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LTD with generalized propagator powers Daniele Artico

1. Introduction: Loop Tree Duality

Loop Tree Duality (LTD) is a numerical integration method developed first for one-loop integrals
[1] and then for multiloop integrals [2–4]. It is based on the integration of the energy components
of the loop momenta through the residue theorem. For multi-loop integrals, equivalent algorithms
have been developed [2–4].
Consider a 𝑛-loop integral

𝐼 =

∫ 𝑛∏
𝑗=1

𝑑4𝑘 𝑗

(2𝜋)4

𝑁
({
𝑘 𝑗 , 𝑝 𝑗 , 𝑚 𝑗

})∏
𝑖∈e 𝐷𝑖

({
𝑘 𝑗 , 𝑝 𝑗 , 𝑚 𝑗

}) (1)

where
({
𝑘 𝑗 , 𝑝 𝑗 , 𝑚 𝑗

})
stands to indicate dependence on the loop momenta, the external momenta and

the masses, 𝑁
({
𝑘 𝑗 , 𝑝 𝑗 , 𝑚 𝑗

})
is a polynomial in its variables, e is the set of loop lines each having

momentum 𝑞𝑖 and 𝐷
({
𝑘 𝑗 , 𝑝 𝑗 , 𝑚 𝑗

})
is the Feynman propagator (including the causal prescription)

𝐷𝑖 = (𝑞0
𝑖 )2 − ®𝑞𝑖2 − 𝑚2

𝑖 + 𝑖𝛿. (2)

The integral is taken to be in 𝐷 = 4 as the goal is to perform numerical momentum-space integration,
therefore all divergences are subtracted by suitable counterterms. The energy components are
integrated one after the other in the order 𝑘0

1, 𝑘
0
2, .., 𝑘

0
𝑛 by closing the complex energy contours in

the lower half-plane, thus multiplying each residue by (−2𝜋𝑖). All residues corresponding to poles
whose position in the lower/upper complex plane is not determined cancel pairwise [3, 5]. For
each loop momentum base b in the set of all possible bases B made of propagator momenta , only
a combination of residues survives in the final integrand, giving an overall prefactor (−𝑖)𝑛. The
integrand can be written as

𝐼 = (−𝑖)𝑛
∫ 𝑛∏

𝑗=1

𝑑3𝑘

(2𝜋)3

∑︁
b∈B

𝑁∏
𝑖∈b 2𝐸𝑖

∏
𝑖∈e\b 𝐷𝑖

�����{
𝑞0
𝑗
=𝜎b

𝑗
𝐸 𝑗

}
𝑗∈b

(3)

where
{
𝑞0
𝑗
= 𝜎b

𝑗
𝐸 𝑗

}
𝑗∈b

means that the energy componens of the loop momenta are determined by
the residue corresponding to each summand. The LTD final result does not depend neither on the
order of integration nor on the contour closure.
The cut propagators result in 𝐸𝑖 factors in the denominator of the summand. The other propagators
become what are called the dual propagators, defined as

1
𝐷𝑖 |{

𝑞0
𝑗
=𝜎b

𝑗
𝐸 𝑗

}
𝑗∈b

=
1

(𝑞0
𝑖
{
𝑞0
𝑗
=𝜎b

𝑗
𝐸 𝑗

}
𝑗∈b

)2 − (𝐸𝑖)2
. (4)

The dual propagators in Eq. (4) can become singular when the denominator is zero. The only
surfaces in the integration space corresponding to physical thresholds have the form

[b,𝑖 = 𝑝0
b,𝑖 + 𝐸𝑖 +

∑︁
𝑗∈b

𝛼 𝑗𝐸 𝑗 = 0. (5)

with 𝛼 𝑗 ∈ {0, 1}; while non physical thresholds cancel pairwise [2, 6].
For these singularities to appear, the energy component 𝑝0

b,𝑖 should be negative and the squared
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modulus of the combination of external momenta for each surface has to be greater than the masses

of the particles put on shell. Given that the energies 𝐸𝑖 =

√︃
®𝑞𝑖2 + 𝑚2

𝑖
− 𝑖𝛿 have a negative imaginary

part because of the −𝑖𝛿 in the square root, numerical evaluation of Feynman integrals with LTD
determines in which direction the deformation of the integration contour in the complex plane has
to point in order to have a correct value [4].

