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1. Introduction

Graphical functions were originally studied by the first author to study the number theory of

Feynman periods in four-dimensional q4 theory [3, 12, 14]. The results of calculations with graphical

functions with the Maple implementation HyperlogProcedures [20] lead to the discovery of a

connection between quantum field theory (QFT) and motivic Galois theory, the coaction conjectures

[7–9].

Later the theory of graphical functions was extended by the first author to non-integer di-

mensions which made full QFT calcuations possible [15]. The result of this extension was the

calculation of the q4 beta-function up to loop order seven in the minimal subtraction scheme [18].

The field anomalous dimension was determined up to eight loops.

In 2021 a collaboration of the first author with Michael Borinsky lead to the extension of

graphical functions to all even dimension ≥ 4. This was used to tackle six-dimensional q3 theory.

On the number theory side it was discovered that the number content of q3 theory is similar (or

equal) to the number content of q4 theory. This supports an optimistic hope that the geometry of q4

theory is universal for all renormalizable QFTs. (There exist strong indications from a tool called

the 22-invariant that the number content of non-renormalizable QFTs is vastly more generic than

the number content of renormalizable q4 theory [5, 13, 16].) Full calculations became possible for

the q3 beta and gamma functions to loop order six [1, 19, 21].

After these breakthroughs it seems desirable to generalize the theory of graphical functions to

theories with positive spin. Theories with spin generate a numerator structure which significantly

increases complexity compared to scalar theories. The main tool in this context is integration by

parts (IBP) with the Laporta algorithm, see e.g. [23] and the references therein. The IBP method

is very powerful but scales very badly with the loop order. (In q4 theory IBP is not helpful, only

in six-dimensional q3 theory IBP can be used effectively.) The hope is that at high loop orders the

graphical function method (which is inherently IBP-free) becomes a valuable complementary tool

for QFT calculations. In these notes we take first steps in this direction. The methods and results

will be successively added to HyperlogProcedures.
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2. Propagators

In dimension � = 2_ + 2 > 2 we define the spin : propagator &U
a (G, H) = &

U1,...,U:
a (G, H) in

numerator form by

U1, . . . , U:

ax y

U1, . . . , U:

a
(−1):

x y

(HU1 − GU1) · · · (HU: − GU: )

‖G − H‖2_a+:
.= =

(1)

We also use a differential form of the propagator where the indices are subscripts, &a;U (G, H) =

&a;U1 ,...,U:
(G, H) =

2
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a;Ux y a;U
(−1):

x y a − :
2_

mU1
H · · · m

U:
H

x y
mU1
H · · · m

U:
H

1

‖G − H‖2_a−:
.= = =

(2)

The subscript a ∈ R relates to the scaling weight ‖G‖−2_a of &U
a (G) and &a;U (G), i.e. #&U

a
=

#&a;U
= a.

Double indices are possible. We use Einstein’s sum convention that double indices are summed

over (from 1 to �) without writing the sum symbol. Because we work in Euclidean signature

6U8 ,U9 = XU8 ,U9
(we have e.g. 6V,V = �). Repetitions of more than two indices are not possible.

Moreover U is only defined up to permutations, so that U is a multiset with a maximum of two

repetitions of each label. Swapping G and H gives a minus sign for odd : = |U |.

The propagator &a;U is connected to the momentum space propagator via a Fourier transfor-

mation
∫

R�

?U1 · · · ?U:

‖?‖2`
eiG ·? d� ?

2�c�/2
=
Γ(_ + 1 − `)

4`i:Γ(`)
&1+(1+:/2−`)/_,U1 ,...,U:

(0, G). (3)

A chain of two propagators with multi-indices U and V can be expressed as a single propagator,
∫

R�
&a;U (G, H)&`;V (H, I)

d�H

c�/2
=

Γ

(
1 +

|U |
2

+ _(1 − a)
)
Γ

(
1 +

|V |

2
+ _(1 − `)

)
Γ

(
_(a + ` − 1) − 1 −

|U |+ |V |

2

)

Γ

(
2 +

|U |+ |V |

2
+ _(2 − a − `)

)
Γ

(
_a −

|U |
2

)
Γ

(
_` −

|V |

2

) &a+`−1−1/_;U,V (G, I),

(4)

whenever the right hand side exists.

A double index can be dropped in &U
a (G, H), i.e. &

V,V,U1 ,...,U:
a (G, H) = &

U1 ,...,U:
a (G, H). In

differential form the reduction of double indices is more subtle. We get

&a;V,V,U (G, H) = ( |U | + 2 − 2_(a − 1))( |U | + 2 − 2_a)&a;U (G, H), if a ≠ 1 +
|U | + 2

2_
. (5)

For a = 1 + (|U | + 2)/2_ we obtain a Dirac X distribution,

&1+( |U |+2)/2_;V,V,U1 ,...,U:
(G, H) = −

4

Γ(_)
mU1
H · · · m

U:
H X� (G − H). (6)

After integration by parts such an edge will be contracted.

