integrals at five loops constitutes one of the major bottleneck in
the calculation. We use the IBP reduction program Kira [22, 23] together with the finite field
reconstruction library FireFly [24, 25]. At five loops the integral families contain up to 12
propagators and 8 irreducible numerators. Given that we need to reduce integrals in the top sector
up rank five, i.e. sum of negative indices equal to five, one encounters a rich combinatorics when
seeding the IBP vectors for the construction of IBP equations. In fact when seeding the lower
subsectors, the program Kira considers all possible seed integrals with negative indices distributed
in all possible ways across the non-positive indices. For subsectors with 10 to 15 non-positive
indices, the list of seed candidates grows factorially and leads to a huge RAM memory consumption
of several TBs when caching the IBP equations. In practice, with Kira 2.3 we are not able to
generate the system of IBP equations for the most complicated families.

In order to perform the IBP reduction, we reduce the number of loops by integrating out the
lepton-neutrino loop analytically. Each family contains a massless propagator-like one-loop integral
of the form∫

𝑑𝑑𝑝
𝑝𝜇1 . . . 𝑝𝜇𝑁

(−𝑝2) [−(𝑝 − 𝑞)2]
=

𝑖𝜋2−𝜖

(−𝑞2) 𝜖
×

[𝑁/2]∑︁
𝑖=0

𝑓 (𝜖, 𝑖, 𝑁)
(
𝑞2

2

) 𝑖
{[𝑔]𝑖 [𝑞]𝑁−2𝑖}𝜇1...𝜇𝑁 , (5)

where the function 𝑓 (𝜖, 𝑖, 𝑁) is product of Euler’s gamma functions (see e.g. [26]) and the symbol
{[𝑔]𝑖 [𝑞]𝑁−2𝑖}𝜇1...𝜇𝑁 stands for the tensor composed of 𝑖 metric tensors and 𝑁 −2𝑖 vectors 𝑞, totally
symmetric in its indices. We rewrite the original five-loop topologies into four-loop ones that have a
reduced number of indices: 14 instead of 20. Let us consider as an example the three-loop integral
family

𝐼 (𝑛1, . . . , 𝑛) =∫
𝑑𝑑𝑝𝑙

(2𝜋)𝑑
𝑑𝑑𝑞

(2𝜋)𝑑
𝑑𝑑𝑘

(2𝜋)𝑑
[(2𝑝𝑙 + 𝑞)2]−𝑛6 [(𝑘 + 𝑝𝑙)2]−𝑛7 [(𝑘 + 𝑝𝑙 + 𝑞)2]−𝑛8 [(𝑝 + 𝑝𝑙 + 𝑞)2]−𝑛9

[𝑝2
𝑙
]𝑛1 [(𝑝𝑙 + 𝑞)2]𝑛2 [𝑘2]𝑛3 [(𝑘 − 𝑝 + 𝑞)2]𝑛4 [(𝑝 − 𝑞)2]𝑛5

, (6)

where 𝑝 is the momentum of the external bottom quark with the on-shell condition 𝑝2 = 1. Using
Eq. (5) we can map each integral in the family 𝐼 with 9 indices onto a linear combination of elements
of the family

𝐽 (𝑛1, . . . , 𝑛5) =
∫

𝑑𝑑𝑞

(2𝜋)𝑑
𝑑𝑑𝑘

(2𝜋)𝑑
[(𝑘 + 𝑞)2]−𝑛5

[−𝑞2]𝑛1 [𝑘2]𝑛2 [(𝑘 − 𝑝 + 𝑞)2]𝑛3 [(𝑝 − 𝑞)2]𝑛4
(7)
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with only 5 indices. For instance

𝐼 (1, 1, 1, 1, 1, 0, 0, 0,−1) = Γ2(1 − 𝜖)Γ(𝜖)
2Γ(2 − 2𝜖)

[
𝐽 (𝜖 − 1, 1, 1, 1, 0) − 𝐽 (𝜖, 1, 1, 0, 0) + 3𝐽 (𝜖, 1, 1, 1, 0)

]
.

(8)
However the new integrals present a propagator raised to a symbolic power 𝑎0 = 𝜖 . Kira supports
reductions with symbolic powers via the option symbolic_ibp: [...]. The configuration file
integralfamilies.yaml for family 𝐽 would take the following form

integralfamilies:

- name: "J"

loop_momenta: [k,q]

top_level_sectors: [15]

propagators:

- [ "q", 0]

- [ "k", 0]

- [ "k + q - p", 0]

- [ "q - k", 0]

- [ "k + q", 0]

symbolic_ibp: [1]

where the last line tells Kira that the first propagator is raised to the power 𝑛1 + 𝑎0, where 𝑛1 is an
integer and 𝑎0 an auxiliary symbol. In our case we can replace 𝑎0 = 𝜖 to avoid performing the IBP
reduction with two variables.

