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It has been known for many years that methods inspired by string theory, such as the worldline
formalism, allow one to write down integral representations that combine large numbers of
Feynman diagrams of different topologies. However, to make this fact useful for state-of-the-
art calculations one has to confront non-standard integration problems where neither the known
integration techniques for Feynman diagrams nor algebraic manipulation programs are of much
help. Here I will give a progress report on this long-term project focussing on photon amplitudes
at one and two loops, in vacuum and in external fields.
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Worldline integration of photon amplitudes C. Schubert

1. Worldline representation of the QED S-matrix

After Feynman’s seminal work on the quantum-mechanical path integral in 1948, two years
later he used a relativistic generalization of the path integral for a perturbative construction of
the S-matrices for scalar [1] and spinor [2] QED. This leads to a decomposition of arbitrary
QED amplitudes into contributions with a fixed number of scalar/spinor lines and loops, each one
represented by a single path integral, interconnected by photon propagators in all possible ways
(Fig. 1).

Figure 1: Contributions to the QED S-matrix with a fixed number of matter lines and loops.

However, after deriving the Feynman rules from this construction he seems to have concluded
that they provide a much more efficient way of constructing QED perturbation theory than the
worldline path-integral representation. This judgement was shared by the community, so that
for several decades to come the worldline path-integral representation of QED was rarely if ever
considered as a tool for everyday-life calculations of scattering amplitudes or effective actions. It
is only since the nineties, and as a spin-off of developments in string theory and supersymmetry,
that it became appreciated that this representation, although completely equivalent to the Feynman
diagram one, has two principal advantages over it:

1. It avoids the break-up of the scalar/spinor lines or loops into individual propagators.

2. A priori it does not require a fixed ordering of the photon legs along a line or loop.

The first property becomes important when those propagators are already complicated objects
by themselves, which typically happens if one wishes to absorb an external field non-perturbatively.
The second property is relevant for multi-loop calculations, since in QED the rapid growth in the
number of diagrams with increasing number of loops is mainly due to the many different ways of
inserting photons into or between fixed loops or lines.

Let us start with the one-loop 𝑁-photon amplitudes in scalar QED, which in the modern
“string-inspired” approach to Feynman’s worldline formalism are expressed as follows [3–6] (for
details, see [7, 8], for generalization to the open line case [9]):

Γ[{𝑘𝑖 , 𝜀𝑖}] = (−𝑖𝑒)𝑁
∫

𝑑𝑇

𝑇
e−𝑚

2𝑇

∫
D𝑥 𝑉 𝐴

scal [𝑘1,𝜀1] . . . 𝑉 𝐴
scal [𝑘𝑁 ,𝜀𝑁 ]e

−
∫ 𝑇

0 𝑑𝜏 ¤𝑥2
4 . (1)

Here 𝑚 is the mass of the loop scalar, and the path integral runs over the space of closed loops in
(euclidean) space-time with periodicity 𝑇 in proper-time. Each photon is represented by a vertex
operator

𝑉 𝐴
scal [𝑘, 𝜀] =

∫ 𝑇

0
𝑑𝜏 𝜀 · ¤𝑥(𝜏) e𝑖𝑘𝑥 (𝜏 ) . (2)
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The zero mode 𝑥0 = 1
𝑇

∫ 𝑇

0 𝑑𝜏𝑥(𝜏) factors out of the path integral and produces the momentum
conservation factor (2𝜋)𝐷𝛿(∑ 𝑘𝑖) which we suppress as usual.

Since the path integral (1) is gaussian, it can be evaluated in closed form, leading to the
“Bern-Kosower master formula”

Γ[{𝑘𝑖 , 𝜀𝑖}] = (−𝑖𝑒)𝑁
∫ ∞

0

𝑑𝑇

𝑇
(4𝜋𝑇)−

𝐷
2 𝑒−𝑚

2𝑇
𝑁∏
𝑖=1

∫ 𝑇

0
𝑑𝜏𝑖

× exp
{ 𝑁∑︁
𝑖, 𝑗=1

[1
2
𝐺𝑖 𝑗 𝑘𝑖 · 𝑘 𝑗 + 𝑖 ¤𝐺𝑖 𝑗 𝑘𝑖 · 𝜀 𝑗 +

1
2
¥𝐺𝑖 𝑗𝜀𝑖 · 𝜀 𝑗

]}���
lin(𝜀1,..., 𝜀𝑁 )

(3)

written in terms of the “worldline Green’s function” 𝐺 (𝜏, 𝜏′) and its derivatives,

𝐺 (𝜏1, 𝜏2) = |𝜏1 − 𝜏2 | −
(
𝜏1 − 𝜏2

)2

𝑇
,

¤𝐺 (𝜏1, 𝜏2) = sgn(𝜏1 − 𝜏2) − 2
(𝜏1 − 𝜏2)

𝑇
,

¥𝐺 (𝜏1, 𝜏2) = 2𝛿(𝜏1 − 𝜏2) −
2
𝑇
.