The transition from &a;U to &U
a is by iterative application of partial differentiation

m
V
H&

U1 ,...,U:
a (G, H) =

:∑

8=1

6V,U8&
U1 ,...,U8−1 ,U8+1 ,...,U:

a+1/2_
(G, H) − (2_a + :)&

V,U1 ,...,U:

a+1/2_
(G, H), if V ∉ U.

(7)

For the case V = U8 one best converts the propagator into differential form and then uses (5) or

(6). The left hand side of the above equation may be considered as a mixed numerator differential

propagator &U
a+1/2_;V

. Solving (7) for the last term on the right hand side lowers the number of

upper indices. This gives rise to a bootstrap algorithm for the conversion from numerator form to

differential form.

3
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Example 1. For |U | = 1 we have &a;U1
(G, H) = (−2_a + 1)&

U1
a (G, H). For |U | = 2 we obtain

&a;U1 ,U2
(G, H) = 4_a(_a − 1)&U1 ,U2

a (G, H) − 2(_a − 1)6U1 ,U2&a (G, H).

Let 0 be the origin in R� and let 1 be a label for a constant unit vector ÎU
1

, ‖ ÎU
1
‖ = 1. We obtain

&U
a (1, 0) = (−1) |U |&U

a (0, 1) = (−1) |U | Î
U1

1
· · · Î

U:

1
. We use the anti-symmetry of the propagator to

define &a;U (G, 0) = (−1) |U |&a;U (0, G) and &a;U (G, 1) = (−1) |U |&a;U (1, G). For the definition of

&a;U (0, 1) = (−1) |U |&a;U (1, 0) we use the transition to the numerator form.

3. Feynman integrals

Consider an oriented graph � whose edges are labeled with the same indices as the propagators

(we have a weight and numerator or differential labels at each edge). Let +ext
�

be a set of external

vertices I0, I1, . . . , I |+ ext
�

|−1 and + int
�

be a set of internal vertices G1, . . . , G |+ int
�

|. We define the

Feynman integral �� (I0, . . . , I |+ ext
�

|−1) as the integral

�U
� (I0, . . . , I |+ ext

�
|−1) =

∫

R�

d�G1

c�/2
· · ·

∫

R�

d�G+ int
�

c�/2

∏

GH∈��

&GH (G, H), (8)

where the product is over all edges 4 = GH ∈ �� . For each edge we have &4 = &
U4
a4 for a numerator

edge and &4 = &a4;U4
for a differential edge. We assume that � is such that the integral exists.

Typically on the right hand side some (or all) indices are contracted, so that the indices of the

propagators form a larger set than U.

The scaling weight of the graph � in � = 2_ + 2 dimensions is the superficial degree of

divergence

#� =

∑

4∈��

a4 −
_ + 1

_
+ int
� . (9)

4. Feynman Periods

Consider a graph � with one external vertex 0 ∈ R� (also labeled 0) and zero scaling weight

#� = 0. For the period of � we pick any vertex I1 ≠ 0 in � and integrate the two-point function

�U
�

over the (� − 1)-dimensional unit-sphere of the vector I1,

%U
� = ‖I1‖

�

∫

(�−1

�U
� (I1)

(0, I1)d
�−1 Î1, (10)

where the integral over the unit sphere is normalized, so that
∫
(�−1 d�−1 Î1 = 1.

Lemma 2. The period of � does not depend on the choice of 0 or I1. Moreover, %U
�

= 0 if |U | is

odd.

All proofs and many more examples will be in [22].

Assume the spin |U | is even (otherwise %U
�

= 0). Let c be a partition of {U1, . . . , U |U |} into

pairs {c81, c82}, 8 = 1, . . . , |c | = |U |/2. Let ΠU
0

be the set of all such partitions (later we will define

ΠU
1

and ΠU
2

for 2- and 3-point functions).

4
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Because %U
�

does not depend on any external vectors, it is a sum over all possibilities to

construct a spin |U | vector from products of 6U8 ,U9 . For |U | ≥ 2 we obtain

%U
� =

∑

c∈ΠU
0

%�,c6
c , (11)

where we used the notation

6c
= 6c11 , c12 · · · 6c#1, c#2 , (12)

where # = |U/2|. For U = ∅ we set %�,∅ = %� and 6∅ = 1.

By contraction over repeated indices c ↦→ 6c defines a bilinear form on ΠU
0

,

〈c1, c2〉 = 6c16c2 ∈ Z[�], for c1, c2 ∈ Π
U
0 . (13)

This bilinear form corresponds to the trace in the Brauer algebra, see e.g. [11].