2. Two-loop LTD for general powers of propagators

Residues of Feynman integrals with general propagator powers in the LTD framework have been a
subject of study in Refs. [5, 11–14]. In this section, explicit formulas are presented for all two-loop
tadpoles. The cancellation of nested residues is still valid, as conceptually raised propagator powers
are limits of Feynman integrals with all unit powers when two propagators are the same. The
arguments behind the formula for two-loop tadpoles are then used to write explicit LTD formulas
which are valid for all two-loop integrals.

2.1 Tadpoles

Consider the two-loop tadpole

𝐼
𝑎,𝑏

3 =

∫
𝑑4𝑙1𝑑

4𝑙2

(2𝜋)8
1

(𝑙01 − 𝐸1)𝑎 (𝑙01 + 𝐸1)𝑎 (𝑙02 − 𝐸2)𝑏 (𝑙02 + 𝐸2)𝑏 (𝑙01 + 𝑙02 − 𝐸3) (𝑙01 + 𝑙02 + 𝐸3)
(6)

assumed to be UV and IR finite.
The LTD theorem produces three residues, while two others cancel. For 𝑎 = 2 the integration yelds

𝐼
2,𝑏
3,1,1 = −

∫
𝑑3 ®𝑙1𝑑3 ®𝑙2
(2𝜋)6

1
2𝐸3

1
(𝑏 − 1)!

[
𝜕𝑏−1
𝑙02

(
1

(𝐸3 − 𝑙02 − 𝐸1)2 (𝐸3 − 𝑙02 + 𝐸1)2 (𝑙02 + 𝐸2)𝑏

)]�����
𝑙02→𝐸2

, (7)

𝐼
2,𝑏
3,1,2 = −

∫
𝑑3 ®𝑙1𝑑3 ®𝑙2
(2𝜋)6

1
2𝐸3

[
𝜕𝑙02

(
1

(𝐸3 − 𝑙02 − 𝐸1)2(𝑙02 − 𝐸2)𝑏 (𝑙02 + 𝐸2)𝑏

)]�����
𝑙02→𝐸1+𝐸3

(8)

𝐼
2,𝑏
3,2,1 = −

∫
𝑑3 ®𝑙1𝑑3 ®𝑙2
(2𝜋)6

1
(𝑏 − 1)!

[
𝜕𝑏−1
𝑙02

𝜕𝑙01

(
1

(𝑙01 + 𝐸1)2 (𝑙02 + 𝐸2)𝑏 (𝑙01 + 𝑙02 + 𝐸3) (𝑙01 + 𝑙02 − 𝐸3)

)]�����𝑙
0
1→𝐸1

𝑙02→𝐸2

(9)

Given these premises, the elements of the LTD formula for tadpoles with generalized propagators
and numerators are presented. When all three propagator powers are taken to be general integer
numbers, the terms 𝐼

2,𝑏
3,1,1 in Eq. (7) and 𝐼

2,𝑏
3,2,1 in Eq. (9) are slightly modified to get the correct

integrands

𝐼
𝑎,𝑏,𝑐

3,1,1 =
−1

(𝑏 − 1)!(𝑐 − 1)!

𝜕𝑏−1
𝑙02

©«𝜕𝑐−1
𝑙01

(
𝑁 (𝑙𝑖 , 𝑚𝑖)

(𝑙01 − 𝐸1)𝑎 (𝑙01 − 𝐸1)𝑎 (𝑙02 + 𝐸2)𝑏 (𝑙01 + 𝑙02 + 𝐸3)𝑐

)�����
𝑙01→𝐸3−𝑙02

ª®¬

������
𝑙02→𝐸2

(10)

and

𝐼
𝑎,𝑏,𝑐

3,2,1 =
−1

(𝑎 − 1)!(𝑏 − 1)!