The notation
���
lin(𝜀1,..., 𝜀𝑁 )

means projection on the terms linear in each polarization vector.
The generalization to spinor QED can be done in various ways. Feynman’s original formalism

used a “spin factor” under the path integral involving gamma matrices. Nowadays this spin factor is
usually used only in numerical path integration, while for analytic purposes one prefers to rewrite it
as a Grassmann path integral [10, 11]. One can then introduce worldline superfields to write down
a master formula analogous to (3), but in practice it is usually preferable to use a certain integration-
by-parts algorithm for removing the ¥𝐺𝑖 𝑗’s, after which the effect of spin can be implemented by the
application of the “Bern-Kosower replacement rule”

¤𝐺𝑖1𝑖2
¤𝐺𝑖2𝑖3 · · · ¤𝐺𝑖𝑛𝑖1 → ¤𝐺𝑖1𝑖2

¤𝐺𝑖2𝑖3 · · · ¤𝐺𝑖𝑛𝑖1 − 𝐺𝐹𝑖1𝑖2𝐺𝐹𝑖2𝑖3 · · ·𝐺𝐹𝑖𝑛𝑖1 , (4)

involving the “𝜏-cycles” ¤𝐺𝑖1𝑖2
¤𝐺𝑖2𝑖3 · · · ¤𝐺𝑖𝑛𝑖1 and the fermionic worldline Green’s function 𝐺𝐹 ,

𝐺𝐹 (𝜏, 𝜏′) ≡ sgn(𝜏 − 𝜏′) . (5)

This rule was first derived by Bern and Kosower from string theory for the case of the one-loop
𝑁-gluon amplitudes on-shell [4]. Strassler [6] then studied the systematics of the integration-by-
parts for the off-shell case, which allowed him to see that it leads to the emergence of photon field
strength tensors 𝑓

𝜇𝜈

𝑖
= 𝑘

𝜇

𝑖
𝜀𝜈
𝑖
−𝜀

𝜇

𝑖
𝑘𝜈
𝑖
, and thus to the emergence of gauge invariance at the integrand

level. Remaining ambiguities were resolved in [12] in a permutation-invariant manner.
No such replacement rule is available for the open fermion line, for which a worldline repre-

sentation suitable for state-of-the-art calculations was found only quite recently [13, 14].
Note that the master formula (3) gives the whole amplitudes, without the need of adding

“crossed” terms, which is made possible by the signum and absolute-value functions appearing in
the worldline Green’s functions. To take full advantage of this property of the worldline formalism

3



P
o
S
(
L
L
2
0
2
4
)
0
1
1

Worldline integration of photon amplitudes C. Schubert

it is therefore necessary to develop methods for the calculation of integrals of this type without
splitting them into ordered sectors, a non-standard integration problem for which neither existing
tables of integrals nor algebraic manipulation programs are of much help. The main purpose of my
talk is to give an update on the state-of-the-art of this long-term endeavour (see also [15]).

2. Worldline representation of the four-photon amplitudes

After the integration-by-parts, the four-photon amplitude in spinor QED appears naturally
decomposed as follows:

Γspin(𝑘1, 𝜀1, . . . , 𝑘4, 𝜀4) = − 𝑒4

8𝜋2

(
Γ (1) + Γ (2) + Γ (3) + Γ (4) + Γ (5)

)
, (6)

Γ (1) = Γ
(1)
(1234)𝑇

(1)
(1234) + Γ

(1)
(1243)𝑇

(1)
(1243) + Γ

(1)
(1324)𝑇

(1)
(1324) ,

Γ (2) = Γ
(2)
(12) (34)𝑇

(2)
(12) (34) + Γ

(2)
(13) (24)𝑇

(2)
(13) (24) + Γ

(2)
(14) (23)𝑇

(2)
(14) (23) ,

Γ (3) =
∑︁

𝑖=1,2,3
Γ
(3)
(123)𝑖𝑇

(3)𝑟4
(123)𝑖 +

∑︁
𝑖=2,3,4

Γ
(3)
(234)𝑖𝑇

(3)𝑟1
(234)𝑖 +

∑︁
𝑖=3,4,1

Γ
(3)
(341)𝑖𝑇

(3)𝑟2
(341)𝑖 +

∑︁
𝑖=4,1,2

Γ
(3)
(412)𝑖𝑇

(3)𝑟3
(412)𝑖 ,

Γ (4) =
∑︁
𝑖< 𝑗

Γ
(4)
(𝑖 𝑗 )𝑖𝑖𝑇

(4)
(𝑖 𝑗 )𝑖𝑖 +

∑︁
𝑖< 𝑗

Γ
(4)
(𝑖 𝑗 ) 𝑗 𝑗𝑇

(4)
(𝑖 𝑗 ) 𝑗 𝑗 ,

Γ (5) =
∑︁
𝑖< 𝑗

Γ
(5)
(𝑖 𝑗 )𝑖 𝑗𝑇

(5)
(𝑖 𝑗 )𝑖 𝑗 +

∑︁
𝑖< 𝑗

Γ
(5)
(𝑖 𝑗 ) 𝑗𝑖𝑇

(5)
(𝑖 𝑗 ) 𝑗𝑖 .

Here we have introduced the following tensor basis,

𝑇
(1)
(1234) ≡ 𝑍4(1234) ,

𝑇
(2)
(12) (34) ≡ 𝑍2(12)𝑍2(34) ,

𝑇
(3)𝑟4
(123)𝑖 ≡ 𝑍3(123) 𝑟4 · 𝑓4 · 𝑘𝑖

𝑟4 · 𝑘4
, 𝑖 = 1, 2, 3 ,

𝑇
(4)
(12)𝑖𝑖 ≡ 𝑍2(12) 𝑘𝑖 · 𝑓3 · 𝑓4 · 𝑘𝑖

𝑘3 · 𝑘4
, 𝑖 = 1, 2,

𝑇
(5)
(12)𝑖 𝑗 ≡ 𝑍2(12)

𝑘𝑖 · 𝑓3 · 𝑓4 · 𝑘 𝑗

𝑘3 · 𝑘4
, (𝑖, 𝑗) = (1, 2), (2, 1)

as well as

𝑍2(𝑖 𝑗) ≡ 1
2

tr
(
𝑓𝑖 𝑓 𝑗

)
= 𝜀𝑖 · 𝑘 𝑗𝜀 𝑗 · 𝑘𝑖 − 𝜀𝑖 · 𝜀 𝑗 𝑘𝑖 · 𝑘 𝑗 ,

𝑍𝑛 (𝑖1𝑖2 . . . 𝑖𝑛) ≡ tr
( 𝑛∏
𝑗=1

𝑓𝑖 𝑗

)
, (𝑛 ≥ 3) . (“𝐿𝑜𝑟𝑒𝑛𝑡𝑧 𝑐𝑦𝑐𝑙𝑒′′)