Lemma 3. The bilinear form 〈·, ·〉 is non-degenerate on ΠU
0

.

By Lemma 3 every partition c ∈ ΠU
0

has a dual ĉ in the vector space of formal sums of

partitions with coefficients in the field of rational functions in �,

〈c8, ĉ 9〉 = X8, 9 , c8 ∈ Π
U
0 , ĉ 9 ∈ 〈ΠU

0 〉Q(�) . (14)

By linearity we extend ĉ to 6 ĉ yielding

6c86 ĉ 9 = X8, 9 . (15)

From (11) we hence obtain

%�,c = %U
�6

ĉ , for c ∈ Π
U
0 , (16)

Example 4. For |U | = 2 we write 12 for the pair U1, U2 and get ΠU
0
= {{12}}. The dual of {12} is

1
�
{12}. Hence

%�,{12} =
%
U1,U2

�
6U1 ,U2

�
.

For |U | = 4 we have ΠU
0
= {{12, 34}, {13, 24}, {14, 23}} = {c1, c2, c3}. A short calculation gives

ĉ1 =
(� + 1)c1 − c2 − c3

(� − 1)� (� + 2)

with cyclic results for ĉ2 and ĉ3. Hence

%�,{12,34} =
%
U1,...,U4

�
((� + 1)6U1 ,U26U3,U4 − 6U1,U36U2 ,U4 − 6U1 ,U46U2,U3 )

(� − 1)� (� + 2)
,

with cyclic results for %�,{13,24} and %�,{14,23} .

We lift duality from periods to formal sums of (spin zero) graphs in the graph algebra with

coefficients in Q(�). For c ∈ ΠU
0

we denote the sum of graphs corresponding to ĉ by � (ĉ), i.e.

� (ĉ) =
∑

8 28� (c8) if ĉ =
∑

8 28c8, with 28 ∈ Q(�). Equations (11) and (16) combine to

%U
� =

∑

c∈ΠU
0

%� ( ĉ)6
c . (17)

It is hence possible to express any spin U period in terms of a sum of scalar periods.

5
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Example 5. From Example 4 we obtain

� (�{12}) =
� (U)6U1,U2

�
,

� ( �{12, 34}) =
(� + 1)� (U)6U1 ,U26U3,U4 − � (U)6U1,U36U2 ,U4 − � (U)6U1,U46U2 ,U3

(� − 1)� (� + 2)
.

We made the spin dependence of the graph � explicit by writing � (U). On the right hand sides all

spins are fully contracted, i.e. all graphs are scalar.

5. Two-point functions

In a two-point function we have two external vertices 0 = I0 and I1. By scaling all internal

variables we obtain

�U
� (0, I1) = ‖I1‖

−2_#� �U
� (0, Î1), where Î1 = I1/‖I1‖. (18)

The Feynman integral �U
�

is a linear combination of products of vectors Î1 and the metric 6.

To express this linear combination we use a partition of the set {U1, . . . , U |U |} into c0
1
, . . . , c0

ℓ
, c1

and assume that the sets c0
8
= {c0

81
, c0

82
} are pairs. The last slot c1 may have any number of

elements. We order c0 before c1, so that e.g. we distinguish the partitions c0 = {12}, c1 = 34 and

c0 = {34}, c1 = 12. (We omit here and in the following brackets sets of labels.) Let ΠU
1

be the set

of all these partitions.

For c ∈ ΠU
1

we use the shorthand

6c0

Îc
1

1 = 6c0
11
, c0

12 · · · 6c0
ℓ1
, c0

ℓ1 Î
c1

1

1
· · · Î

c1
|U|−2ℓ

1
, ℓ = |c0 |, (19)

for the corresponding expansion into products of 6 and Î1.

With this notation we get �U
�
(0, I1) =

∑
c∈ΠU

1
��,c (0, I1)6

c0

Îc
1

1
. We use the scaling weight

of �U
�
(0, I1), see (18), to replace the two-point object ��,c (0, I1) by its period %�,c ,

�U
� (0, I1) = ‖I1‖

−2_# (�)
∑

c∈ΠU
1

%�,c6
c0

Îc
1

1 =

∑

c∈ΠU
1

%�,c6
c0

&c1

# (�) (0, I1). (20)

In the last equation we wrote the product of Î
U8

1
as propagator in numerator form.

The essential information in the Feynman integral �U
�
(0, I1) is encoded in the numbers (peri-

ods) %�,c , which are the 6c0

Îc
1

1
coefficients of �U

�
(0, Î1).