𝜕𝑏−1
𝑙02

©«𝜕𝑎−1
𝑙01

(
𝑁 (𝑙𝑖 , 𝑚𝑖)

(𝑙01 − 𝐸1)𝑎 (𝑙02 + 𝐸2)𝑏 (𝑙01 + 𝑙02 − 𝐸3)𝑐 (𝑙01 + 𝑙02 + 𝐸3)𝑐

)�����
𝑙01→𝐸1

ª®¬

������
𝑙02→𝐸2

.

(11)
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The other term is the analogous to 𝐶
2,𝑏
3,1,2 in Eq. (8) and it is slightly different in its explicit formula.

The reason is that it is obtained by taking the residue first in 𝑙01 = 𝐸3 − 𝑙02 and then in 𝑙02 = 𝐸3 + 𝐸1:
the cut propagators are the first and the third one. After taking the first residue the power 𝑎 is
modified to 𝑎 + 𝑐 − 1: the integrand obtained when taking this into account is

𝐼
𝑎,𝑏,𝑐

3,2,1 =
−1

(𝑎 + 𝑐 − 2)!(𝑐 − 1)!

[
𝜕𝑎+𝑐−2
𝑙02

(
𝜕𝑐−1
𝑙01

(
𝑁 (𝑙𝑖 , 𝑚𝑖)

(𝑙01 − 𝐸1)𝑎 (𝑙01 + 𝐸1)𝑎 (𝑙02 + 𝐸2)𝑏 (𝑙02 − 𝐸2)𝑏

1
(𝑙01 + 𝑙02 + 𝐸3)𝑐

)�����
𝑙01→𝐸3−𝑙02

(𝑙02 − 𝐸3 − 𝐸1)𝑎+𝑐−1ª®¬

������
𝑙02→𝐸1+𝐸3

.

(12)

These three elements are the tree summands in the LTD formula of two-loop tadpoles with raised
propagators. This result is checked against the result given by MATAD [7] in the following table.
The last row is calculated for 𝑝 = (1, 0, 0, 0).

Integral N 𝑚𝑈𝑉 LTD result reference
𝐼222 𝑙1 · 𝑙2 1.73 −4.4648(8) · 10−6 −4.46629 · 10−6

𝐼232 𝑙1 · 𝑙2 1.73 1.7108(1) · 10−7 1.7107 · 10−7

𝐼332 (𝑙1 · 𝑙1) (𝑝 · 𝑙1) (𝑝 · 𝑙2) 1.73 3.3668(1) · 10−8 3.36672 · 10−8

Table 1: LTD integration of two-loop tensor tadpoles checked against MATAD.

2.2 Adding external kinematics

An 𝑙-loop integral has the topology of an 𝑙-loop tadpole, but to each line external legs can be
attached. For the 2-loop case, only one tadpole topology exists. In presence of the external legs,
each configuration above has more sub-configurations as to each propagator with the same loop
momenta dependence but different combinations of external momenta correspond to a different
residue. The formula for each of the three configurations is very similar to the one for each tadpole
cut. Each propagator is written as

1
(𝑙0
𝑖
− 𝑝0

𝑖
)2 − 𝐸2

𝑖

where 𝑙𝑖 can be 𝑙01 , 𝑙02 or 𝑙01 + 𝑙
0
2 . In the next sectionst, the original loop-integrand is denoted with F .

2.2.1 Cut 𝑙1 − 𝑝𝑖 and 𝑙2 − 𝑝 𝑗

The summand resulting from this cut choice corresponds to the one in Eq. (11). Denote by 𝑎

and 𝑏 the exponents of the first and second cut propagators; then the residue of the two poles is

𝑅1𝑖 𝑗 =
−1

(𝑎 − 1)!(𝑏 − 1)!