The coefficient functions are given by the following integrals,

Γ (𝑘 )
·· · =

∫ ∞

0

𝑑𝑇

𝑇
𝑇4−𝐷

2 e−𝑚
2𝑇

∫ 1

0

4∏
𝑖=1

𝑑𝑢𝑖 Γ
(𝑘 )
... ( ¤𝐺𝑖 𝑗) e

1
2𝑇

∑4
𝑖, 𝑗=1 𝐺𝑖 𝑗 𝑘𝑖 ·𝑘 𝑗

4
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where we have rescaled 𝜏𝑖 = 𝑇𝑢𝑖 , 𝑖 = 1, . . . , 4 and

Γ
(1)
(1234) = ¤𝐺12 ¤𝐺23 ¤𝐺34 ¤𝐺41 − 𝐺𝐹12𝐺𝐹23𝐺𝐹34𝐺𝐹41 ,

Γ
(2)
(12) (34) =

( ¤𝐺12 ¤𝐺21 − 𝐺𝐹12𝐺𝐹21
) ( ¤𝐺34 ¤𝐺43 − 𝐺𝐹34𝐺𝐹43

)
,

Γ
(3)
(123)1 =

( ¤𝐺12 ¤𝐺23 ¤𝐺31 − 𝐺𝐹12𝐺𝐹23𝐺𝐹31
) ¤𝐺41 ,

Γ
(4)
(12)11 =

( ¤𝐺12 ¤𝐺21 − 𝐺𝐹12𝐺𝐹21
) ¤𝐺13 ¤𝐺41 ,

Γ
(5)
(12)12 =

( ¤𝐺12 ¤𝐺21 − 𝐺𝐹12𝐺𝐹21
) ¤𝐺13 ¤𝐺42 .

(7)

In previous work, the coefficient functions have been evaluated for the off-shell case, but with two
legs taken in the low-energy limit [16, 17]. In a forthcoming article [18], we instead compute them
for the on-shell case at full momentum, for both scalar and spinor QED. Although this could be done
using existing methods for the calculation of one-loop on-shell integrals, with a view to eventual
multi-loop generalization we prefer to do it “the hard way”, that is, by building tables of worldline
integrals that allow one to integrate out one photon leg without fixing any ordering between the
photons. For starters, let us consider the basic scalar box integral. Keeping all three Mandelstam
variables to maintain manifest permutation invariance, the universal exponent of the master formula
(3) becomes

Λ ≡ 1
2

4∑︁
𝑖, 𝑗=1

𝐺𝑖 𝑗 𝑘𝑖 · 𝑘 𝑗 = −𝑇
2
[
(𝐺12 + 𝐺34)𝑠 + (𝐺13 + 𝐺24)𝑡 + (𝐺14 + 𝐺23)𝑢

]
(8)

Integrating out leg number 4 without fixing an ordering for the remaining three legs can be done
with the formula∫ 1

0
𝑑𝑢4 eΛ =

1
𝑇

[
2

𝑢 + ¤𝐺12𝑡 + ¤𝐺13𝑠
+ 2
𝑢 − ¤𝐺12𝑡 − ¤𝐺13𝑠

]
e

1
2 (𝐺12+𝐺13−𝐺23 )𝑢𝑇

+ 1
𝑇

[
2

𝑡 + ¤𝐺23𝑠 + ¤𝐺21𝑢
+ 2
𝑡 − ¤𝐺23𝑠 − ¤𝐺21𝑢

]
e

1
2 (𝐺12+𝐺23−𝐺13 )𝑡𝑇

+ 1
𝑇

[
2

𝑠 + ¤𝐺31𝑢 + ¤𝐺32𝑡
+ 2
𝑠 − ¤𝐺31𝑢 − ¤𝐺32𝑡

]
e

1
2 (𝐺13+𝐺23−𝐺12 )𝑠𝑇 .

(9)

In the four-photon case, we need a generalization of this formula with additional factors of ¤𝐺 in the
numerator. For example, an additional factor of ¤𝐺41 leads to∫ 1

0
𝑑𝑢4 ¤𝐺41 eΛ =

[
− 8
𝑇2(𝑢 + ¤𝐺12𝑡 + ¤𝐺13𝑠)2

+ 8
𝑇2(𝑢 − ¤𝐺12𝑡 − ¤𝐺13𝑠)2

+ 2
𝑇 (𝑢 + ¤𝐺12𝑡 + ¤𝐺13𝑠)

− 2
𝑇 (𝑢 − ¤𝐺12𝑡 − ¤𝐺13𝑠)

]
e

1
2 (𝐺12+𝐺13−𝐺23 )𝑢𝑇

+2 Perm. (10)

In [18] along these lines we obtain the known on-shell four-photon amplitudes for spinor QED, as
well as the ones for scalar QED that apparently have never been computed in full generality. As an

5
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example, let us show the result for the integral of the coefficient function Γ
(5)
(12)12 in scalar QED:∫ ∞