Example 6. From Example 4 and 5 we obtain

%�0,{12} = %�,{12},∅ +
%�,∅,12

�
, %�0,{12,34} = %�,{12,34},∅ +

%�,{12},34

�
+

%�,∅,1234

� (� + 2)
. (21)

To calculate %�,c from spin 0 periods (corresponding to unlabeled spin 0 graphs) we proceed

as in the period case and define a bilinear form on ΠU
1

,

〈c1, c2〉 = 6c0
1 Î

c1
1

1
6c0

2 Î
c1

2

1
∈ Z[�], for c1, c2 ∈ Π

U
1 . (22)

Note that 〈c1, c2〉 does not depend on Î1 because all indices are contracted and ‖ Î1‖ = 1. The

bilinear form 〈·, ·〉 in ΠU
1

with even |U | is the trace in the rook-Brauer algebra [11].

6
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Lemma 7. The bilinear form 〈·, ·〉 is non-degenerate on ΠU
1

.

By Lemma 7 every partition c ∈ ΠU
1

has a dual ĉ in the vector space of formal sums of

partitions with coefficients in the field of rational functions in �,

〈c8, ĉ 9〉 = X8, 9 , c8 ∈ Π
U
1 , ĉ 9 ∈ 〈ΠU

1 〉Q(�) . (23)

By linearity we extend ĉ to 6 ĉ0

I ĉ
1

1
yielding 6c0

8 Î
c1
9

1
6
ĉ0
9 Î

ĉ1
9

1
= X8, 9 . From (20) we hence obtain

%�,c = �U
� (0, Î1)6

ĉ0

Î ĉ
1

1 = �U
� (0, Î1)6

ĉ0

& ĉ1

a01
(0, Î1), a01 = −#� +

_

_ + 1
, (24)

where we define 6 ĉ0
& ĉ1

a01
(0, I1) in analogy to 6 ĉ0

I ĉ
1

1
in (19). The choice of a01 ensures that � ∪ 01

is a period graph. More precisely, � (U)6 ĉ0
& ĉ1

a01
is a linear combination of graphs, which define

Feynman periods with spin 0. In particular, the vertices 0 and 1 can be chosen freely, which

effectively promotes the graphs to unlabeled graphs, see Section 4. In the graph algebra we obtain

%�,c = %� ( ĉ) .

Substitution into (20) gives the two-point function as sums over propagators with spin 0

Feynman period coefficients,

�U
� (0, I1) =

∑

c∈ΠU
1

%� ( ĉ)6
c0

&c1

# (�) (0, I1). (25)

With this formula one can eliminate two-point insertions in Feynman integrals by sums over

propagators with period coefficients and suitable weights.

Example 8. We write � (U)&U
a01

for the graph � with edge 01 of spin U and weight a01 defined in

(24). For |U | = 1 we get � (∅̂, 1) = � (U1)&
U1
a01

. For |U | = 2 we have ΠU
1
= {{{12}, ∅}, {∅, 12}} and

� ( �{12}, ∅) =
� (U)&a01

6U1,U2 − � (U)&
U1,U2
a01

� − 1
, � (�∅, 12) =

−� (U)&a01
6U1,U2 + � � (U)&

U1 ,U2
a01

� − 1
.

6. Three-point functions

A three-point function has three external vertices 0 = I0, I1, and I2. By scaling all internal

variables we obtain

�U
� (0, I1, I2) = ‖I1‖

−2_#� �U
� (0, I1/‖I1‖, I2/‖I1‖). (26)

To define the graphical function of � we use the coordinates (in a suitably rotated coordinate frame)

Î1 =
I1

‖I1‖
= (1, 0, 0, . . . , 0)) , Î2 =

I2

‖I1‖
= (Re I, Im I, 0, . . . , 0)) . (27)

Note that Î2 is normalized by the length of I1 and hence not a unit vector in general. Alternatively,

we may express the invariants

‖I2 − I0‖
2

‖I1 − I0‖2
= II,

‖I2 − I1‖
2

‖I1 − I0‖2
= (I − 1)(I − 1) (28)

7
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in terms of the complex variable I and its complex conjugate I. With these identifications we define

the graphical function of � as

�U
� (0, I1, I2) = ‖I1‖

−2_#� 5 U� (I). (29)

The Feynman integral �U
�

is a linear combination of products of the metric 6 and the vectors Î1,

Î2. To express this linear combination we proceed in analogy to the previous sections and define a

partition of the set U = {U1, . . . , U:} into c0
1
, . . . , c0

ℓ
, c1, c2 and assume that the sets c0

8
= {c0

81
, c0

82
}

are pairs. The slots c1 and c2 may have any number of elements. We always distinguish between

c0, c1, and c2.