[
𝜕𝑏−1
𝑙02

(
𝜕𝑎−1
𝑙01

(
F · (𝑙01 − 𝑝0

𝑖 − 𝐸𝑖) (𝑙02 − 𝑝0
𝑗 − 𝐸 𝑗 )

)���
𝑙01→𝐸𝑖+𝑝0

𝑖

)] ����
𝑙02→𝐸 𝑗+𝑝0

𝑗

. (13)
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2.2.2 Cut 𝑙1 + 𝑙2 − 𝑝𝑖 and 𝑙2 − 𝑝 𝑗

This configuration corresponds to equation Eq. (10) and is no different in principle from the
previous case. The resulting summand is

𝑅2𝑖 𝑗 =
−1

(𝑐 − 1)!(𝑏 − 1)!

[
𝜕𝑏−1
𝑙02

(
𝜕𝑐−1
𝑙01

(
F · (𝑙01 + 𝑙02 − 𝑝0

𝑖 − 𝐸𝑖) (𝑙02 − 𝑝0
𝑗 − 𝐸 𝑗 )

)���
𝑙01→𝐸𝑖+𝑝0

𝑖
−𝑙02

)] ����
𝑙02→𝐸 𝑗+𝑝0

𝑗

.

(14)
where the exponents of the cut propagators are now 𝑐 and 𝑏.

2.2.3 Cut 𝑙1 + 𝑙2 − 𝑝𝑖 and 𝑙1 − 𝑝 𝑗

This configuration corresponds to Eq. (12) and it is different from the previous two for the same
reason explained for the tadpole case (the differentiation when taking the residue in 𝑙01 modifies the
exponents of the propagators). The summand resulting from this cut is

𝑅3𝑖 𝑗 =
−1

(𝑎 + 𝑐 − 2)!(𝑐 − 1)!

[
𝜕𝑎+𝑐−2
𝑙02

(
𝜕𝑐−1
𝑙01

(
F · (𝑙01 + 𝑙02 − 𝑝0

𝑖 − 𝐸𝑖)𝑐
)���
𝑙01→𝐸𝑖+𝑝0

𝑖
−𝑙02

· (𝑙02 − 𝐸𝑖 − 𝐸 𝑗 − 𝑝0
𝑖 + 𝑝0

𝑗 )𝑎+𝑐−1
)] ���

𝑙02→𝐸𝑖+𝐸 𝑗+𝑝0
𝑖
−𝑝0

𝑗

(15)

where the exponents of the cut propagators are 𝑐 and 𝑎. By using the same rule of modifying
derivatives when a 𝑙𝑖 dependence is introduced after 𝑙0

𝑖−1 integration, an algorithm for general loop
number could be derived.
As an example of two-loop LTD application to integrals with raised exponents of propagators, the
calculation of the following integral is presented:

𝐼 =

∫
𝑑4𝑙1𝑑

4𝑙2

(2𝜋)8
1

[𝑙21 − 𝑚2] [(𝑙1 + 𝑝2)2 − 𝑚2] [(𝑙1 + 𝑙2)2 − 𝑚2] [𝑙22 − 𝑚2] [(𝑙2 − 𝑘)2 − 𝑚2]2
(16)

where 𝑝2
2 = 0 and 𝑘2 = 100. The mass 𝑚 is the top quark mass, taken to be 1.73.

There are 4 cuts belonging to the first configuration, two cuts belonging to the second and two cuts
belonging to the third. In total, there are 8 summands. The LTD numerical integration gives the
result

𝐼𝐿𝑇𝐷 = (1.5114(1) ± 1.3922(1)𝑖)10−7 (17)

while pySecDec gives
𝐼𝑆𝐷 = (1.513(6) ± 1.392(6)𝑖)10−7. (18)

3. The Bogoliubov R operator and tadpole subtraction

3.1 The R operator

The Bogoliubov R operator is introduced following the derivation by Connes and Kreimer
[8–10]. Given a graph Γ, the renormalized value of the log-divergent Feynman integral 𝑈 (Γ)
associated to the diagram is defined recursively by

R (Γ) = 𝑈 (Γ) −
∑︁
𝛾𝑖∈Γ

𝑇 (𝛾𝑖)R (Γ/𝛾𝑖) (19)