0

𝑑𝑇

𝑇
𝑇4−𝐷

2 𝑒−𝑚
2𝑇

∫
(4)

e𝑇 Λ ¤𝐺12 ¤𝐺21 ¤𝐺13 ¤𝐺42 = 𝑟
(1)
(12)12 + 𝑟

(2)
(12)12 ln

(
𝛽𝑠 − 1
𝛽𝑠 + 1

)
+ 𝑟

(3)
(12)12 ln

(
𝛽𝑡 − 1
𝛽𝑡 + 1

)
+𝑟 (4)(12)12 ln

(
𝛽�̂� − 1
𝛽�̂� + 1

)
+ 𝑟

(5)
(12)12

[
ln

(
𝛽𝑠 − 1
𝛽𝑠 + 1

)]2
+ 𝑟

(6)
(12)12

[
ln

(
𝛽𝑡 − 1
𝛽𝑡 + 1

)]2
+ 𝑟

(7)
(12)12

[
ln

(
𝛽�̂� − 1
𝛽�̂� + 1

)]2

+𝑟 (8)(12)12�̄�(𝑠, 𝑡, 𝑢) + 𝑟
(9)
(12)12�̄�(𝑠, 𝑢, 𝑡) + 𝑟

(10)
(12)12�̄�(𝑡, 𝑢, 𝑠).

Here we have introduced the variables [19]

𝛽𝑠 ≡
√︂

1 − 1
𝑠
, 𝛽𝑡�̂� ≡

√︂
1 + 𝑠

𝑡�̂�
=

√︂
1 − 1

𝑡
− 1
�̂�
. (11)

with 𝑠 ≡ 𝑠

4𝑚2 , 𝑡 ≡ 𝑡

4𝑚2 , �̂� ≡ 𝑢

4𝑚2 . The functions 𝑟 (1)(12)12, . . . , 𝑟
(10)
(12)12 are algebraic, and all dilogarithms

are contained in a single integral �̄�(𝑠, 𝑡, 𝑢),

�̄�(𝑠, 𝑡, 𝑢) = 1
𝑠 − 𝑡

∫ 1

0
𝑑𝑥

[
𝑠(2𝑡 + 𝑢) (1 − 2𝑥)
𝑚2 − 𝑠(1 − 𝑥)𝑥

− 𝑡 (2𝑠 + 𝑢) (1 − 2𝑥)
𝑚2 − 𝑡 (1 − 𝑥)𝑥

]
ln
©«
𝑥 − 1 + 𝛽𝑠𝑡

2

𝑥 − 1 − 𝛽𝑠𝑡

2

ª®®¬ . (12)

3. Incorporating a constant external field

The generalization of all the previous formulas from vacuum QED to the inclusion of a constant
external field requires only the following changes:

1. Replacing the worldline Green’s functions 𝐺𝐵, 𝐺𝐹 by field-dependent ones G𝐵,G𝐹 ,

𝐺𝐵 (𝜏1, 𝜏2) → G𝐵 (𝜏1, 𝜏2) =
𝑇

2Z2

(
Z

sinZ e−𝑖Z ¤𝐺𝐵12 + 𝑖Z ¤𝐺𝐵12 − 1
)
,

𝐺𝐹 (𝜏1, 𝜏2) → G𝐹 (𝜏1, 𝜏2) = 𝐺𝐹12
e−𝑖Z ¤𝐺𝐵12

cosZ ,

where Z𝜇𝜈 ≡ 𝑒𝐹𝜇𝜈𝑇 .

2. Adding global determinant factors

det
1
2

[
Z

sinZ

]
(Scalar QED) , det

1
2

[
Z

tanZ

]
(Spinor QED) .

In particular, the master formula (3) generalizes to the 𝑁-photon amplitudes in a constant field
as [20, 21]

Γscal(𝑘1, 𝜀1; . . . ; 𝑘𝑁 , 𝜀𝑁 |𝐹) = (−𝑖𝑒)𝑁
∫ ∞

0

𝑑𝑇

𝑇
(4𝜋𝑇)−

𝐷
2 𝑒−𝑚

2𝑇det
1
2

[
Z

sinZ

] 𝑁∏
𝑖=1

∫ 𝑇

0
𝑑𝜏𝑖

× exp
{ 𝑁∑︁
𝑖, 𝑗=1

[1
2
𝑘𝑖 · G𝐵𝑖 𝑗 · 𝑘 𝑗 − 𝑖𝜀𝑖 · ¤G𝐵𝑖 𝑗 · 𝑘 𝑗 +

1
2
𝜀𝑖 · ¥G𝐵𝑖 𝑗 · 𝜀 𝑗

]}���
lin(𝜀1𝜀2 · · ·𝜀𝑁 )

. (13)
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The loop replacement rule (4) can also be generalized in a straightforward way.
This formalism for calculations in constant fields has already found many applications in

strong-field QED. This includes the photon propagator in a constant field [22, 23], magnetic photon
splitting [24], one and two-loop Euler-Heisenberg Lagrangians [21, 25, 26], magnetic photon-
graviton conversion [27, 28], and the low-energy limit of the 𝑁-photon amplitudes in a constant
field [29].

4. Low-energy limit of 𝑁-photon amplitudes in vacuum and in a constant field

Let us discuss here the last-mentioned calculation, since it is recent and relevant for our main
topic, worldline integration. We start with the 𝑁-photon amplitudes in vacuum as a warm-up. After
expanding out the exponential in the master formula (3), and the removal of the ¥𝐺𝑖 𝑗 ’s by integration-
by-parts, the low-energy limit can simply be taken by replacing the remaining exponential factor
𝑒

1
2
∑𝑁

𝑖, 𝑗=1 𝐺𝑖 𝑗 𝑘𝑖 ·𝑘 𝑗 by unity. It turns out that then all terms in the integrand that are not just products of
cycles turn into total derivatives. and integrate to zero. The cycle-integrals can be done in closed
form, leading to Bernoulli numbers 𝐵𝑛:∫ 1