Let ΠU
2

be the set of all these partitions. For a fixed c ∈ ΠU
2

we use the shorthand

6c0

Îc
1

1 Îc
2

2 = 6c0
11
, c0

12 · · · 6c0
ℓ1
, c0

ℓ2 Î
c1

1

1
· · · Î

c1
<

1
Î
c2

1

2
· · · Î

c2
=

2
(30)

for the corresponding expansion into products of 6, Î1, and Î2 (where ℓ + < + = = |U |).

With this notation we obtain

5 U� (I) =
∑

c∈ΠU
2

5�,c (I)6
c0

Îc
1

1 Îc
2

2 , (31)

with an analogous expansion for �U
�
(0, I1, I2) from Equation (29).

In the following we often consider the graphical function 5 U
�
(I) as a vector with components

5�,c (I),

5 U� (I) ↔ ( 5�,c (I))c∈ΠU
2
. (32)

Rather than expressing 5 U
�
(I) in terms of spin zero graphical functions (which is possible but

not efficient) we try to construct 5 U
�
(I) from the empty graphical function (or a known kernel) by

the following five operations: (1) Elimination of two-point insertions using Section 5, (2) adding

edges between external vertices, (3) permutation of external vertices, (4) product factorization, (5)

appending an edge to the external vertex I.

6.1 Edges between external vertices

Edges between external vertices are constant factors in the Feynman integral. The graphical

function 5 U
�
(I) is multiplied by the propagator &

V
a (I8, I 9) of the external edge. The spin changes

accordingly. Contraction of indices lowers the spin, otherwise the spin increases. The vector of

5 U
�
(I) in (32) is multiplied by a rectangular matrix.

6.2 Permutation of external vertices

A transformation G8 ↦→ I1 − G8 at all internal vertices gives

�U
� (0, I1, I2) = (−1) |U |�U

� (I1, 0, I1 − I2). (33)

The invariants (28) imply a transformation I ↦→ 1 − I. From (29) we get the transformation of the

graph � = �01I with external labels 0, 1, I,

5 U�01I
(I) = (−1) |U | 5 U�10I

(1 − I) = (−1) |U | 5 U�10(1−I )
(I), (34)

8
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1

0

zG

1

0

zG1

Figure 1: Appending an edge to the vertex I in � gives �1.

where the last identity defines 5 U
�10(1−I )

. The transformation I ↦→ 1 − I also induces the map

Î2 ↦→ Î1 − Î2 in the spin structure.

If we swap I1 and I2 in (29) we get a factor ‖I2‖
−2_#� and a transformation I ↦→ I−1 from

(28). Moreover, ÎU
1
↦→ IU

2
/‖I2‖ = ÎU

2
/‖ Î2‖ and ÎU

2
↦→ IU

1
/‖I2‖ = ÎU

1
/‖ Î2‖. This implies that Î1

and Î2 are swapped together with an extra scaling factor ‖ Î2‖
−1 = (II)−1/2. Altogether we obtain a

scale transformation, the inversion I ↦→ I−1, and a permutation Î1 ↔ Î2 in the spin structure.

The transformations 0 ↔ 1 and 1 ↔ I generate the full (3 transformation group of the three

external vertices 0, 1, and I. For every transformation the vector of 5 U
�
(I) is multiplied by a square

matrix together with a Möbius transformation of the argument I.

6.3 Product factorization

If the graph � of a three-point function or a graphical function disconnects upon removal of the

three external vertices, � = �1 ∪ �2 with �1 ∩ �2 ⊆ {0, 1, I}, then the Feynman integral trivially

factorizes into Feynman integrals over the internal vertices of �1 and �2. This implies

5 U� (I) = 5
V1

�1
(I) 5

V2

�2
(I), (35)

where, after the elimination of contractions, U = (V1 ∪ V2) \ (V1 ∩ V2).

6.4 The effective Laplace operator �U
_

In this and the next section we prepare the main calculation technique for graphical functions:

appending an edge at the external vertex I, thus creating a new vertex I, see Figure 1.

We first determine the effect of the differential operators m
V
I8 on a graphical function 5 U

�
(I). We

consider 5 U
�
(I) as a function of the invariants II and (I−1)(I−1) in (28). Let mB be the differential

with respect to the invariant (I− B)(I− B) for B = 0, 1. Moreover, we define the differential operators

X: =
1

I − I
(I:mI − I:mI), : = 0, 1, 2. (36)

For every component 5�,c (I) of 5 U
�
(I) (with c ∈ ΠU

2
) we obtain

mI 5�,c (I) = Im0 5�,c (I)+(I−1)m1 5�,c (I), mI 5�,c (I) = Im0 5�,c (I)+(I−1)m1 5�,c (I). (37)

This yields m0 = X1 − X0 and m1 = −X1. With these preparations it is possible to derive differential

operators that correspond to the differentiation of the Feynman integral �� with respect to the

9
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external vectors. We obtain

m
V
I0
= −m

V
I1
− m

V
I2
, (38)

m
V
I1
→ −2Î

V

1
(_#� + X2) + 2Î

V

2
X1 +

∑

W∈U

(
(6V,W − Î

V

1
Î
W

1
)mÎW

1
− Î

V

1
Î
W

2
mÎW

2

)
,

m
V
I2
→ 2Î

V

1
X1 − 2Î

V

2
X0 +

∑

W∈U

6V,WmÎW
2
.