5
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where 𝛾𝑖 is a divergent subgraph included in Γ, or Γ itself. The operator 𝑇 takes the value of the
Feynman integral in another kinematical point, e.g. a tadpole. In this case the counterterms are
products of tadpoles with integrals with a lower loop number. This UV divergence subtraction is
local and suitable for a momentum-space based numerical integration technique such as LTD.
The operator in Eq. (19) for for one- and two-loop 1PI Feynman integrals gives

R
(
Γ1

)
= 𝑈

(
Γ1

)
− 𝑇

(
Γ1

)
(20)

and
R

(
Γ2

)
= 𝑈

(
Γ2

)
− 𝑇

(
𝛾1

)
𝑈

(
Γ2/𝛾1

)
+ 𝑇

(
𝛾1

)
𝑇

(
Γ2/𝛾1

)
− 𝑇

(
Γ2

)
(21)

when the two-loop integral has also a one-loop subdivergence.
As an example, consider the UV divergence subtraction of the integral

𝐼 (𝑝2, 𝑚2) =
∫

𝑑𝐷𝑙1𝑑
𝐷𝑙2

(2𝜋)2𝐷
1

[𝑙21 − 𝑚2] [(𝑙1 + 𝑝)2 − 𝑚2] [(𝑙1 + 𝑙2)2 − 𝑚2] [𝑙22 − 𝑚2]
(22)

which is UV divergent when both loop momenta are very large, and also when just 𝑙2 grows to
infinity. Following the subtraction strategy designed in the previous paragraphs, the integral

𝐼𝑅 (𝑝2, 𝑚2, 𝑚2
𝑈𝑉 ) = 𝐼 (𝑝2, 𝑚2) − 𝐶1(𝑝2, 𝑚2, 𝑚2

𝑈𝑉 ) + 𝐶2(𝑚2
𝑈𝑉 ) − 𝐶3(𝑚2

𝑈𝑉 ) (23)

is finite. The three counterterms are

𝐶1(𝑝2, 𝑚2, 𝑚2
𝑈𝑉 ) =

∫
𝑑𝐷𝑙1𝑑

𝐷𝑙2

(2𝜋)2𝐷
1

[𝑙21 − 𝑚2] [(𝑙1 + 𝑝)2 − 𝑚2] [𝑙22 − 𝑚2
𝑈𝑉

]2
(24)

𝐶2(𝑚2
𝑈𝑉 ) =

∫
𝑑𝐷𝑙1𝑑

𝐷𝑙2

(2𝜋)2𝐷
1

[𝑙21 − 𝑚2
𝑈𝑉

]2 [𝑙22 − 𝑚2
𝑈𝑉

]2
(25)

𝐶3(𝑚2
𝑈𝑉 ) =

∫
𝑑𝐷𝑙1𝑑

𝐷𝑙2

(2𝜋)2𝐷
1

[𝑙21 − 𝑚2
𝑈𝑉

]2 [(𝑙1 + 𝑙2)2 − 𝑚2
𝑈𝑉

] [𝑙22 − 𝑚2
𝑈𝑉

]
. (26)

The integral in Eq.(23) can be evaluated in 𝐷 = 4 using LTD in the generalized propagator powers
framework. With 𝑝2 = 100, 𝑚2 = 1 and 𝑚2

𝑈𝑉
= 226 the result is

𝐼𝑅 (100, 1.0, 226.0)LTD = (−1.9668(3) − 4.6483(2)𝑖)10−4 (27)

cross-checked with PySecDec

𝐼𝑅 (100, 1.0, 226.0)SD = (−1.96767(1) − 4.64838(1)𝑖)10−4 (28)

3.2 The subtraction of divergences using modified integrands

The Hopf algebraic properties of UV scalar log-divergent integrals are well established and
lead to the algorithmic production of local counterterms. The generalization to power divergent
integrals can be obtained with an alternative derivation. Consider the two-loop integrand

𝑑𝐷𝑘1𝑑
𝐷𝑘2𝑁 (𝑘1, 𝑘2, 𝑝𝑖)

𝑃1𝐷 (𝑘1, 𝑘2, 𝑝𝑖 , 𝑚𝑖)
(29)