An additional speed up of the IBP reduction is given by the identification of the subsectors
containing integrals without an imaginary part. Even if integrals in the top sector have by con-
struction an imaginary part, integrals belonging some of the subsectors can be real-valued since cut
propagators can get pinched (see the example in Fig. 2). To identify the sectors to retain during the
IBP reduction, we perform for each family a first reduction of seed integrals with at most two dots
and one scalar product. After identifying the nontrivial sectors, we study which sectors contain
integrals with a physical cut. Sectors whose integrals are real valued (see the examples on the
r.h.s. in Fig. 2) are excluded in Kira with the option zero_sectors: [...]. We observe that for
families with several massive propagators, the sector selection allows to discard up to 70% of the
nontrivial sectors, thus reducing the size of the IBP equation system.

By combining the two strategies aforementioned, we manage to perform the IBP reduction for
all integrals in the amplitude. We select master integrals in the four loop families so that no shift of
the symbolic propagator power is allowed. In this way we can convert the four-loop master integrals
back to five-loop master integrals with the help of Eq. (5).

For the fermionic contributions, the amplitude is reduced to 1369 master integrals with Kira,
which have in the worst case one scalar product, belonging to 48 different integral families. The
complete amplitude is reduced to 8845 master integrals which have up to two scalar products
belonging to 107 integral families. Our setup is cross checked with FIRE for ten integral families,
where we perform the reduction over a prime field and a fixed value of 𝑑 with FIRE6 [27].

To calculate the master integrals, we use the auxiliary mass flow method [28, 29] and its
implementation in the package AMFlow [30, 31]. The auxiliary mass flow method requires to

5
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Top sector

no cut

no cut

Figure 2: Example of five-loop Feynman integrals. Black and dashed lines represent massive and massless
propagators, respectively. The integral on the top left side belong to the top sector of the family and has a
physical cut (shown by the red dashed line). The integral on the bottom left belong to a subsector and has
also an imaginary part, so we retain its sector in the IBP reduction. The integrals shown on the top and
bottom right have no physical cut so their sectors can be discarded.

construct systems of differential equations with respect to the auxiliary mass 𝜂 which is introduced
into certain propagators. Even if the rank of the integrals to reduce is lower that the rank of the
integrals in the amplitude, the presence of the additional variable 𝜂 in the IBP reduction makes the
calculation of the differential equations difficult. In the end, we observe that the IBP reductions to
master integrals are more involved compared to the amplitude reduction since the additional scale
𝜂 increases the number of master integrals.

To simplify the problem, we implement in the framework of AMFlow our own interface to Kira.
With our interface we are able to map the five-loop families with the mass parameter 𝜂 to four-loop
topologies using Eq. (5), avoiding to introduce 𝜂 either in the electron or neutrino propagators. We
then perform the IBP reduction with Kira and convert the result back to five-loop families when
the IBP tables are returned to AMFlow. However at this stage, we need to consider all non-trivial
sectors, not only those which generate an imaginary part.

With our setup, we calculate the five-loop master integrals by requiring 40 digits of precision,
which is sufficient for phenomenological studies. We do not minimize the number of master integrals
using symmetries among integral families. Such procedure would mainly map subsectors with fewer
number of positive indices, leaving the top sectors of each family to large extend unmapped. The
evaluation of these top-sector integrals with AMFlow would require in any case the evaluation of all
master integrals belonging to the subsectors.

2.1 Results

We perform the renormalization of the bottom quark wave function and mass in the on-shell
scheme [32–35], while we use MS renormalization for the strong coupling constant. The total rate
for 𝑏 → 𝑢 is given by

Γ(𝐵 → 𝑋𝑢ℓ�̄�ℓ) = Γ0

[
1 + 𝐶𝐹

∑︁
𝑛≥1

(𝛼𝑠

𝜋

)𝑛
𝑋𝑛

]
+𝑂

(
Λ2

QCD

𝑚2
𝑏

)
, (9)

6
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where Γ0 = 𝐺2
𝐹
𝑚5

𝑏
|𝑉𝑢𝑏 |2𝐴ew/(192𝜋3), 𝐶𝐹 = 4/3 and 𝛼𝑠 ≡ 𝛼

(5)
𝑠 (𝜇𝑠) is the coupling constant at

the renormalization scale 𝜇𝑠. 𝐴ew = 1.014 is the leading electroweak correction [36] and 𝑚𝑏 is
the on-shell mass of the bottom quark. At the renormalization scale 𝜇𝑠 = 𝑚𝑏, the coefficient at
NLO [37] and NNLO [12] are

𝑋1 =
25
8

− 𝜋2

2
,

𝑋2 =𝐶𝐴

(
154927
10368

+ 95𝜋2

162
− 53

12
𝜋2 log(2) − 383𝜁3

72
+ 101𝜋4

1440

)
+ 𝐶𝐹

(
11047
2592

− 515𝜋2

81
+ 53

6
𝜋2 log(2) − 223𝜁3

36
+ 67𝜋4

720

)
+ 𝑁𝐻𝑇𝐹

(
16987
576

− 85𝜋2

216
− 64𝜁3

3

)
+ 𝑁𝐿𝑇𝐹

(
−1009

288
+ 77𝜋2

216
+ 8𝜁3

3

)
. (10)

with 𝐶𝐹 = (𝑁2
𝑐 − 1)/(2𝑁𝑐), 𝐶𝐴 = 𝑁𝑐 and 𝑇𝐹 = 1/2 for an 𝑆𝑈 (𝑁𝑐) gauge group. Here 𝑁𝐿 = 4 is

the number of massless quarks and 𝑁𝐻 = 1 labels the 𝑏-quark loop. We approximate the charm
quark as massless. Finite charm quark effects were calculated up to NNLO in [13, 14]. At order 𝛼3