0
𝑑𝑢1𝑑𝑢2 . . . 𝑑𝑢𝑛

(
¤𝐺12 ¤𝐺23 · · · ¤𝐺𝑛1 − 𝐺𝐹12𝐺𝐹23 · · ·𝐺𝐹𝑛1

)
=

{
2𝑛 (2𝑛 − 2) 𝐵𝑛

𝑛! (𝑛 even)
0 (𝑛 odd)

This leads to the closed-form expression [26]

Γ
(LE)
spin (𝑘1, 𝜀1; . . . ; 𝑘𝑁 , 𝜀𝑁 ) = (−2)

𝑒𝑁Γ(𝑁 − 𝐷
2 )

(4𝜋)2𝑚2𝑁−𝐷 exp
{ ∞∑︁
𝑚=1

(1 − 22𝑚−1) 𝑏2𝑚
2𝑚

tr ( 𝑓 2𝑚
tot )

}����
lin( 𝑓1... 𝑓𝑁 )

(14)

where 𝑓tot ≡
∑𝑁

𝑖=1 𝑓𝑖 , 𝑏𝑛 = −2𝑛 𝐵𝑛

𝑛! . For the projection on individual helicity components, see [30].
In the constant-field background, it is still true that the 𝑁-photon amplitudes can, in the weak-

field limit, be reduced to terms that factorize into cycles. However, since the generalized worldline
Green’s functions are non-trivial Lorentz matrices, these cycles do not any more factorize into
“𝜏-cycles” and “Lorentz-cycles”, instead they combine as

¤𝐺𝑖1𝑖2
¤𝐺𝑖2𝑖3 · · · ¤𝐺𝑖𝑛𝑖1𝑍𝑛 (𝑖1𝑖2 . . . 𝑖𝑛) → tr

(
𝑓𝑖1 · ¤G𝐵𝑖1𝑖2 · 𝑓𝑖2 · ¤G𝐵𝑖2𝑖3 · · · 𝑓𝑖𝑛 · ¤G𝐵𝑖𝑛𝑖1

)
. (15)

Thus the basic mathematical problem becomes the computation of the “open-index cycle integral”∫ 1

0
𝑑𝑢1 · · ·

∫ 1

0
𝑑𝑢𝑛 ¤G𝐵12 ⊗ ¤G𝐵23 ⊗ · · · ⊗ ¤G𝐵𝑛1 (16)

which at first sight seem to generate a large number of component integrals. However, it turns out
that there is a nice way of calculating them all in one go. Let us show this for the purely magnetic
case. The magnetic worldline Green’s function ¤G𝐵 has the matrix decomposition [23]

¤G𝐵 (𝜏1, 𝜏2) = ¤𝐺12 𝑔− + 𝑆𝐵12(𝑧)𝑔+ − 𝐴𝐵12(𝑧)𝑖𝑟+ (17)

where 𝑧 = 𝑒𝐵𝑇 , ¤𝐺12 = sgn(𝜏1 − 𝜏2),

7
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𝑔+ ≡
©«

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

ª®®®®¬
, 𝑔− ≡

©«
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

ª®®®®¬
,

(18)

𝑟+ ≡
©«

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

ª®®®®¬
, 𝑟− ≡

©«
0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

ª®®®®¬
.

and

𝑆𝐵12(𝑧) =
sinh(𝑧 ¤𝐺12)

sinh 𝑧
, 𝐴𝐵12(𝑧) =

cosh(𝑧 ¤𝐺12)
sinh 𝑧

− 1
𝑧
.

Introducing the function

𝐻𝑖 𝑗 (𝑧) ≡
𝑒𝑧

¤𝐺𝑖 𝑗

sinh 𝑧
− 1

𝑧
(19)

the three component functions of the Green’s function can be written as

¤𝐺𝑖 𝑗 = 𝐻𝑖 𝑗 (0) , 𝑆𝐵𝑖 𝑗 (𝑧) =
1
2

[
𝐻𝑖 𝑗 (𝑧) + 𝐻𝑖 𝑗 (−𝑧)

]
, 𝐴𝐵𝑖 𝑗 (𝑧) =

1
2

[
𝐻𝑖 𝑗 (𝑧) − 𝐻𝑖 𝑗 (−𝑧)

]
.

(20)

In this way the multi-component integral (16) can be reduced to a single iterated integral, which
moreover turns out to have the following remarkable self-reproducing property:

𝐻
(2)
𝑖𝑘

(𝑧, 𝑧′) ≡
∫ 𝑇

0
𝑑𝜏𝑗𝐻𝑖 𝑗 (𝑧)𝐻 𝑗𝑘 (𝑧′) =

𝐻𝑖𝑘 (𝑧)
𝑧′ − 𝑧

+ 𝐻𝑖𝑘 (𝑧′)
𝑧 − 𝑧′

,

𝐻
(3)
𝑖𝑙

(𝑧, 𝑧′, 𝑧′′) ≡
∫ 𝑇

0
𝑑𝜏𝑗

∫ 𝑇

0
𝑑𝜏𝑘𝐻𝑖 𝑗 (𝑧)𝐻 𝑗𝑘 (𝑧′)𝐻𝑘𝑙 (𝑧′′)

=
𝐻𝑖𝑙 (𝑧)

(𝑧′ − 𝑧) (𝑧′′ − 𝑧) +
𝐻𝑖𝑙 (𝑧′)

(𝑧 − 𝑧′) (𝑧′′ − 𝑧′) +
𝐻𝑖𝑙 (𝑧′′)

(𝑧 − 𝑧′′) (𝑧′ − 𝑧′′) ,

...