For the Laplace operator ΔI2
= m

V
I2
m
V
I2

we find the correspondence

ΔI2

4
→ �

U
_ = �_+|c2 | + X1

∑

V∈U

Î
V

1
m
Î
V

2

+
1

2

∑

{V,W }⊆U

6V,Wm
Î
V

2

mÎW
2
, (39)

where |c2 | =
∑

V∈U Î
V

2
m
Î
V

2

is the number of Î2 factors in the individual terms of 5 U
�
(I). If one sorts

the vector 5�,c by the number of Î2 factors, then the matrix form of �U
_

is triangular with the scalar

effective Laplace operator �_+|c2 | of dimension � + 2|c2 | on the diagonal.

The inversion of �U
_

can be reduced to the inversion of the scalar effective Laplace operators

in even dimensions ≥ 4. This problem is solved for integer dimensions in [2]. An extension to

non-integer dimensions (in dimensional regularization) is in [18].

Example 9. For spin 1 we have 5
U1

�
(I) = 51 (I) Î

U1

1
+ 52 (I) Î

U1

2
. The matrix of �

U1

_
is

(
�_ X1

0 �_+1

)
. (40)

6.5 Inverting �U
_

in the regular case

The �-dimensional effective Laplace operator �U
_

can be represented by a triangular matrix

whose diagonal is populated by scalar � + 2 9 dimensional effective Laplace operators �_+ 9 for

9 = 0, 1, . . . , |U |. For appending an edge, these �_+ 9 need to be inverted.

Here we consider the situation that in dimension � = 2=+ 4− n , = = 0, 1, 2, . . ., the limit n = 0

is convergent. In this case (which contains convergence in integer dimensions) we call the graphical

function regular.

In the regular case, the inversion of �_+ 9 is unique in the space of scalar graphical functions

[2, 18]. There exists an efficient algorithm for inverting �_+ 9 in the function space of general

single-valued hyperlogarithms (GSVHs) [17]. For low loop orders (typically ≤ 7) the space of

GSVHs is sufficiently general to perform all QFT calculations. At higher loop orders it is known

that GSVHs will not suffice (see e.g. [4]).

In the following we will extend the algorithm for the inversion of �_ to positive spin by

constructing an algorithm for the inversion of �U
_

. We will see that a subtlety arises from poles at

I = 1.

We use a bootstrap algorithm that constructs the inverse from more Î2 factors to less Î2 factors

(bottom up in (40)). Concretely we recursively solve the effective Laplace equation

(�U_ )
−1 5 U (I) = �U(I) (41)

10



P
o
S
(
L
L
2
0
2
4
)
0
2
6

Notes on graphical functions with numerator structure Oliver Schnetz

by extracting the term 5 U
:
(I) of 5 U (I) with the maximum (=:) number of factors of Î2 in the vector

decomposition (in the first step this typically corresponds to the decomposition (∅, ∅, U) ∈ ΠU
2

with

: = |U |),

5 U (I) = 5 U: (I) + terms with fewer factors of Î2. (42)

The corresponding term �U
:
(I) in �U(I) is given by the inversion of �_+: (bottom right corner in

(40)),

�U
: (I) = �−1

_+: 5
U
: (I). (43)

We obtain

�U(I) = �U
: (I) + (�U_ )

−1
(
5 U (I) − 5 U: (I) − X1

∑

V∈U

Î
V

1
m
Î
V

2

�U
: (I) −

1

2

∑

{V,W }⊆U

6V,Wm
Î
V

2

mÎW
2
�U
: (I)

)
,

(44)

where the function 6U
:
(I) in the brackets on the right hand side has ≤ : − 1 factors of Î2. We

continue solving (41) with 5 U (I) → 6U
:
(I) until we reach the scalar case U = ∅ with 60 = 0.

Finally, we obtain �U(I) =
∑:

8=1 �
U
:
(I).

Example 10. For |U | = 1 we write 5
U1

�
(I) = 51 (I) Î

U1

1
+ 52(I) Î

U1

2
, see Example 9. We obtain

�U1 (I) = �−1
_

(
51 (I) − X1�

−1
_+1 52 (I)

)
Î
U1

1
+ �−1

_+1 52 (I) Î
U1

2
. (45)

The main difficulty is to identify the right functions in the preimage of �_+ 9 (i.e. to control

the kernel of �_+ 9 ). In the scalar case this is facilitated by an analysis of the singular structure of

the preimages. Theorem 36 in [2] ensures that the preimage is unique in the space of graphical

functions. When we extend this approach to positive spin, a naive inversion of �_+ 9 will not suffice.