𝑠

we obtain:

𝑋3 = − 0.0187678890858673847787492121610 𝑁2
𝐻𝑇

2
𝐹

− 0.0128811414824744955979824846025 𝑁𝐻𝑁𝐿𝑇
2
𝐹

− 6.91945963545141155160896317435 𝑁2
𝐿𝑇

2
𝐹

+ (−0.450594547415538324373558306826𝐶𝐴

+ 2.10979928071936375821873123780𝐶𝐹)𝑁𝐻𝑇𝐹

+ (42.7167190901372543556242161718𝐶𝐴

− 7.18755112505407688969676630368𝐶𝐹)𝑁𝐿𝑇𝐹

+ 𝐶2
𝐴𝑋𝐶2

𝐴
+ 𝐶2

𝐹𝑋𝐶2
𝐹
+ 𝐶𝐴𝐶𝐹𝑋𝐶𝐹𝐶𝐴

. (11)

where we provide results for the color factors of the fermionic contributions up to 30 digits. We
estimate the precision of our result from the numerical pole cancellations of the renormalized decay
rate. We have analytic expressions for the bare amplitude up to order 𝛼𝑠, while at 𝑂 (𝛼2

𝑠) the
amplitude is obtained via numerical evaluation of the master integrals with 80 digits of precision.
We observe that in 𝑋3 the 𝜖−3, 𝜖−2 and 𝜖−1 poles cancel with more than 37, 35 and 33 digits,
respectively. Extrapolating those numbers to the finite terms, we expect that our results are correct
up to 30 digits. The calculation of the last three color structures in Eq. (11) coming from the bosonic
contributions will be presented in a future publication.

Our updated prediction for 𝑏 → 𝑢𝑙�̄�𝑙 decay in the on-shell scheme to leading order in 1/𝑚𝑏 is

Γ(𝐵 → 𝑋𝑢ℓ�̄�ℓ) = Γ0

[
1 − 2.413

𝛼𝑠

𝜋
− 21.3

(𝛼𝑠

𝜋

)2
− 267.8 (2.7)

(𝛼𝑠

𝜋

)3
]
, (12)

with 𝑋3 = −200.9 ± 2.0. The value at 𝑂 (𝛼3
𝑠) is obtained by summing our fermionic contributions

and the analytic expression for the bosonic contribution in the large-𝑁𝑐 limit from Ref. [38]. For the
subleading colour terms of the bosonic contribution, we use the results from Ref. [9]. The quoted
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uncertainty arises from the massless extrapolation and it is estimated by taking the difference
between the 𝛿11 and 𝛿12 expansions, multiplied by a security factor of five. The uncertainty is
reduced by a factor of four compared to Ref. [38] and a factor of ten with respect to Ref. [9].

In the end, it is remarkable how close our prediction is compared to Ref. [9], 𝑋 [9]
3 = −202±20,

even in light of the fact that the 𝑏 → 𝑐𝑐𝑐𝑙�̄�𝑙 contribution is not accounted for while performing the
asymptotic expansion in the limit𝑚𝑐 ≃ 𝑚𝑏 [15]. The prediction in Eq. (12) confirms the independent
calculation performed in the leading-color approximation [38] which has an uncertainty of about
5% in the on-shell scheme. Moreover, the results for the fermionic color structures 𝑁2

𝐿
and 𝑁𝐿

agree with the unpublished results for 𝑏 → 𝑢𝑙�̄�𝑙 of Ref. [39].

3. Conclusions

In these proceedings we reviewed the calculation of the N3LO corrections to the total semilep-
tonic width of 𝐵 → 𝑋𝑢𝑙 �̄�𝑙 to leading order in the heavy quark expansion. Our calculation is based
on IBP reductions of Feynman integrals with a symbolic propagator power and numerical evaluation
of master integrals via the auxiliary mass flow method. Our numerical results have an accuracy of
at least thirty digits, based on the 1/𝜖 pole cancellation happening at 𝑂 (𝛼3

𝑠).
The calculation of the missing three color structures coming from the bosonic contributions is

ongoing. The major bottleneck here lies in the IBP reduction of certain integrals families with the
auxiliary mass 𝜂 inserted in some of the denominators. For these families, the generation of the
system of differential equations in AMFlow is currently not competitive with Kira-2.3.

Since our publication [16], several bottlenecks have been eliminated in Kira and an improved
integral seeding is currently being implemented [40]. With these improvements, we are able to
generate, for the most complicated families in the bosonic sector, systems of differential equations
with about a factor 10 reduction in the number of equations. With smaller systems, the time spent
by FireFly is also reduced by more than a factor of 30 therefore making possible the calculation
of the three missing color factors.
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