𝐻
(𝑛)
𝑖1𝑖𝑛+1

(𝑧1, . . . , 𝑧𝑛) =

𝑛∑︁
𝑘=1

𝐻𝑖1𝑖𝑛+1 (𝑧𝑘)∏
𝑙≠𝑘 (𝑧𝑙 − 𝑧𝑘)

. (21)

Note that the right-hand sides have the full permutation symmetry. Defining

𝑧0 ≡ 0 , 𝑧+ ≡ 𝑧 , 𝑧− ≡ −𝑧 , (22)

g0 ≡ 𝑔− , g+ ≡ 1
2
(𝑔+ − 𝑖𝑟+) , g− ≡ 1

2
(𝑔+ + 𝑖𝑟+) (23)

we can then write∫ 1

0
𝑑𝑢2 · · ·

∫ 1

0
𝑑𝑢𝑛 ¤G𝐵12 ⊗ ¤G𝐵23 ⊗ · · · ⊗ ¤G𝐵𝑛(𝑛+1) =

∑︁
𝛼1,...,𝛼𝑛

𝐻
(𝑛)
1(𝑛+1) (𝑧𝛼1 , . . . , 𝑧𝛼𝑛

)g𝛼1 ⊗ · · · ⊗ g𝛼𝑛

where each index 𝛼𝑖 runs over 0, +,−. This can be extended to the spinor QED case [29], and
reduces the calculation of the low-energy limit of the magnetic 𝑁-photon amplitudes to simple
algebra and a single global proper-time integral with trigonometric integrand.

8
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5. 𝑁-photon amplitudes in a plane-wave background

The plane-wave background can be defined by a vector potential 𝐴(𝑥) of the form

𝑒𝐴𝜇 (𝑥) = 𝑎𝜇 (𝑛 · 𝑥) (24)

where 𝑛𝜇 is a null vector, 𝑛2 = 0, and as is usual we will further impose the light-front gauge
condition 𝑛 · 𝑎 = 0. Despite of many similarities with the constant-field case, it is far from
straightforward to reduce the path integrals for the 𝑁-photon amplitudes to gaussian ones. Building
on work of [31] for the two-point case, in [32] the following master formula for the scalar QED
𝑁-photon amplitude in a plane-wave background was obtained:

Γscal({𝑘𝑖 , 𝜀𝑖}; 𝑎) = (−𝑖𝑒)𝑁 (2𝜋)3𝛿
( 𝑁∑︁
𝑖=1

𝑘1
𝑖

)
𝛿
( 𝑁∑︁
𝑖=1

𝑘2
𝑖

)
𝛿
( 𝑁∑︁
𝑖=1

𝑘+𝑖
) ∫ ∞

−∞
𝑑𝑥+0 e−𝑖𝑥

+
0
∑𝑁

𝑖=1 𝑘
−
𝑖

×
∫ ∞

0

𝑑𝑇

𝑇
(4𝜋𝑇)−

𝐷
2

𝑁∏
𝑖=1

∫ 𝑇

0
𝑑𝜏𝑖 e

∑𝑁
𝑖, 𝑗=1

[
1
2𝐺𝑖 𝑗 𝑘𝑖 ·𝑘 𝑗−𝑖 ¤𝐺𝑖 𝑗 𝜀𝑖 ·𝑘 𝑗+ 1

2
¥𝐺𝑖 𝑗 𝜀𝑖 ·𝜀 𝑗

]
× e−

(
𝑚2+⟨⟨𝑎2 ⟩⟩−⟨⟨𝑎⟩⟩2

)
𝑇+2

∑𝑁
𝑖=1 𝑘𝑖 ·

(
𝐼 (𝜏𝑖 )−⟨⟨𝐼 ⟩⟩

)
−2𝑖

∑𝑁
𝑖=1

(
𝑎 (𝜏𝑖 )−⟨⟨𝑎⟩⟩

)
·𝜀𝑖
���
𝜀1 · · ·𝜀𝑁

(25)

where we have introduced light-cone coordinates and the worldloop average

⟨⟨ 𝑓 ⟩⟩ ≡ 1
𝑇

∫ 𝑇

0
𝑑𝜏 𝑓 (𝜏) . (26)

Spin was incorporated in [32] using the following generalization of the vacuum correlator (5),

⟨𝜓𝜇 (𝜏)𝜓𝜈 (𝜏′)⟩ = 1
2
G

𝜇𝜈

𝐹
(𝜏, 𝜏′),

where

G
𝜇𝜈

𝐹
(𝜏, 𝜏′) ≡

{
𝛿𝜇𝜈 + 2𝑖𝑛𝜇J 𝜈 (𝜏, 𝜏′) + 2𝑖J 𝜇 (𝜏′, 𝜏)𝑛𝜈 + 2

[
J 2(𝜏, 𝜏′) − 𝑇2

4
⟨⟨𝑎′⟩⟩2

]
𝑛𝜇𝑛𝜈

}
𝐺𝐹 (𝜏, 𝜏′)

(27)

and we have further defined

𝐽𝜇 (𝜏) ≡
∫ 𝜏

0
𝑑𝜏′

(
𝑎′𝜇 (𝜏′) − ⟨⟨𝑎′𝜇⟩⟩

)
, J𝜇 (𝜏, 𝜏′) ≡ 𝐽𝜇 (𝜏) − 𝐽𝜇 (𝜏′) −

𝑇

2
¤𝐺 (𝜏, 𝜏′)⟨⟨𝑎′𝜇⟩⟩ .

See [33] for generalization to the open-line case.