We use the general structure of graphical functions which are proved to have singularities

only at I = 0, 1, or ∞ [10]. At the poles B = 0, 1 the coefficients have single-valued log-Laurent

expansions [2]:

5�,c (I) =

+ int
�∑

ℓ=0

∞∑

<,<="B

2
c,B

ℓ,<,<
[log(I − B)(I − B)]ℓ (I − B)< (I − B)< if |I − B | < 1, (46)

for some constants 2
c,B

ℓ,<,<
∈ R and "B ∈ Z. At infinity an analogous expansion exists.

Including the tensor structure, the poles are sums of terms

[log((I − B)(I − B))]ℓ (I − B)< (I − B)< ( Î2 − ÎB)
V1 · · · ( Î2 − ÎB)

V 9 , (47)

with Î0 = 0 and V8 ∈ U. If 9 < |U |, the term (47) is multiplied with factors of 6 and Î1 to form a

spin U object.

At I → B, Î2 → ÎB these terms scale like logℓ ( |I − B |2) |I − B |<+<+ 9 . In � dimensions,

integration over poles is regular if < + < + 9 > −�. Note that spin 9 > 0 relaxes the condition

< + < > −� for regularity of scalar graphical functions. So, in general, the scalar coefficients can

have higher total pole orders −< − < than purely scalar graphical functions. If this is the case (i.e.

, we cannot use the algorithm for inverting the scalar effective Laplace operator.

At I → ∞, the pole order can only increase by including the spin structure (factors Î2). Hence

the coefficients are more regular than in the scalar case and no extra attention is necessary.

11
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Example 11. The function
Î
U1

2
− Î

U1

1

((I − 1)(I − 1))2
(48)

is regular in 4 dimensions although the scalar graphical function 1/((I − 1)(I − 1))2 is singular at

I = 1.

For B = 0 we have ÎB = 0 and the term (47) sits in an entry of the vector graphical function

which has 9 factors of Î2. We need to invert �_+ 9 , corresponding to dimension � + 2 9 , in this

sector. Because < + < > −(� + 9) ≥ −(� + 2 9) the inversion is unique in the space of scalar

graphical functions. We do not need any adjustments at B = 0.

For B = 1 the situation is more complex: The term (47) populates a selection of entries in the

vector graphical function with alternating signs. One entry is the coefficient of Î
V1

1
· · · Î

V 9

1
on which

Δ_ needs to be inverted. If −� ≥ < + < > −� − 9 , the inversion is not unique in the space of

regular graphical functions and hence ambiguous.

The ambiguity comes from the kernel of the scalar Laplace operator �_. It can be shown (see

Theorem 33 of [2]) that a pole in the kernel of �_ has order ≥ 2_. The smallest example is the

function ((I − B)(I − B))−_ ∈ ker �_ for all B ∈ C.

Using scaling arguments, it is proved in Theorem 5 of [2] that the maximum pole orders at

0 and 1 of the graphical function 5 U
�1

(I) in Figure 1 (which solves the effective Laplace equation

(49)) is less than 2_. (The stronger statement that the pole order is ≤ 2_ − 2 uses the fact that a

scalar graphical function has even pole order which is not true for a graphical function with spin,

see Example 11.) We search for a regular function �U
reg(I) in the preimage of �U

_
which inherits the

constraints from the singularity structure of the graphical function 5 U
�1

(I).

Assume we generate a term (47) in the kernel of �U
_

. The expression (47) has a component

with 9 factors Î2. The coefficient of this part must be in the kernel of �_+ 9 . It follows that

−< − < ≥ 2_ + 2 9 . This implies that the pole order −< − < − 9 of (47) is ≥ 2_ + 9 ≥ 2_.

Because the graphical function has pole order strictly less than 2_ we can kill the kernel which

arises from singularities at I = 1 by subtracting all poles of order ≥ 2_.

It is necessary to regularize functions by subtracting poles in I = 1 before the inversion of

�_+ 9 is applied. This way the inversion is well-defined as appending an edge to a scalar graphical

function in � + 2 9 dimensions. The result will behave well on the singularities at 0 and ∞. The

subtraction is innocuous because it is automatically corrected by the subtraction of poles in I = 1

of degree ≥ 2_.

Example 12. We consider the function (48) in four dimensions. We use Equation (45) for 52 (I) =

− 51 (I) = ((I − 1)(I − 1))−2 and obtain by explicit calculation,

�
−1
2 52 (I) = −((I − 1)(I − 1))−1, X1 �

−1
2 52(I) = −((I − 1)(I − 1))−2.