6
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where 𝑃1 is a propagator. Supposing the loop integral is UV divergent when the loop momentum in
𝑃1 goes to infinity, considering the modified propagator 𝑃1 where the external momenta dependence
of 𝑃1 is removed and computing

𝑑𝐷𝑘1𝑑
𝐷𝑘2𝑁 (𝑘1, 𝑘2, 𝑝𝑖)

𝑃1𝐷 (𝑘1, 𝑘2, 𝑝𝑖 , 𝑚𝑖)
− 𝑑𝐷𝑘1𝑑

𝐷𝑘2𝑁 (𝑘1, 𝑘2, 𝑝𝑖)
𝑃1𝐷 (𝑘1, 𝑘2, 𝑝𝑖 , 𝑚𝑖)

=
𝑑𝐷𝑘1𝑑

𝐷𝑘2𝑁 (𝑘1, 𝑘2, 𝑝𝑖) (𝑃1 − 𝑃1)
𝑃1𝑃1𝐷 (𝑘1, 𝑘2, 𝑝𝑖 , 𝑚𝑖)

(30)

leads to an integral with degree of divergence for the loop momentum in 𝑃1 going to infinity that is
one unit lower than the original integrand. An iterated application of this strategy starting allows
for the generation of local counterterms that make the integral finite and that have a simplified
dependence on external momenta.
The advantage of this second method is that it is possible to generalize it to power divergent integrals.

3.2.1 Power-divergences: the sunrise integral

Consider the quadratic-divergent two-loop equal-mass sunrise integrand in four dimensions

𝐼 =
1

[(𝑘1 + 𝑝)2 − 𝑚2] [𝑘2
2 − 𝑚2] [(𝑘1 + 𝑘2)2 − 𝑚2] [(𝑘1)2 − 𝑚2]0

=
1

𝑃1𝑃2𝑃3𝑃1
0 =

1
𝑃1𝑃2𝑃3

(31)

where the modified propagator for the UV divergence subtraction 𝑃1 has already been defined. The
overall quadratic divergence when both loop momenta are large can be brought to a logarithmic one
by subtracting the counterterm

𝐼𝑐1 =
1

𝑃1𝑃2𝑃3
− 2𝑘1 · 𝑝 + 𝑝2

𝑃1
2
𝑃2𝑃3

. (32)

Indeed, power counting on

𝐼 − 𝐼𝑐1 =
(2𝑘1 · 𝑝 + 𝑝2)2

𝑃1𝑃1
2
𝑃2𝑃3

(33)

proves that the overall UV divergence is now logarithmic. The remaining UV divergence can be
removed by the R operator or modified integrand subtraction. The counterterm to subtract is

𝐼𝑐2 =
(2𝑘1 · 𝑝 + 𝑝2)2

𝑃1𝑃1
2
𝑃2

2

− (2𝑘1 · 𝑝 + 𝑝2)2

𝑃1
3
𝑃2

2

+ (2𝑘1 · 𝑝 + 𝑝2)2

𝑃1
3
𝑃2𝑃3

. (34)

The finite integral
𝐼fin = 𝐼 − 𝐼𝑐1 − 𝐼𝑐2 (35)

can be computed with LTD thanks to local cancellation of UV divergences at the integrand level.
For 𝑝2 = 400 and 𝑚2 = 4 the result is

𝐼fin,LTD = (0.44934(3) + 0.018403(9)𝑖) (36)

consistent with the PySecDec result

𝐼fin,SD = (0.44943302 + 0.018397497)𝑖) (37)

reported without errors as the presence of few sectors allows for a precision of 1 part per 1013.
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4. Conclusion and outlook

In this conference proceeding, explicit formulas for LTD at two-loop in the presence of raised
propagator powers are provided and tested against established numerical methods. These formulas
are then used to provide a regularization algorithm both for log-divergent integrals and power-
divergent ones.
Using the same approach of generalizing the (easier) tadpole formulas, the extension to higher loop
number is natural. A different and interesting direction is the application of LTD techniques to
linear propagators, such as the ones appearing for IR counterterms or in gravitational wave physics.
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