6. The combined constant and plane-wave field

The arguably most complex known background field for which the Klein-Gordon and Dirac
equations can be solved in closed form is the combination of a constant and a plane-wave field where
the directions of the magnetic and of the electric field coincide with each other and the direction

9
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of the wave propagation [34, 35]. Thus this background should also permit a Bern-Kosower type
master formula, and indeed it was derived in the recent [36]:

Γscal({𝑘𝑖 , 𝜀𝑖}; 𝑎, 𝐹) = (−𝑖𝑒)𝑁 (2𝜋)3𝛿
( 𝑁∑︁
𝑖=1

𝑘1
𝑖

)
𝛿
( 𝑁∑︁
𝑖=1

𝑘2
𝑖

)
𝛿
( 𝑁∑︁
𝑖=1

𝑘+𝑖
) ∫ ∞

−∞
𝑑𝑥+0 e−𝑖𝑥

+
0
∑𝑁

𝑖=1 𝑘
−
𝑖

×
∫ ∞

0

𝑑𝑇

𝑇
(4𝜋𝑇)−

𝐷
2 det

1
2

[
Z

sinZ

] 𝑁∏
𝑖=1

∫ 𝑇

0
𝑑𝜏𝑖 e

∑𝑁
𝑖, 𝑗=1

[
1
2 𝑘𝑖 ·G𝐵𝑖 𝑗 ·𝑘 𝑗−𝑖 𝜀𝑖 · ¤G𝐵𝑖 𝑗 ·𝑘 𝑗+ 1

2 𝜀𝑖 · ¥G𝐵𝑖 𝑗 ·𝜀 𝑗

]
× e−

[
𝑚2+ 1

2
∫ 𝑇

0 𝑑𝜏
∫ 𝑇

0 𝑑𝜏′ �̃� (𝜏 ) · ¥G𝐵 (𝜏,𝜏′ ) ·�̃� (𝜏′ )
]
𝑇−∑𝑁

𝑖=1
∫ 𝑇

0 𝑑𝜏

[
�̃� (𝜏 ) · ¤G𝐵 (𝜏,𝜏𝑖 ) ·𝑘𝑖+𝑖�̃� (𝜏 ) · ¥G𝐵 (𝜏,𝜏𝑖 ) ·𝜀𝑖

] ���
𝜀1 · · ·𝜀𝑁

(28)

where now

�̃�𝜇 (𝜏) ≡ 𝑎𝜇

(
𝑥+0 + 𝑛 ·

𝑁∑︁
𝑖=1

[
−𝑖G𝐵 (𝜏, 𝜏𝑖) · 𝑘𝑖 + ¤G𝐵 (𝜏, 𝜏𝑖) · 𝜀𝑖

] )
(29)

and the fermionic worldline Green’s function (27) has been further generalized to

G̃𝐹 (𝜏, 𝜏′) = G𝐹 (𝜏, 𝜏′) + 2𝑖
[
𝑛 ⊗ 𝐽 (𝜏) · G𝐹 (𝜏, 𝜏′) − G𝐹 (𝜏, 𝜏′) · 𝑛 ⊗ 𝐽 (𝜏′)

]
.+ 2𝑖

[
G𝐹 (𝜏, 𝜏′) · 𝐽 (𝜏′) ⊗ 𝑛 − 𝐽 (𝜏) ⊗ 𝑛 · G𝐹 (𝜏, 𝜏′)

]
+2𝐽2(𝜏)𝑛 ⊗ 𝑛 · G𝐹 (𝜏, 𝜏′) + 2G𝐹 (𝜏, 𝜏′) · 𝑛 ⊗ 𝑛𝐽2(𝜏′)
−4𝐽 (𝜏) · G𝐹 (𝜏, 𝜏′) · 𝐽 (𝜏′)𝑛 ⊗ 𝑛

− 𝑖𝑇

𝑧 ∥ + 𝜆𝑧⊥

[
G𝐹 (𝜏, 𝜏′) ·

(
𝑛 ⊗ ⟨⟨�̃�′𝜆⟩⟩𝐹𝑚𝜆 − ⟨⟨�̃�′𝜆⟩⟩𝐹𝑚𝜆 ⊗ 𝑛

)
−
(
𝑛 ⊗ ⟨⟨�̃�′𝜆⟩⟩𝐹𝑚𝜆 − ⟨⟨�̃�′𝜆⟩⟩𝐹𝑚𝜆 ⊗ 𝑛

)
· G𝐹 (𝜏, 𝜏′)

]
+2

𝑇

𝑧 ∥ + 𝜆𝑧⊥

[
⟨⟨�̃�′𝜆⟩⟩𝐹𝑚𝜆 · 𝐽 (𝜏′)G𝐹 (𝜏, 𝜏′) · 𝑛 ⊗ 𝑛 + ⟨⟨�̃�′𝜆⟩⟩𝐹𝑚𝜆 · 𝐽 (𝜏)𝑛 ⊗ 𝑛 · G𝐹 (𝜏, 𝜏′)

−(𝐽 (𝜏) · G𝐹 (𝜏, 𝜏′) · 𝑚𝜆⟨⟨�̃�′𝜆⟩⟩𝐹 + ⟨⟨�̃�′𝜆⟩⟩𝐹𝑚𝜆 · G𝐹 (𝜏, 𝜏′) · 𝐽 (𝜏′))𝑛 ⊗ 𝑛

]
+ 𝑇2

𝑧2
∥ − 𝑧2

⊥

[ ⟨⟨�̃�′⟩⟩2
𝐹

2
G𝐹 (𝜏, 𝜏′) · 𝑛 ⊗ 𝑛 +

⟨⟨�̃�′⟩⟩2
𝐹

2
𝑛 ⊗ 𝑛 · G𝐹 (𝜏, 𝜏′)

−⟨⟨�̃�′⟩⟩𝐹 · G𝐹 (𝜏, 𝜏′) · ⟨⟨�̃�′⟩⟩𝐹𝑛 ⊗ 𝑛

]
. (30)