Hence 51 (I) − X1�
−1
2

52(I) = 0 which has the unique inverse 0 (with respect to �1) in the space of

graphical functions. We obtain �U(I) = −Î2/((I − 1)(I − 1)) which has a pole of order 2 at I = 1.

We expand �U(I) at I = 1 yielding

�U(I) = −
Î2 − Î1

(I − 1)(I − 1)
−

Î1

(I − 1)(I − 1)
.

12
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I

1

0

_−1

_−1

�

1

0 I

_−1

_−1 1

�1

Figure 2: Constructing the three-star (right) in � = 2_ + 2 dimensions by appending an edge to the two-star

(left). The weights are as indicated.

The first term has pole order 1 whereas the second term is a pole term of order 2 = 2_ (which we

subtract). The regular solution �U
reg(I) is the first term in the previous equation.

6.6 Appending an edge

We assume that the appended edge has weight 1 and no spin indices, so that all the spin structure

is in the graphical function 5 U
�
(I). The differential equation that relates 5 U

�
(I) and 5 U

�1
(I) is

�
U
_ 5 U�1

(I) = −
1

Γ(_)
5 U� (I). (49)

We obtain 5 U
�1

(I) by inverting �U
_

as explained in the previous subsection. The inversion is unique

in the space of graphical functions.

By repeatedly appending edges of weight 1 and differentiating with respect to I2 using (38), it

is possible to append edges with spin U and weight a = 1 − :/_ + |U |/2_ for : = 0, 1, . . . , = + 1 in

2= + 4 − n dimensions.

6.7 Test and benchmarks

To test appending an edge we applied the method to the graph in figure 2. The two-star is

rational

5� (I) =
1

(II)_ ((I − 1)(I − 1))_
. (50)

The three-star is easily calculated by appending an edge to the scalar graph � [20]. In four

dimensions it contains a Bloch-Wigner dilogarithm [14]. We want to obtain the graphical functions

with spin :0 + :1 by taking :0 derivatives with respect to I0 and :1 derivatives with respect to I1

using (38). Because each differentiation increases the pole order by one, the graphical function is

regular if :0, :1 ≤ 2_ − 1.

We do this in two different ways. First we take derivatives of the three-star itself. Secondly we

take derivatives of the two-star and append an edge to the vertex I. Both methods have to give the

same result. This is checked for all configurations and orders of n up to computing time 10 to 20

hours per calculation on a single core of an office PC. The memory demand in these cases is modest

(≈1GB). The typical limits which were reached are dimension 10, spin 7, order n0 or dimension 10,

spin 5, order n2 or dimension 8, spin 4, order n4.
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7. Integration over I

There exist two options for the transition from graphical functions to two-point functions and

periods. Firstly, one can specify the external vertex I to 0 or 1 (or ∞), which transforms a three-point

amplitude into a two-point amplitude. This simple method was used to calculate the zigzag periods

in [6]. Secondly, one can integrate over I. In integer dimensions one best uses a residue theorem

which was developed in [14]. In non-integer dimensions the residue theorem cannot be used. A

practical method is to add a scalar edge of weight −1 between the external vertices 0 and I. Then

one appends a scalar edge of weight 1 to I. Finally setting I = 0 gives the integral of the original

graph over I. This method is more time-consuming than the residue theorem in integer dimension.

It seems inefficient to calculate a complicated graphical function in the intermediate step before

specializing to I = 0. In practice, however, it is typically not the bottleneck of the calculations.

8. Constructible graphs

The methods of the previous sections generalize by a subtraction procedure to graph with

logarithmic divergences [18].

Constructible graphs are graphs � which can be constructed from the empty graph with

three external vertices with a combination of the tools from the previous sections. The graphical

functions of constructible graphs can (subject to constraints from time and memory consumption)

be computed to any order in n [2].

For the two-point function typically every graph with ≤ 3 loops is constructible. At higher

loop orders there exists an increasing number of graphs which are not constructible and which have

to be calculated with extra tools.

In these notes we showed that the concept of constructible graphs generalizes to positive spin

in the sense that constructible graphs with spin can be calculated to high orders in n without using

techniques like integration by parts and the Laporta algorithm.

The easiest target for physically relevant calculations is q4-Yukawa theory where one has

completion and uniqueness as powerful extra tools. Within this theory the first goal will be to

calculate a full list of primitive Feynman periods to highest possible loop order [22]. Thereafter

one may try to calculate the full renormalization functions.

By the time of writing it is unclear how to bypass or adapt the IBP method (which is unwieldy

at loop orders ≥ 6) in other QFTs with spin.
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