Here 𝑚± ≡ 1√
2
(1,±𝑖, 0, 0) and

𝐽𝜇 (𝜏) ≡
∑︁
𝜆=±

𝑚
𝜇

𝜆
e−2 𝜏

𝑇
(𝑧∥+𝜆𝑧⊥ )

∫ 𝜏

0
𝑑𝜏

(
�̃�′𝜆(𝜏) − ⟨⟨�̃�′𝜆⟩⟩𝐹

)
e2 �̄�

𝑇
(𝑧∥+𝜆𝑧⊥ )

where 𝑧⊥ = 𝑒𝐵𝑇 , 𝑧 ∥ = 𝑖𝑒𝐸𝑇 , and

⟨⟨�̃�′𝜆⟩⟩𝐹 ≡
2(𝑧 ∥ + 𝜆𝑧⊥)

1 − 𝑒−2(𝑧∥+𝜆𝑧⊥ )
1
𝑇

∫ 𝑇

0
𝑑𝜏�̃�′𝜆(𝜏) e−2(𝑧∥+𝜆𝑧⊥ ) 𝑇−𝜏

𝑇 .

10
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7. Multi-loop photon amplitudes

Finally, let us come to the second interesting feature of the worldline formalism mentioned
in the introduction: dealing with the amplitude as a whole becomes important when one uses the
one-loop amplitudes to construct higher-loop amplitudes by sewing. E.g., from the four-photon
amplitude we can construct the two-loop photon propagator,

Figure 2: Summing diagrams for the two-loop photon propagator.

with all three diagrams combined into a single integral. Similarly, from the one-loop six-photon
amplitude we get the three-loop quenched propagator

+ + +   ...

Figure 3: Summing diagrams for the three-loop quenched photon propagator.

etc. And precisely this type of sums of diagrams is known to suffer from particularly extensive
cancellations (see, e.g., [15, 37]). More efficient than sewing is the use of multi-loop wordline
Green’s functions that hold the information on photon insertions [38, 39]. For a single insertion,

𝐺 (1) (𝜏1, 𝜏2) = 𝐺 (𝜏1, 𝜏2) +
1
2
[𝐺 (𝜏1, 𝜏𝑎) − 𝐺 (𝜏1, 𝜏𝑏)] [𝐺 (𝜏𝑎, 𝜏2) − 𝐺 (𝜏𝑏, 𝜏2)]

𝑇 + 𝐺 (𝜏𝑎, 𝜏𝑏)
(31)

where 𝑇 is the proper-time length of the inserted propagator, and 𝜏𝑎, 𝜏𝑏 the points on the loop
between which the propagator is inserted. It leads to integral representations for the 𝑙-loop photon
propagator naturally written in the variables 𝐺𝑎1𝑏1 , 𝐺𝑎2𝑏2 , . . . , 𝐺𝑎𝑙𝑏𝑙 , 𝐶𝑎1𝑏1𝑎2𝑏2 , . . . , 𝐶𝑎𝑙−1𝑏𝑙−1𝑎𝑙𝑏𝑙 ,
where the 𝐺𝑎𝑖𝑏𝑖 depend only on a single propagator, and the 𝐶𝑎𝑖𝑏𝑖𝑎 𝑗𝑏 𝑗

on pairs of propagators.
In continuation of previous work [39] (see also [7]) on the two-loop QED beta functions,

we (V.M.B.G. and C.S.) are presently calculating the full two-loop photon propagators for both
scalar and spinor QED along the lines outlined above. Let us show here the integral representation
obtained using the Green’s function (31) for this propagator in scalar QED,

Π
(2)
scal(𝑘

2) = − 𝑒6

2(4𝜋)𝐷

∫ ∞

0

𝑑𝑇

𝑇𝐷+1 𝑒
−𝑚2𝑇

∫ ∞

0
𝑑𝑇

∫ 𝑇

0
𝑑𝜏𝑎

∫ 𝑇

0
𝑑𝜏𝑏𝛾

𝐷/2
𝑎𝑏

×
∫ 𝑇

0
𝑑𝜏1

∫ 𝑇

0
𝑑𝜏2 e−(𝐺12−

𝛾𝑎𝑏
4 𝐶2 )𝑘2

𝐼 , (32)

𝐼 = 𝐷 (− ¥𝐺𝑎𝑏 +
𝛾𝑎𝑏

2
¤𝐺2
𝑎𝑏) (− ¥𝐺12 −

𝛾𝑎𝑏

2
𝜕1𝐶𝜕2𝐶)

1
𝑘2

+
[
(− ¥𝐺𝑎1 −

𝛾𝑎𝑏

2
¤𝐺𝑎𝑏𝜕1𝐶) (− ¥𝐺𝑏2 +

𝛾𝑎𝑏

2
¤𝐺𝑎𝑏𝜕2𝐶) + (1 ↔ 2)

] 1
𝑘2

−[𝜕𝑎𝐶 − 𝛾𝑎𝑏

2
¤𝐺𝑎𝑏𝐶] [𝜕𝑏𝐶 + 𝛾𝑎𝑏

2
¤𝐺𝑎𝑏𝐶]

(
¥𝐺12 +

𝛾𝑎𝑏

2
𝜕1𝐶𝜕2𝐶

)
(33)

(𝐶 = 𝐺1𝑎 − 𝐺1𝑏 − 𝐺2𝑎 + 𝐺2𝑏, 𝛾𝑎𝑏 = (𝑇 + 𝐺𝑎𝑏)−1).
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8. Some remarks on the non-abelian case

While here we have focussed on the abelian case, let us mention that the integrated-by-parts
integrand following from the master formula (3) has recently been found to have other interesting
properties that are not visible in the abelian case. In particular, it provides a simple route to the
derivation of gluon [40] and graviton [41] Berends-Giele currents.
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